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Virtualization of Wireless Access for 5G

@ Future 5G wireless cellular network:

o Requirements: Gbps capacity, 1ms latency, 10° connectivity
o Bottleneck: Path-loss, fading, and interference

@ Emerging trends:

o Dense
o Heterogeneous network; Small cell
o Massive
o Massive MIMO at each BS
o Cooperative
o Signal processing for interference cancellation

@ This talk: Capacity and optimization of cooperative networks.
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Cooperating BSs in the Cloud
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Cloud Radio-Access Networks

e Benefits of C-RAN:

o Allows a cost-effective way to deploy and upgrade wireless platform;
© Opens up new possibilities for the optimization of air-interface;

o Enables cooperative communication for interference mitigation;

o Provides an implementation of coordinated multi-point (CoMP).

e This talk: Information theoretical analysis of C-RAN

o Multicell Joint Processing for Uplink C-RAN
o Multicell Beamforming for Downlink C-RAN
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Wireless Access via the Cloud
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Uplink Multicell Joint Processing
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o X1,Xo,..., Xk are user terminals; Y1, Ya,..., Y, are RRHs.
@ Practical constraint: Fronthaul capacity limited to C;.

@ Goal: To maximize the overall capacities for all users.
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Distributed Detection in Uplink C-RAN
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@ What should each RRH do? Local detection vs. compression...
@ What should the cloud do? Successive vs. joint decoding...

@ How should we design transmit signaling?

Wei Yu C-RAN 737



Successive Interference Cancellation in the Cloud

Equivalent channel of user k in the k" decoding stage:

Zk+Zj;£k hjk)<j X17X27"'Xk71
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k > > Y Y k
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e The quantized observation at RRH k is sent to the centralized
processor via the fronthaul link of rate Cj.

e Previously decoded X; to Xi_1 serve as side information for
Wyner-Ziv compression and for decoding of X, achieving:

o 1, 1+SINR,
k= 3 %8 1 12 2G3INR,

where SINRy = (h2, Px)/(No + D ik hjgkpj)

Wei Yu C-RAN 8 /37



Better Strategy: Decoding Based on Cluster of RRHs

o Per-RRH decoding with SIC:
Ric = 1(Xi; Vil X, -+, Xe1)

subject to /(Yk; SA/k|X1, s ,Xk—l) < Cy.

@ Joint-RRH decoding can do better:
Ri = 1(Xe; Vi, Vil X1, -+, Xke1),

subject to /(Yk; \A/k“’\/l, SRR \A/k_l) < Cg.
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Uplink C-RAN as a Multiple-Access Relay Channel

@ Each RRH compresses Y; into Y;
o Compression can be done with Wyner-Ziv or single-user coding.

@ The cloud decodes the quantized received signals {\A’l, cee \A/L},
then the transmit messages Xi, Xo, ..., Xk, successively or jointly.

@ Information theoretical justification:
e Joint decoding proposed by Sanderovich-Somekh-Poor-Shamai
('09) and Sanderovich-Shamai-Steinberg-Kramer ('08)
o Avestimehr-Diggavi-Tse ('09): “Wireless Network Info Flow"
o Lim-Kim-El Gamal-Chung ('11): “Noisy Network Coding"
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Optimality of Gaussian Signaling and Quantization
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@ Fact: Assuming Gaussian quantization, optimal input is Gaussian.

@ Theorem: Assuming Gaussian input, optimal quantizer is Gaussian.
@ However, joint Gaussian signal/quantization may not be optimal
o Binary counterexample: Sanderovich-Shamai-Steinberg-Kramer'08
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Uplink C-RAN as Virtual Multiple-Access Channel

Achievable rate under sum fronthaul constraint C:

|HsKx(s)HE + Aq + o2l |

ZRI < |0g 2
= |Ag + a2l

either subject to (for Wyner-Ziv coding, V-MAC-WZ):

H
|[HKxH" + Ag + 02| <c
Aql

or subject to (for single-user compression, V-MAC-SU):

|diag(HKxH") + Aq + 02|

<C
Al

where Ny = diag(q1, g2, . .., qL) is the quantization noise level.
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Noisy Network Coding (Lim-Kim-El Gamal-Chung'11)

(M, ..., Mg)

o Cut-set Bound: R(S) =", cq Rk < 1(x(S); y"(S)[x"(S€))
@ Achievable rate using noisy network coding: R(S) <
1(x(S): 9(S), v X" (S)) = 1(y™ (8): 9" (S) Ix[1, §(S). v

