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Abstract—In massive MIMO aided cloud radio access network
(C-RAN), plenty of remote radio heads (RRHs), each equipped
with a massive MIMO array, are distributed within a specific
geographical area and are connected to a centralized baseband
unit (BBU) pool through fronthaul links. One major performance
bottleneck in the uplink of massive MIMO aided C-RAN is
that, the RRHs need to transport a huge amount of data to the
BBU for baseband processings. Existing fronthaul compression
methods that rely on fully-digital processing are not suitable for
the massive MIMO regime due to their high implementation
cost. To overcome this challenge, we propose a two-timescale
hybrid analog-and-digital spatial compression scheme at RRHs
to reduce the fronthaul data, where the analog filter is updated
at a slow timescale according to the channel statistics to achieve
massive MIMO array gain, and the digital filter is updated
at a fast timescale according to the instantaneous effective
channel state information (CSI) to achieve spatial multiplexing
gain. Such a design can alleviate the performance bottleneck
of limited fronthaul with reduced hardware cost and power
consumption, and is more robust to the CSI delay. We propose an
online algorithm for the two-timescale non-convex optimization
of analog and digital filters. Simulations verify the advantages of
the proposed scheme over state-of-the-art baseline schemes.

Index Terms—Cloud radio access network, Massive MIMO,
Hybrid compression and forward

I. INTRODUCTION

Recently, massive MIMO aided C-RAN has been proposed
to improve the spectral efficiency of wireless systems [1].
However, such an architecture requires a huge amount of
digital sampled data to be transported over the fronthaul link.
Therefore, it is necessary to compress the uplink data at each
RRH to satisfy the limited fronthaul capacity constraint. Var-
ious fully-digital fronthaul compression techniques have been
proposed for C-RAN with small-scale multi-antenna RRHs
[2], [3]. In particular, the spatial compression and forward
scheme proposed in [3] combines fully-digital spatial filtering
and uniform scalar quantization to alleviate the performance
bottleneck caused by the limited fronthaul capacity. Unfortu-
nately, fully-digital spatial filtering requires a larger number of
analog-to-digital converter (ADCs) and radio frequency (RF)
chains at each massive MIMO RRH. In [4], a fully-analog
linear spatial filtering is used at each RRH to achieve the
fronthaul compression with reduced hardware cost and power
consumption. However, fully-analog processing is known to
be less efficient than hybrid analog and digital processing.

In this paper, we propose a two-timescale hybrid (analog
and digital) compression and forward (THCF) scheme for
the uplink transmission of massive MIMO aided C-RAN, to

alleviate the performance bottleneck of the limited fronthaul,
with reduced hardware cost and power consumption. In this
scheme, each RRH first performs a two-timescale hybrid
analog and digital spatial filtering to reduce the dimension of
its received signal. Specifically, the analog filtering matrix is
adapted to the long-term channel statistics to achieve massive
MIMO array gain, and the digital filtering matrix is adapted to
the instantaneous effective CSI to achieve spatial multiplexing
gain. Then, each RRH applies the uniform scalar quantization
over each of these dimensions. Finally, the quantized signals
at the RRHs are sent to the BBU for joint decoding.

The power allocation at users, analog/digital filtering matri-
ces and quantization bits allocation at RRHs, and the receive
beamforming matrix at the BBU are jointly optimized to
maximize a general utility function. We propose an online
block-coordinate stochastic successive convex approximation
(BC-SSCA) algorithm to solve this joint optimization problem.
Simulations show that the proposed two-timescale hybrid
scheme achieves better tradeoff performance than the base-
lines.

