
Spatial Deep Learning for Wireless Scheduling
Wei Cui, Kaiming Shen, and Wei Yu

Electrical and Computer Engineering Department
University of Toronto, Toronto, Ontario M5S 3G4, Canada

Email: {cuiwei2, kshen, weiyu}@ece.utoronto.ca

Abstract—The optimal scheduling of multiple interfering links
in a densely deployed wireless network with full frequency reuse is
a well-known challenging problem. The classical optimization ap-
proaches to this problem typically operate under the paradigm of
first estimating all the interfering channel strengths then finding an
optimum solution using the model. However, traditional scheduling
methods are computationally and resource intensive, because
channel estimation is expensive especially in dense networks,
and further the optimization of link scheduling is typically a
nonconvex problem. This paper takes a novel deep spatial learning
approach to the scheduling problem. We show that it is possible
to bypass the channel estimation stage altogether and to use a deep
neural network to produce a near optimal schedule based solely
on geographic locations of the transmitters and receivers in the
network. This is accomplished by taking advantage of the recent
advances in fractional programming that allows us to generate
high-quality local optimum solutions to the scheduling problem
for randomly deployed device-to-device networks as training data,
and by using a novel neural network architecture that takes the
geographic spatial convolutions of the interfering and interfered
neighboring nodes as input over multiple feedback stages to learn
the optimum solution.

I. INTRODUCTION

Scheduling of interfering links is one of the most fundamen-
tal tasks in wireless networking. Consider for example a densely
deployed device-to-device (D2D) network with full frequency
reuse, in which nearby links produce significant interference
for each other whenever they are simultaneously activated.
The task of scheduling amounts to judiciously activating a
subset of mutually “compatible” links so as to avoid excessive
interference for maximizing a network utility.

The traditional approach to link scheduling is based on the
paradigm of first estimating the interfering channels (or at least
the interference graph topology), then optimizing the schedule
based on the estimated channels. This model-based approach,
however, suffers from two key shortcomings. First, the need to
estimate not only the direct channels but also all the interfering
channels is resource intensive. In a network of N transmitter-
receiver pairs, N2 channels need to be estimated within each
coherence block. Training takes valuable resources away from
the actual data transmissions; further, pilot contamination is
inevitable in large networks. Second, the achievable data rates
in an interfering environment are nonconvex functions of the
transmit powers. Moreover, scheduling variables are binary.
Hence, even with full channel knowledge, the optimization of
scheduling is a nonconvex integer programming problem for
which finding an optimal solution is computationally complex
and is challenging for real-time implementation.

This paper proposes a new approach, named spatial learning,
to address the above two issues. Our key idea is to recognize
that the optimal link scheduling does not necessarily require the
exact channel estimates, and further the interference pattern in a
network is to a large extent determined by the relative locations
of the transmitters and receivers. Hence, it ought to be possible
to learn the optimal scheduling based solely on the geo-
graphical locations of the neighboring transmitters/receivers,
thus bypassing channel estimation altogether. Toward this end,
this paper proposes a neural network architecture that takes
the geographic spatial convolution of the interfering and inter-
fered neighboring transmitters/receivers as input, and learns the
optimal scheduling in a densely deployed D2D network over
multiple stages based on the spatial parameters alone.

We are inspired by the recent explosion of successful appli-
cations of machine learning techniques [1], [2] that demonstrate
the ability of deep neural networks to learn rich patterns and to
approximate arbitrary function mappings [3]. We further take
advantage of the recent progress on fractional programming
methods for link scheduling [4]–[6] that allows us to generate a
large number of locally optimal solutions for random networks
offline as training data. The main contribution of this paper is a
specifically designed neural network architecture that facilitates
the spatial learning of geographical locations of interfering and
interfered nodes and is capable of achieving large portion of
the optimum sum rate of the state-of-the-art algorithm in a
computationally efficient manner, while requiring no explicit
channel state information.