@ Set quantization noise at background noise level: y;;l R~ y}(‘l.
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Approximate Optimality of Compress-and-Forward
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Successive-decoding region for MAC Wyner-Ziv Compression
Ry < 104" V7, 93713 G 10 V937,
Ry < 103" Y, Y3 | X3):; G > (V3" V3 Y,

Ri+ R < /(X11117X2111; {\/11117 ?2111) G+ G > I(Yllllv Y2UI; {\/11117 ?2111)
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Comparing with Noisy Network Coding

R < 10" V4, 3,
Ry < 10X Y, Y3 1GM) + G — 10 Y vs, X5,
Ry < I(X{"; Yl‘“, Y2“1| )+ G — (Y Y XY
Ry < 10X YR V3 G0 + G+ G — 10, v Y, v G,
Ry < 1(X3"; Y7, Y2u1|x );
R, < /( ul Y1u1’ y2u1|Xlul) +C - /(Ylul; \/\/lul|{\/2UI7X1ul);
Ry < 1(X3"; Ylul Y2“1|X“ )+ G — 1(Y3" V3 v X,
Ry < 1(X3"; V7! |X D+ G+ G = 10 Y Y vt X,
R+ Ry < I(X{ ,X“l, V3
R+ Ry < I(X", X3"; Y1“1, Y2“1) + G = I Y YY),
R+ Ry < I(X", X3 Y;ﬂ, v;l) + G — 1Y V3 v
Ri+ Ry < 10, X505 VP, V3') + G+ G — 10, V3 Vi, V3
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Uplink C-RAN with Multiple Antennas

@ Uniform quantization noise level is optimal only at high SQNR.

@ In general: Jointly optimize transmit and quantization covariances.
@ Solution: Successive convex approximation with WMMSE.

o WMMSE-SCA: Optimal Tx/Rx beamforming then compression.
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Simulation Result: V-MAC-WZ
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Figure: CDF of user rates in a 7-cell cluster: VMAC-WZ vs. Per-BS SIC.
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Simulation Result: Sum-Rate vs Backhaul
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Figure: Per-cell sum rate vs. average per-cell fronthaul capacity.
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Benefit of Beamform-Compress-Forward

500

'S

o

=]
T

N

o

S
T

w

a

o
T

Sum rate per cell (Mbps)
w
o
o

250 8
—©6— Beamform-Compress-Forward, Cluster Size = 6

200 - —%— Compress-Forward, Cluster Size = 6 1
—%— Beamform-Compress-Forward, Cluster Size = 4

150 F ——+— Compress-Forward, Cluster Size =4 1
— Single Cell Processing

100 I I I I I

0 500 1000 1500 2000 2500 3000

Fronthaul capacity per RRH (Mbps)

Figure: 12-antenna RRH serving 2 users: Compress vs. Beamform-Compress.

\WER(T C-RAN 19 / 37



Downlink C-RAN as a Broadcast Relay Channel

(My,...,Mg)—~

@ How to enable cooperation across clusters of RRHs?

o Message-sharing with a cluster of RRHs for joint beamforming.
o Precode at the cloud. Compress-forward precoded signals to RRHs.

o Multivariate compression [Park-Simeone-Sahin-Shamai '13].
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Data-Sharing vs. Compression

o Two fundamental coding strategies for downlink C-RAN:

o Data-Sharing: CP distributes each user’s data to a cluster of RRHs.
Each RRH has access to multiple data streams then precode.

o Compression: CP computes the beamformer, then compresses and
distributes the precoded signal to the RRHs.

@ How to best utilize the limited fronthaul?

o In Data-Sharing, limit the cluster size;
o In Compression, control quantization level.
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Optimizing Clustering in Message-Sharing

“Personalized” cloud
Wei Yu C-RAN 22 /37



Sparse Beamforming for the Downlink C-RAN

@ Weighted sum-rate maximization under per-RRH power
constraints and per-RRH fronthaul constraints assuming
single-stream per user:

maximize ZakRk
k

subject to Y _[lw |3 < Py, VI
k

S [k Re< G v
k

@ Use /1 re-weighting and compressed sensing [Candés-Wakin-Boyd'08]

@ The WMMSE approach can be used to find a local optimum.
[Christensen-Agarwal-Carvalho-Cioffi '08], [Shi-Razaviyayn-Luo-He '11],
[Kaviani-Simeone-Krzymien-Shamai '12]

@ Related work: Zhao-Quek-Lei ('13), Luo-Zhang-Lim ('14), Zhuang-Lau ('14),
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Better Strategy: Compression for Multicell Beamforming
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@ Full cooperation possible, but compression introduces quantization noises.
@ Optimizing by majorization-minimization: [Park-Simeone-Sahin-Shamai '13]
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Compression Strategy