II. SYSTEM MODEL

A. Network Architecture and Channel Model
Consider the uplink of a massive MIMO aided C-RAN,

where N RRHs, each equipped with a massive MIMO array
of M � 1 antennas and S < M Rx RF chains, are distributed
within a specific geographical area to serve K single-antenna
users. Each RRH n serves as a relay between the BBU and
users, and is connected to the BBU via a fronthaul link of
capacity Cn bits per second (bps). We assume that the number
of users K is fixed and NS � K so that there are enough
spatial degrees of freedom to serve all the K users. In this
case, the received signal at RRH n is given by

yn =
K∑
k=1

hn,k
√
pksk + zn = HnP

1/2s+ zn,

where hn,k ∈ CM is the channel vector from user k to RRH
n, Hn = [hn,1, ...,hn,K ] ∈ CM×K , sk ∼ CN (0, 1) is the
data symbol of user k, s = [s1, ..., sK ]

T , pk is the transmit
power of user k, P = diag (p1, ..., pK), and zn ∼ CN (0, I)
is the noise vector.

B. Two-timescale Hybrid Compression and Forward at RRHs
Each RRH n applies the THCF scheme to make sure that the

compressed received signal ỹn satisfies the fronthaul capacity
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Figure 1: An illustration of the THCF scheme

constraint of Cn bps, as illustrated in Fig. 1. Specifically, a
hybrid filtering matrix F nV n ∈ CM×L is applied at RRH
n to compress the received signal yn into a low-dimensional
signal yn = V H

n F
H
n yn =

[
yn,1, ..., yn,L

]T ∈ CL, where
F n ∈ CM×S and V n = [vn,1, ...,vn,L] ∈ CS×L are the
analog and digital filtering matrices, respectively, and we set
L = min(K,S) such that there is no information loss due to
digital filtering [3]. The analog filtering matrix F n is usually
implemented using an RF phase shifting network [5]. Hence,
F n can be represented by a phase vector θn ∈ [0, 2π]

MS ,
whose ((j − 1)M + i)-th element θn,i,j is the phase of the
(i, j)-th element of F n. Then, a simple uniform scalar quan-
tization [3] is applied to each element of yn at RRH n.

After the uniform scalar quantization, the compressed re-
ceived signal ỹn = [ỹn,1, ..., ỹn,L]

T is modeled by

ỹn = yn + en = V H
n F

H
n

(
HnP

1/2s+ zn

)
+ en,

where en = [en,1, ..., en,L] ∈ CL with en,l denoting the
quantization error for yn,l. Let dn,l denote the number of bits
that RRH n uses to quantize the real or imaginary part of
yn,l. With uniform scalar quantization, the covariance matrix
of en is given by a function of p = [p1, ..., pK ]

T , F nV n and
dn = [dn,1, ..., dn,L]

T as [3]

Qn (p,F nV n,dn) = diag (qn,1, ..., qn,L) ,

qn,l =

{
3

4dn,l
(
∑K
k=1 pk|h

H
n,kṽn,l|2 + ‖ṽn,l‖2) if dn,l > 0,

∞ if dn,l = 0,
(1)

where ṽn,l = F nvn,l. Finally, each RRH forwards the
quantized bits to the BBU via the fronthaul link.

C. Joint Rx Beamforming at the BBU

The received signal ỹ =
[
ỹT1 , ..., ỹ

T
N

]T
at the BBU from

all RRHs can be expressed as

ỹ = Ṽ
H
HP 1/2s+ Ṽ

H
z + e,

where Ṽ = diag (F 1V 1, ...,FNV N ) ∈ CMN×LN , H =

[h1, ...,hK ] ∈ CMN×K with hk =
[
hT1,k, ...,h

T
N,k

]T
denoting the composite channel vector of user k, z =[
zT1 , ...,z

T
N

]T
, and e =

[
eT1 , ..., e

T
N

]T
. A joint Rx beamform-

ing vector uk ∈ CNL×1 is applied at the BBU to obtain the
estimated data symbol for each user k as

ŝk = uHk Ṽ
H
HP 1/2s+ uHk Ṽ

H
z + uHk e,∀k.

Figure 2: An illustration of two-timescale frame structure.