Traditional approach to scheduling over wireless interfer-
ing links for sum rate maximization are all based on (non-
convex) optimization, e.g., greedy heuristic search [7], iterative
methods for achieving quality local optimum [4], [8], methods
based on information theory considerations [9], [10] or hyper-
graph coloring [11], [12], or methods for achieving the global
optimum but with exponential complexity such as polyblock-
based optimization [13] or nonlinear column generation [14].
The recent re-emergence of machine learning has motivated the
use of neural networks for network optimization. This paper is
most closely related to the recent work of [15] in adapting
deep learning to perform power control and [16] in utilizing
ensemble learning to solve a closely related problem, but we
go one step further than [15], [16] in that we forgo the tra-
ditional requirement of channel state information for spectrum
optimization. By demonstrating that the location information
(which can be easily obtained via global positioning system)

can be effectively used as a proxy for obtaining near-optimum
solution, we open the door for much wider application of
learning theory to resource allocation problems in wireless
networking.

II. WIRELESS LINK SCHEDULING

Consider a scenario of N independent D2D links located
in a two-dimensional region. The transmitter-receiver distance
can vary from links to links. We use pi to denote the fixed
transmit power level of the ith link, if it is activated. Moreover,
we use hij ∈ C to denote the channel from the transmitter
of the jth link to the receiver of the ith link, and use σ2 to
denote the background noise power level. Scheduling occurs in
a time slotted fashion. In each time slot, let xi ∈ {0, 1} be an
indicator variable for each link i, which equals to 1 if the link
is scheduled and 0 otherwise. We assume full frequency reuse
with bandwidth W . Given a set of scheduling decisions xi, the
achievable rate Ri for link i in the time slot can be computed
as

Ri = W log

(
1 +

|hii|2pixi
Γ(
∑

j 6=i |hij |2pjxj + σ2)

)
, (1)

where Γ is the SNR gap to the information theoretical channel
capacity, due to the use of practical coding and modulation for
the linear Gaussian channel [17]. The wireless link scheduling
problem is that of selecting a subset of links to activate
in any given transmission period so as to maximize some
objective function of the achieved rates. This paper considers
the objective function of maximizing the sum rate over the N
users over each scheduling slot, formulated as

maximize
x

N∑
i=1

Ri (2a)

subject to xi ∈ {0, 1}, ∀i. (2b)

The overall problem is a challenging discrete optimization prob-
lem, due to the complicated interactions between different links
through the interference terms in the signal-to-interference-and-
noise (SINR) expressions.

This paper uses a recently developed fractional program-
ming approach (referred to as FPLinQ) [4] to generate high-
quality local optimum solutions as benchmark for the above
scheduling problem. FPLinQ relies on a transformation of the
SINR expression that decouples the signal and the interference
terms and a subsequent coordinated ascent approach to find the
optimal transmit power for all the links. The FPLinQ algorithm
is closely related to the weighted minimum mean-square-error
(WMMSE) algorithm for weighted sum-rate maximization [8].
For the scheduling task, FPLinQ quantizes the optimized power
in a specific manner to obtain the optimized binary scheduling
variables.

III. DEEP LEARNING BASED LINK SCHEDULING

A. Learning Based on Geographic Location Information

A central goal of this paper is to demonstrate that geograph-
ical location information is already sufficient as a proxy for

optimizing link scheduling. This is in contrast to traditional
optimization approaches for solving (2) that require the full
instantaneous channel state information, and also in contrast
to the recent work [15] that proposes to use deep learning
to solve the power control problem by learning the WMMSE
optimization process. In [15], a fully connected neural network
is designed that takes in the channel coefficient matrix as the in-
put, and produces optimized continuous power variables as the
output to maximize the sum rate. While satisfactory scheduling
performance has been obtained in [15], the architecture of
[15] is not scalable. In a network with N transmitter-receiver
pairs, there are N2 channel coefficients. A fully connected
neural network with N2 nodes in the input layer and N output
layer would require at least O(N3) interconnect weights (and
most likely much more). Thus, the neural network architecture
proposed in [15] has training and testing complexity that grows
rapidly with the number of links.