@ Precoded signals intended for RRHs formed at central processor:
K
f= (81, ] =) wise
k=1
o Quantization for X modeled as x = X + e, where e is the

quantization noise with covariance Q, independent of X.
@ Achievable rate for user k is

R, =log |1+ il wil*
k ey og
> itk IhHwj|2 + 02 4+ [hHQhy|

@ The fronthaul capacity constraint must satisfy
K 2
1 |w
qi

Here, Q is assumed diagonal; multivariate Q also possible.
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Data-Sharing vs. Compression for Downlink C-RAN
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Figure: 4-antenna RRH with Independent Compression.
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Distributed Decode-Forward (Lim-Kim-Kim'15)

o Cut-Set: R(S) < I(xI(S); y¥(S°)|xI(S¢))

@ Distributed Decode Forward: R(S) I(x3(S); u(S)[x"(S¢))
_ZkeSC[l( Lu(Sg), XX ye) + 1 (xi; x dl(sc))]

@ To achieve constant gap: Choose uy close to yk .

\WER(T C-RAN 27 / 37



Approximate Optimality of Compression-like Strategy
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Comparing with Distributed Decode-Forward

Ry < I(Us, YY),
Ry < I(Uy, Y
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Ry < 1(Ua, Y3) + Ci — 1(Ua; X
)
)
M)
)
)

+ G — I(Ul;Xf“);
+ G — I(Up; X5,
+ G+ G — I(Up; X, Xsh;

Ry < 1(Ua, Y3) 4+ G — 1(Ua; X3™);
Ry < I(Us, Ys
Ri+ Ry < I(Uy, Y]
Ri+ Ry < I(Uy, Y;
Ri+ Ry < I(Us, Y§
Ri+ Ry < I(Us, YY)
104" X

+ G+ G — (U X1, xgh;
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Uplink versus Downlink C-RAN

Uplink Downlink

@ Multiple-access-relay channel @ Broadcast-relay channel

@ Simple encoders, complex @ Simple decoders, complex
cloud decoder cloud encoder

@ Compress-forward with @ Compression strategy with
independent or Wyner-Ziv independent or multivariate
compression compression covering

@ Noisy network coding within @ Distributed decode-forward
constant gap within constant gap
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Uplink-Downlink Duality in C-RAN

(a) Uplink (b) Downlink

@ Uplink-downlink duality for compression-based beamforming

e Under same sum-power and individual fronthaul constraints.
o Achievable rates of the uplink and downlink are the same.

@ Generalization of uplink-downlink duality to MAC-BC with relays.
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Sum-Power Minimization Using Duality

@ Uplink: Fixed-point method
minimize  PY({p"})
{p"wit{q"}
subject to  RIM({p™,wi}, {g"}) > Rk, Vk,
'Upi' g < G, VL

@ Downlink: Based on uplink solution

minimize P ({p{"}, {q}"})
{pt it {q" /
subject to  R{'({p{",vi}, {gi"}) = R, Vk,

Cldl({p;ﬂavi}a q;ﬂ) < C/7 vi.
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Performance Analysis of C-RAN

@ Achievable rates in C-RAN are significantly influenced by:
o Distances between transmitters and receivers.
e Random channel fading realizations.
@ Stochastic geometry provides analytic tool [Andrews-Baccelli-Ganti'11]
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Stochastic Analysis of C-RAN

Obtaining signal and interference distributions is the main challenge!

@ Model distance-dependent channel characterization:

gitmj = \/Bitmjhiimj with hizm; ~ CN (0,1m), Bimj = (1 + r”’"’)

@ Approximate signal and interference distributions as Gamma
distributions with modified parameters [Heath-Wu-Kwon-Soong'11]

B
giign = Bisthlrhi ~ T (kir, 0)
b=1

(0L, o)
where kj = M%’ 0, = Zb 1 B
Zb 1 B3 szl Bitbt

o Key fact:

V4

In(1+x) = /000 e_Z(l —e )dz

Ergodic rate can be characterized in terms of Laplace transforms!
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How Large Should the Cluster Size Be?
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Cluster sizes are limited by the fronthaul and by CSI acquisition.
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Conclusions

Cloud radio-access network is an enabling architecture that allows

e Joint signal processing across the RRHs;
o Advanced network optimization.

@ Network-wide optimization is likely to be done in the cloud.

Summary of results in this talk:

o Uplink: Compression with optimized quantization levels.

o Downlink: Message-sharing and compression are viable strategies.
o Design: Duality, WMMSE, /¢; reweighting, Succ. Convex Approx.
o Analysis: Information theory, Optimization, Stochastic geometry.

@ Future wireless cellular architecture:
o Dense, massive, and cooperative.
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