D. Frame Structure and Achievable Data Rate

We focus on a coherence time interval of channel statistics,
which is divided into Tf frames with each frame consisting
of Ts time slots (channel coherence intervals), as illustrated
in Fig. 2. We assume that the BBU can obtain the real-time
effective CSI FHnHn ∈ CS×K ,∀n at each time slot, and
one (possibly outdated) channel sample H at each frame.
The long-term analog filtering matrices Fn,∀n are only up-
dated once per frame based on a channel sample to achieve
massive MIMO array gain. The short-term control variables
{p,V n,dn,uk} are adaptive to the real-time effective CSI
FHnHn,∀n to achieve the spatial multiplexing gain. For con-

venience, we let v = Vec ([V 1, ...,V N ]), d =
[
dT1 , ...,d

T
N

]T
and u =

[
uT1 , ...,u

T
K

]T
.

For given long-term control variables θ =
[
θT1 , ...,θ

T
n

]T
(phase vectors of analog filtering matrices), short-term control

variables x ,
[
pT ,vT ,dT ,uT

]T
and channel realization H ,

the achievable data rate of user k is given by

r◦k (θ,x,H) = log (1 + SINRk (θ,x;H)) ,

where SINRk (θ,x;H) is the SINR of user k given by

SINRk (θ,x;H) =

pk|uHk Ṽ
H
hk|2∑

l 6=k
pl|uHk Ṽ

H
hl|2 + ||uHk Ṽ

H
||2 + uHk Q (θ,p,v,d)uk

,

Q (θ,p,v,d) =

diag (Q1 (p,F 1V 1,d1) , ...,QN (p,FNV N ,dN )) .

Note that F n is a function of θn.
Let x(H) denote the short-term control variable under

channel state H and Ω ,
{
x(H) ∈ X ,∀H

}
denote the

collection of the short-term control variables for all possible
channel states, with X denoting the feasible set of the short-
term control variables. To be more specific, X is the set of

all short-term control variables x =
[
pT ,vT ,dT ,uT

]T
that

satisfy the following constraints:

pk ∈ [0, Pk] ,∀k, (2)

2BW

L∑
l=1

dn,l ≤ Cn,∀n, (3)

dn,l ≥ 0 is an integer,∀n, l, (4)
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where Pk is the individual power constraint at user k, BW
is the system bandwidth, and (3) is the fronthaul capacity
constraint. Then the average data rate of user k is

r◦k
(
θ,Ω

)
= E [r◦k (θ,x(H);H)] ,

For convenience, define r◦
(
θ,Ω

)
,

[r◦1
(
θ,Ω

)
, ..., r◦K

(
θ,Ω

)
]T as the average data rate vector.

III. TWO-TIMESCALE JOINT OPTIMIZATION AT BBU

Note that r◦k (θ,x,H) is not a smooth function of dn,l,∀n, l
because dn,l is integer. To make the problem tractable, we
relax the integer constraint on dn,l and approximate the
quantization noise power qn,l,∀n, l with the following smooth
function of a real variable dn,l ≥ 0 as [3]

q̂n,l =
3

4dn,l
(
K∑
k=1

pk|hHn,kṽn,l|2 + ‖ṽn,l‖2). (5)

We use rk (θ,x;H) to denote the approximate data rate of
user k obtained by replacing qn,l in (1) with q̂n,l in (5)
and the integer constraint in (4) with constraint dn,l ≥ 0.
Moreover, define r (θ,Ω) = [r1 (θ,Ω) , ..., rK (θ,Ω)]T as
the approximate average data rate vector, where rk (θ,Ω) =
E [rk (θ,x(H);H)]. Then, the two-timescale joint optimiza-
tion of long-term and short-term control variables can be
formulated as the following utility maximization problem

P : max
θ∈Θ,Ω

g (r (θ,Ω)) , (6)

where Ω , {x(H) ∈ X ,∀H} with X denoting the set of
all short-term control variables that satisfy constraint (2),
(3) and dn,l ≥ 0, the utility function g (r) is continuously
differentiable function of r, Θ , [0, 2π]

NMS is the feasible
set of θ. Moreover, g (r) is non-decreasing w.r.t. rk,∀k
and its derivative ∇rg (r) w.r.t. r is Lipschitz continuous.
This general utility function g (r) includes many important
network utilities as special cases, such as average sum rate
(g (r) =

∑K
k=1 rk) and proportional fairness (PFS) utility

(g (r) =
∑K
k=1 log (rk + ε), where ε > 0 is a small number

to avoid the singularity at rk = 0).
Since Problem P is a two-timescale stochastic non-convex

problem, we focus on designing an efficient algorithm to find
stationary solutions of Problem P , as defined below.