Instead of requiring the full set of channel state information
(CSI) between every transmitter and every receiver as the
input to the neural network {hij}, which has O(N2) entries,
this paper proposes to use the geographic location information
(GLI) as input, defined as a set of vectors {(dtx

i ,d
rx
i)}i, where

dtx
i ∈ R2 and drx

i ∈ R2 are the transmitter and the receiver
locations of the ith link, respectively. Note that the input now
scales linearly with the number of links, i.e., O(N).

We advocate using GLI as a substitute for CSI, because GLI
already captures the main feature of channels: the path-loss and
shadowing of a wireless link are mostly functions of distance
and location. In fact, accounting for fast fading in addition, the
CSI can be thought of as a stochastic function of GLI

CSI = f(GLI). (3)

While optimization approaches to the wireless link scheduling
problem aim to find a mapping g(·) from CSI to the scheduling
decisions, i.e.,

x = g(CSI), (4)

the deep learning architecture of this paper aims to capture
directly the mapping from GLI to x, i.e., to learn the function

x = g(f(GLI)). (5)

B. Transmitter and Receiver Density Grid as Input

To construct the input to the neural network based on GLI,
we quantize the continuous (dtx

i ,d
rx
i) in a grid form. Without

loss of generality, we assume a square `×` meters deployment
area, partitioned into equal-size square cells with an edge length
of `/M , so that there are M2 cells in total. We use (s, t) ∈
[1 : M]× [1 : M] to index the cells. For a particular link i, let
(stx

i , t
tx
i) be the index of the cell where the transmitter dtx

i is
located, and (srx

i , t
rx
i) be the index of the cell where the receiver

drx
i is located. We use the tuple (stx

i , t
tx
i , s

rx
i , t

rx
i) to represent the

location information of the link. We propose to construct two
density grid matrices of size M ×M , denoted by T and R, to
represent the density of the active transmitters and receivers,
respectively, in the geographical area. The density grid matrices

Original Links Layout Layout with Discretized Cells

1
1
3

1 2
1

Transmitter Density Grid

1
12

2
1

1 1

Receiver Density Grid

Fig. 1: Transmitter and receiver density grids.

are constructed by simply counting the total number of active
transmitters and receivers in each cell, as illustrated in Fig. 1.
The activation pattern {xi} is initialized as a vector of all 1’s
at the beginning. As the algorithm progressively updates the
activation pattern, the density grid matrices are updated as

T (s, t) =
∑

{i|(stx
i ,t

tx
i)=(s,t)}

xi, (6)

R(s, t) =
∑

{i|(srx
i ,t

rx
i)=(s,t)}

xi. (7)

C. Deep Neural Network Structure

The overall neural network structure is an iterative compu-
tation graph. A key novel feature of the network structure is
a forward path including two stages: a convolution stage that
captures the interference patterns of neighboring links based on
the geographic location information and a fully connected stage
that captures the nonlinear functional mapping of the optimized
schedule. Further, we propose a novel feedback connection
between the iterations to update the state of optimization. The
individual stages and the overall network structure are described
in detail below.

1) Convolution Stage: The convolution stage is responsible
for computing two functions, corresponding to that of the in-
terference each link causes to its neighbors and the interference
each link receives from its neighbors, respectively. As a main
innovation in the neural network architecture, we propose to use
spatial convolutional filters, whose coefficients are optimized in
the training process, that operate directly on the transmitter and
receiver density grids described in the previous section. The
transmitter and receiver spatial convolutions are computed in
parallel on the two grids. At the end, two pieces of information
are computed for the transmitter-receiver pair of each link: a
convolution of spatial geographic locations of all the nearby
receivers that the transmitter can cause interference to, and a
convolution of spatial geographic locations of all the nearby
transmitters that the receiver can experience interference from.
The computed convolutions are referred to as TxINTi and
RxINTi, respectively, for link i.

Since the idea is to estimate the effect of total interference
each link causes to nearby receivers and effect of the total inter-
ference each link is exposed to, we need to exclude the link’s
own transmitter and receiver in computing the convolutions.
This is accomplished by subtracting the contributions each

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Convolutional Filter Weights Plots

1

2

3

4

5

6

Fig. 2: Trained spatial convolution filter.

1

1

3

1 2

1

Transmitter Density Grid

1

12

2

1

1 1

Receiver Density Grid

Convolution Filter

Filter Center Anchor: Receiver’s location

Filter Center Anchor: Transmitter’s location

Transmitter-Receiver Distance

Feature Vector Per Link

Output Per Link

ReLu nonlinearity

x

f (x)

Sigmoid nonlinearity

x

f (x)

Fig. 3: Example of forward computation path for a single link with
spatial convolutions and link distance as input to a neural network.

link’s own transmitter and receiver in the respective convolution
sum.

The convolution filter is a 2D square matrix with fixed pre-
defined size and trainable parameters. The value of each entry
of the filter can be interpreted as the channel coefficient of a
transceiver located at a specific distance from the center of the
filter. Through training, the filter learns the channel coefficient
by adjusting its weights. Fig. 2 shows a trained filter. As
expected, the trained filter exhibits a circular symmetric pattern
with radial decay.

The convolution stage described above summarizes two
quantities for each link: the total interference produced by
the transmitter and the total interference the receiver is being
exposed to. However, the interference pattern often has multiple
components, coming from different neighboring links of differ-
ent ranges. Thus, describing the interference pattern with more
than one convolution can provide more information. Motivated
by this observation, we can improve the feature vector by
augmenting it with multiple convolutions. For example, at each
transmitter and receiver, we can construct three convolutions
filters: with small range, medium range, and full range. The
three separate sets of weights of the convolution filters are
tied together across all the transmitters and the receivers. In
this case, TxINTi and RxINTi for each link would consist

of three location components. Experimental results show that
having multiple convolutions indeed improve the scheduling
performance of the neural network.

2) Fully Connected Stage: The fully connected stage is the
second stage of the forward computation path, following the
convolution stage described above. With the feature vector
extracted for each link as input, the fully connected stage
produces an output in xi ∈ [0, 1], (which could be interpreted
as optimized continuous power) for that link.

The feature vector for each link comprises of the follow-
ing entries: TxINTi, RxINTi, and the distance between the
transmitter and the receiver for this link. The tuple (TxINTi,
RxINTi) describes the interference relation between the ith link
and its neighbors, while the distance describes the link’s own
channel strength.

The value xi for this link is computed based on its feature
vector through the functional mapping of a fully connected
neural network (denoted as Ffc below) with trainable weights
computed through multiple layers with nonlinearities:

xi ← Ffc(TxINTi,RxINTi, ‖dtx
i − drx

i ‖2). (8)

The convolution stage and the fully connected stage together
form one forward computation path for each transmitter-
receiver pair, as depicted in an example in Fig. 3. The example
in Fig. 3 shows a neural network with three inputs and one
hidden layer. In actual implementation, we use a feature vector
of size 7, consisting of three different ranges of convolutions
for both the transmitter and the receiver, plus the distance
information. We use two hidden layers with 21 neurons each to
enhance the expressive power of the neural network. A rectified
linear unit (ReLU) is used at each neuron in the hidden layers;
a sigmoid nonlinearity is used at the output node to produce a
value in [0, 1].

3) Feedback Connection: The forward computation (which
includes the convolution stage and the fully connected stage)
takes the link activation pattern xi as the input for construct-
ing the density grid. In order to account for the progressive
(de)activation pattern of the wireless links through the itera-
tions, i.e., each subsequent interference estimates need to be
aware of the fact that the deactivated links no longer produce or
are subject to interference, we propose a feedback structure, in
which each iteration of the neural network takes the continuous
output x from the previous iteration as input, then iterates for
a fixed number of iterations. We find experimentally that the
network is then able to converge within a small number of
iterations (e.g., with fixed 5 iterations), after breaking certain
symmetry (which could result in oscillation as described in the
next section).