Definition 1 (Stationary solution of P). A solution
(θ∗,Ω∗ = {x∗ (H) ∈ X ,∀H}) is called a stationary solution
of Problem P if it satisfies the following conditions:

1) For every H outside a set of probability zero,

(x− x∗(H))
T
Jx (θ∗,x∗(H);H)∇rg (r∗) ≤ 0, (7)

∀x ∈ X , where Jx (θ∗,x∗(H);H) is the Jacobian
matrix of the (approximate) rate vector r (θ,x;H) ,
[r1 (θ,x;H) , ..., rK (θ,x;H)]T w.r.t. x at θ = θ∗ and
x = x∗(H), and ∇rg (r∗) is the derivative of g (r) at
r = r∗ , r (θ∗,Ω∗).

2)
(θ − θ∗)T ∇θg (r (θ∗,Ω∗)) ≤ 0,∀θ ∈ Θ, (8)

where ∇θg (r (θ∗,Ω∗)) ,
E[Jθ (θ∗,x∗(H);H)]∇rg (r∗) is the partial derivative
of g (r (θ∗,Ω∗)) w.r.t. θ at θ = θ∗ and Ω = Ω∗,
Jθ (θ∗,x∗(H);H) is the Jacobian matrix of the
(approximate) rate vector r (θ,x;H) w.r.t. θ.

Note that a stationary solution (θ∗,Ω∗) of P may not satisfy
all the integer constraints in (4). To obtain an integer solution
for the quantization bits allocation, we use the same method
as in [3] to round each d∗n,l to its nearby integer.

IV. ONLINE OPTIMIZATION ALGORITHM

A. Summary of the BC-SSCA Algorithm

The proposed online BC-SSCA algorithm is summarized
in Algorithm 1 and its time line is illustrated in Fig. 2. In
BC-SSCA, an auxiliary weight vector µ = [µ1, ..., µK ]

T is
introduced to approximate the derivative ∇rg (r (θ,Ω)). At
the beginning of each coherence time of channel statistics,
the BBU resets the BC-SSCA algorithm with an initial analog
filter phase vector θ0 and a weight vector µ0. Then θ and
µ are updated once at the end of each frame, where θ is
updated by maximizing a concave surrogate function f̄ t (θ)
of g

(
r◦
(
θ,Ω

))
w.r.t. θ. Specifically, let θt and µt denote

the analog filter phase vector and weight vector used during
the t-th frame. The t-th iteration (t-th frame) of the BC-SSCA
algorithm is described as follows.

Step 1 (Short-term optimization at each time slot): At time
slot i ∈ [tTs + 1, (t+ 1)Ts] in the t-th frame, the BBU
first acquires the effective channel

(
F tn
)H
Hn (i) ,∀n, where

Hn (i) is the channel state of RRH n at time slot i, and F tn is
the analog filtering matrix at RRH n corresponding to θt. Then
it calculates the short-term variables xJt

(
µt,θt,H(i)

)
from(

F tn
)H
Hn(i),∀n by running a short-term block-coordinate

(BC) algorithm with input Jt, µt,θt and Hn(i), where Jt
determines the total number of iterations for the short-term BC
algorithm at frame t. For any finite iteration t <∞, Jt is finite,
and we let Jt → ∞ as t → ∞. Note that xJt

(
µt,θt,H(i)

)
depends on θt,H(i) only through the effective channels(
F tn
)H
Hn(i)’s. Specifically, for given input J , µ,θ and

H , the short-term BC runs J iterations to find a stationary
point (up to certain accuracy) xJ (µ,θ,H) of the following
weighted sum-rate maximization problem (WSRMP):

PS (µ,θ,H) : max
x=[pT ,vT ,dT ,uT ]

T

K∑
k=1

µkrk (θ,x;H) .