The feedback stage is designed as following: After the com-
pletion of (k−1)th forward computation, the x vector of [0, 1]
values is obtained, with each entry representing the activation
status for each of the N links. Then, a new forward computation
is started with input density grids prepared by feeding this
x vector into (6)-(7). In this way, the activation status for
all N links are updated in the density grids for subsequent

Forward Path

Spatial Convolutions and

Link Distance

Feedback

Continuous Scheduling

Variable

Q

Binary Scheduling

Variable

Forward Path

Forward Path

Forward Path

Forward Path

Forward Path

Q

Q

Q

Q

Q

Fig. 4: Overall neural network with one forward path per link and
with feedback connections and quantized output (denoted as “Q”).

interference estimations. Note that the trainable weights of the
spatial convolutional filter and the fully connected stage for the
multiple iterations are tied together for more efficient training.
This feedback structure is depicted in Fig. 4.

4) Scheduling Outputs: After a small fixed number of it-
erations, the scheduling decision is obtained from the neural
network simply by quantizing the x vector from the last iter-
ation into binary values, representing the scheduling decisions
of the N links.

D. Training Process

1) Targets Preparation: The network is trained in a su-
pervised fashion. We generate a large number of randomly
located wireless links in a fixed geographic area, then use the
wireless channel propagation and fading model to generate the
channel realizations, and finally use the state-of-the-art FPLinQ
algorithm [4] to produce the schedule that (locally) maximizes
the sum rate objective. Large amount of training data that map
the locations of the transmitter-receiver pairs to the optimized
schedule are used as the targets for the neural network.

2) Training Setup: Using supervised learning with binary
targets, the network is trained end-to-end using TensorFlow
with the cross-entropy (CE) loss between the targets and the
actual network outputs as the cost function. Cross-entropy is a
commonly used cost function measuring the “distance” between
two probability distributions p and q, defined as

Cross Entropy(p, q) = −Ep[log q]. (9)

To allow the gradients to be back-propagated through the
network, we do not discretize the network outputs when com-
puting the CE loss. Therefore, minimizing the cost function
actually encourages the neural network’s continuous outputs to
converge to a binary distribution.

E. Symmetry Breaking

The overall neural network is designed to encourage links
to deactivate either when it produces too much interference
to its neighbors, or when it experiences too much interference

Fig. 5: Oscillatory behavior in the neural network training process.

from its neighbors. However, because training happens in stages
and all the links update their activation pattern in parallel, the
algorithm frequently gets into situations in which multiple links
may oscillate between being activated and deactivated.

Consider the following scenario involving two closely lo-
cated links with identical surroundings. Starting from the
initialization stage where both links are fully activated, both
links see severe interference coming from each other. Thus, at
the end of the first forward path, both links would be turned
off. Now assuming that there are no other strong interference
in the neighborhood, then at the end of the second iteration,
both links would see little interference; consequentially both
would be encouraged to be turned back on. This oscillation
pattern can keep going, and the training process for the neural
network would never converge to a good schedule (which is that
precisely one of the two links should be on). Fig. 5 shows a
visualization of the phenomenon. Activation patterns produced
by the actual training process are shown in successive snap-
shots. Notice that the three closely located strong interfering
links located at middle bottom of the layout have the oscillating
pattern between successive iterations. The network could not
converge to an optimal scheduling where only one of the three
links are scheduled. The same happens to the two links in the
upper left part of the area.

To resolve this problem, this paper proposes a stochastic
update mechanism to break the symmetry. At the end of
each forward path, the output vector x contains the updated
activation pattern for all the links. However, instead of feeding
back x directly to the next iteration, we feedback the updated
entries of x with 50% probability (and feedback the old entries
of x with 50% probability). This symmetry breaking is used in
both the training and testing phase and is observed to benefit
the overall performance of the neural network.

IV. EXPERIMENTAL VALIDATION

A. Fixed Network Topology

We use a wireless D2D scenario consisting of N = 50
D2D pairs randomly deployed in a 500 meters by 500 meters
region to validate the proposed approach. The locations for
the transmitters are generated uniformly within the region. The
locations of the receivers are generated according to a uniform
distribution within a pairwise distances of 2 ∼ 65 meters from
their respective transmitters. The channel model is adapted

TABLE I: Design Parameters for the Spatial Deep Neural Network

Parameters Values

Dimensions of the
Convolution Filters

Small 5 cells × 5 cells
Medium 15 cells × 15 cells
Full 31 cells × 31 cells

Feature Vector 7 elements per link
First Hidden Layer 21 units
Second Hidden Layer 21 units

Number of Iterations Training 5 iterations
Testing 10 iterations

from the short-range outdoor model ITU-1411 with a distance-
dependent path-loss, over 5MHz bandwidth at 2.4GHz carrier
frequency, and with 1.5m antenna height and 2.5dBi antenna
gain. The transmit power level is 40dBm; the background noise
level is -169dBm/Hz. We assume an SNR gap of 6dB to
Shannon capacity formula to account for the non-ideal coding
and modulation in practice.

We randomly generate many samples of the D2D network.
For each specific layout and each specific channel realization,
the FPLinQ algorithm [4] is used to generate the target sum-rate
maximizing scheduling output. We generate 2.1 million such
samples for training, and 5000 samples for validation/testing.
Significant amount of tuning of the training process is involved
to prevent model over-fitting. The numerical results reported
here also involve using training samples generated at higher
SNR than the setting mentioned above.

The design parameters for the neural network are summa-
rized in the Table I. We compare the sum rate performance
achieved by the trained neural network with each of the
following benchmarks in term of the average sum rate over
all the testing samples. The benchmarks are:

• All Active: Activate all links; treat interference as noise.
• Random: Schedule each link with 0.5 probability.
• Strongest Links First: We sort all links according to the

direct channel strength, then schedule a fixed portion of
the strongest links. The optimal percentage is taken as the
average percentage of active links in the FP target.

• Greedy: We sort all links according to the direct link
strength, then schedule one link at a time. We choose a link
to be active only if scheduling this link strictly increases
the sum rate. Note that the interference at all active links
needs to be re-evaluated in each step as soon as a new
link is turned on or off.

• FP: We run FPLinQ for 100 iterations and take the
resulting output.

In the first experiment, we do not include fast fading in
the channel model, and report the sum rate performance in
the first column of Table II. The performance is expressed as
the percentages as compared to FPLinQ. For a more thorough
examination of the distributions of the sum rate, a cumulative
distribution plot across all the testing samples is shown in
Fig. 6. As shown in the first column of Table II, the proposed
spatial learning approach achieves more than 98% of the aver-

1 2 3 4 5 6
Sum Rates (bps) 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib
ut
io
n
of
 D
2D
 N
et
wo
rk
 S
um
 R
at
e

Neural Network
FP
Greedy
Strongest Links
All Active
Random

Fig. 6: Cumulative distribution of sum rate over network layouts.

TABLE II: Average Sum Rate Performance

Sum Rate (%) CSI No Fading With Fading
Spatial Deep Learning 7 98.61 88.31

Greedy X 97.08 98.21
Strongest Links X 82.03 80.80

Random 7 47.60 44.48
All Active 7 54.18 50.37

FP X 100 100

age sum rate produced by FPLinQ without explicitly knowing
the channels. We note that in this case of without fast fading,
the channel coefficients are essentially deterministic functions
of the distance. Thus, this experiment demonstrates that the
proposed neural network architecture is able to accurately
learn this deterministic function based on the training samples.
Although the neural network shows comparable results as the
greedy heuristic in the average sum rate, it is worth emphasizing
that the greedy heuristic utilizes the channel state information
as input, thus making use of the O(N2) channel coefficients as
opposed to the O(N) location information.

As a second experiment, we add fast fading to the channel
model. Thus, the channel coefficients are now stochastic func-
tions of the link distance. The sum rate results of this case are
summarized in the second column of Table II. The proposed
spatial deep neural network without CSI still has respectable
performance of 88.3% as compared to the benchmark methods
(which all use exact channel coefficients). The performance
loss of the neural network is due to that fast fading is not
accounted for during training, but affects the achievable rate
in testing. As a side comparison, if we had not used the fast
fading information in FPLinQ, the FP’s performance would also
have dropped to about 89.0%. Thus, the 88.3% achieved by the
neural network indicates that it has learned to within 1% of
the best that one can hope to achieve for finding the optimal
schedule without exact channel state information.