The details will be postponed to Section IV-B.
Step 2 (Long-term optimization at the end of frame t):

In Step 2a, the BBU obtains a full channel sample Ht ,
H(tTs + 1) before the end of t-th frame. Then, in Step 2b
(at the end of the t-th frame), the BBU updates the surrogate
function f̄ t (θ) based on Ht, the current iterate θt, and the
short-term control variables x (i) , xJt

(
µt,θt,H(i)

)
,∀i ∈

Tt , [tTs + 1, (t+ 1)Ts] as

f̄ t (θ) = g
(
r̂t
)

+
(
f t
)T (

θ − θt
)
− τ

∥∥θ − θt∥∥2
, (9)
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Algorithm 1 BC-SSCA Algorithm
Initialize: θ0 ∈ Θ; µ0 = [1, ..., 1]T , t = 0.
Step 1 (Short-term optimization at time slot i ∈ Tt):
Apply the short-term BC algorithm with input Jt, µt,θt and Hn(i),
to obtain the short-term variable xJt

(
µt,θt,H(i)

)
.

Step 2 (Long-term optimization at the end of frame t):
2a: Obtain a full channel sample Ht ,H(tTs + 1).
2b: Update the surrogate function f̄ t (θ) according to (9). Calculate
µ̄t = ∇rg

(
r̂t
)

and update µt+1 according to (11).
2c: Solve (12) to obtain θ̄t. Update θt+1 according to (13).
Let t = t + 1 and return to Step 1.

where τ > 0 is a constant; r̂t = [r̂t1, ..., r̂
t
K ]
T is approximate

average data rate updated recursively as

r̂tk = (1− ρt) r̂t−1
k + ρt

∑
i∈Tt

rk
(
θt,x (i) ;H(i)

)
|Tt|

,∀k, (10)

with r̂−1
k = 0,∀k; f t is an approximation of the partial

derivative ∇θg (r (θ,Ω)), which is updated recursively as

f t = (1− ρt) f t−1 + ρtJθ
(
θt,x (tTs + 1) ;Ht

)
∇rg

(
r̂t
)
,

with f−1 = 0, where ρt ∈ (0, 1] is a sequence satisfying 1
ρt
≤

O (tκ) for some κ ∈ (0.5, 1), Jθ (θ,x;H) is the Jacobian
matrix of the rate vector r (θ,x;H) w.r.t. θ and its expression
is derived in [6]. The weight vector µ is updated as

µt+1 = (1− γt)µt + γtµ̄
t. (11)

with µ̄t , ∇rg
(
r̂t
)
, where γt ∈ (0, 1] is a sequence satisfying∑

t γt =∞,
∑
t (γt)

2
<∞ and limt→∞ γt/ρt = 0.

In Step 2c, the optimal solution θ̄t of the following quadratic
optimization problem is solved:

θ̄
t

= argmax
θ∈Θ

f̄ t (θ) , (12)

which has closed-form solution θ̄t = PΘ

[
θt + f t

2τ

]
, where

PΘ [·] denotes the projection on to the box feasible region Θ.
Finally, θ is updated according to

θt+1 = (1− γt)θt + γtθ̄
t
. (13)

Then the above iteration is carried out until convergence. In
the full version in [6], we established the convergence of the
BC-SSCA algorithm to stationary solutions.

B. Short-term Block-Coordinate Algorithm

We first transform the WSRMP PS (µ,θ,H) to the follow-
ing weighted minimum mean square error (WMMSE) problem

min
β,v,d,u,w

K∑
k=1

µk (wkηk − logwk) (14)

s.t. d ≥ 0, (2) and (3),

where w = [w1, ..., wK ] with wk > 0 : ∀k is a weight vector
for MSE, β = [β1, ..., βk]

T with |βk|2 = pk and

ηk , E
[
|sk − ŝk|2 |H

]
=
∣∣∣1− uHk Ṽ H

hkβk

∣∣∣2 +
∑
l 6=k

∣∣∣uHk Ṽ H
hlβl

∣∣∣2
+uHk Ṽ

H
Ṽ uk + uHk Q (θ,p,v,d)uk,

is the MSE of user k. Following similar proof to that of
Theorem 1 in [7], it can be shown that Problem PS (µ,θ,H)
is equivalent to (14). Therefore, we shall focus on designing a
BC algorithm to find a stationary point of (14). In the proposed
BC algorithm, starting from an initial point, the short-term
control variables β,v,d,u,w are optimized in an alternating
way by solving a convex subproblem w.r.t. each variable. The
update equation for each variable is elaborated below.