V. CONCLUSION

Deep learning has had remarkable success in many machine
learning tasks, but the ability of deep neural networks to learn
the outcome of large-scale discrete optimization in still an open
research question. This paper provides evidence that for the
challenging scheduling task for the wireless D2D networks,
deep learning can perform very well for sum-rate maximization.
In particular, this paper demonstrates that by using a novel
geographic spatial convolution for estimating the density of the
interfering neighbors around each link and a feedback structure
for progressively adjusting the link activity patterns, a deep
neural network can in effect learn the network interference
topology and perform scheduling to near optimum based on
the geographic spatial information alone, thereby eliminating
the costly channel estimation stage.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, pp. 436–
444, May 2015.

[3] K. Hornik, “Multilayer feedforward networks are universal approxima-
tors,” Neural Netw., vol. 2, pp. 359–366, 1989.

[4] K. Shen and W. Yu, “FPLinQ: A cooperative spectrum sharing strategy
for device-to-device communications,” in IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2017, pp. 2323–2327.

[5] ——, “Fractional programming for communication systems—Part I:
Power control and beamforming,” IEEE Trans. Signal Process., vol. 66,
no. 10, pp. 2616–2630, May 15, 2018.

[6] ——, “Fractional programming for communication systems—Part II:
Uplink scheduling via matching,” IEEE Trans. Signal Process., vol. 66,
no. 10, pp. 2631–2644, May 15, 2018.

[7] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and
A. Jovicic, “FlashLinQ: A synchronous distributed scheduler for peer-
to-peer ad hoc networks,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp.
1215–1228, Aug. 2013.

[8] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted
MMSE approach to distributed sum-utility maximization for a MIMO
interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4331–4340, Apr. 2011.

[9] N. Naderializadeh and A. S. Avestimehr, “ITLinQ: A new approach for
spectrum sharing in device-to-device communication systems,” IEEE J.
Sel. Areas Commun., vol. 32, no. 6, pp. 1139–1151, Jun. 2014.

[10] X. Yi and G. Caire, “Optimality of treating interference as noise: A
combinatorial perspective,” IEEE Trans. Inf. Theory, vol. 62, no. 8, pp.
4654–4673, Jun. 2016.

[11] B. Zhuang, D. Guo, E. Wei, and M. L. Honig, “Scalable spectrum
allocation and user association in networks with many small cells,” IEEE
Trans. Commun., vol. 65, no. 7, pp. 2931–2942, Jul. 2017.

[12] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAN: Distributed randomized
TDMA scheduling for wireless ad hoc networks,” IEEE Trans. Mobile
Comput., vol. 8, no. 10, pp. 1384–1396, Oct. 2009.

[13] L. P. Qian and Y. J. Zhang, “S-MAPEL: Monotonic optimization for
non-convex joint power control and scheduling problems,” IEEE Trans.
Wireless Commun., vol. 9, no. 5, pp. 1708–1719, May 2010.

[14] M. Johansson and L. Xiao, “Cross-layer optimization of wireless networks
using nonlinear column generation,” IEEE Trans. Wireless Commun.,
vol. 5, no. 2, pp. 435–445, Feb. 2006.

[15] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for wireless re-
source management,” in IEEE Int. Workshop Signal Process. Advances
Wireless Commun. (SPAWC), Jul. 2017, Full version [Online] Available:
https://arxiv.org/abs/1705.09412.

[16] F. Liang, C. Shen, and F. Wu, “Power control for interference management
via ensembling deep neural networks,” 2018, preprint.

[17] J. G. D. Forney and G. Ungerboeck, “Modulation and coding for linear
Gaussian channels,” IEEE Trans. Inf. Theory, vol. 44, no. 6, Oct. 1998.