When fixing the other short-term variables, the optimal u
is given by the MMSE receiver

uk =

(
K∑
l=1

Ṽ
H
hl |βl|2 hHl Ṽ + Ṽ

H
Ṽ +Q

)−1

Ṽ
H
hkβk,

∀k, where Q is an abbreviation for Q (θ,p,v,d); the optimal

wk,∀k is given by wk =
(

1− uHk Ṽ
H
hkβk

)−1

; and the
optimal β is given by βk = β∗k (λk) ,∀k with

β∗k (λk) = µkwkRe
[
uHk Ṽ

H
hk

]
×

(
K∑
l=1

2µlwlh
H
k Ṽ ulu

H
l Ṽ

H
hk + νk + 2λk

)−1

,

where νk =
∑
n,l

6

4dn,l
|uk,n,l|2 |hHn,kṽn,l|2, uk,n,l is the

((n− 1)N + s)-th element of uk, λk is zero if |β∗k (0)|2 ≤ Pk
and chosen to satisfy |β∗k (λk)|2 = Pk otherwise.

When fixing the other short-term variables, we solve the
following modified subproblem w.r.t. v by adding a proximal

regularization term ε
∥∥∥v − v′

∥∥∥2

with ε > 0 a small number:

min
v

K∑
k=1

µk (wkηk − logwk) + ε
∥∥∥v − v′

∥∥∥2

, (15)

where v
′

is the current digital filter. By solving (15), we obtain
the updated digital filter as follows

v = (B + εI)−1(J + εv
′
), (16)

where B = [B1,1, ...,BN,L]
T and Bn,l =

[B1,1,n,l, ...,BN,L,n,l]
T with

Bn′ ,l′ ,n,l

=


∑K
k=1 µkwk|uk,n,l|2( 3

4dn,l
+ 1)Dn, n

′
= n, l

′
= l,∑K

k=1 µkwku
∗
k,n,luk,n,l′Dn, n

′
= n, l

′ 6= l,∑K
k=1 µkwku

∗
k,n,luk,n′ ,l′Dn,n′ , n

′ 6= n,

Dn = FHn F n +
K∑
k=1

β2
kF

H
n hn,kh

H
n,kF n,

Dn,n′ =
K∑
k=1

β2
kF

H
n hn,khn′ ,kF n,
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Figure 3: PFS utility versus per-RRH fronthaul capacity C

and J = [J1,1, ...,JN,L]
T with Jn,l =∑K

k=1 µkwkβku
∗
k,n,lF

H
n hn,k,∀n, l.

Finally, the optimal quantization bits allocation is obtained
by solving the KKT conditions as

d∗n,l (λn) =

[
log 2Bλn − log(log 4

∑K
k=1 µkwkςk,n,l)

log 4

]+

,

∀n, l, where ςk,n,l = 3|uk,n,l|2(
∑K
k=1 pk|h

H
n,kṽn,l|2+‖ṽn,l‖2)

and the optimal Lagrange multiplier λn ≥ 0 is chosen such
that 2B

∑L
l=1 d

∗
n,l (λn) = Cn.

V. SIMULATION RESULTS AND DISCUSSIONS

Consider a C-RAN with 4 RRHs placed in a circle cell
of radius 500 m. There are 8 users randomly distributed in
the cell. The channel bandwidth is 1 MHz. We adopt the
geometry-based channel model in [8] for simulations. Unless
otherwise specified, we consider M = 64 antennas, S = 16
RF chains for each RRH. There are Ts = 10 time slots in each
frame and the slot size is 1 ms. The coherence time for the
channel statistics is 10 s. As in [9], we assume that the CSI
delay is proportional to the dimension of the channel vector
that is required at the BS. The carrier frequency is 2.14 GHz
and the velocity of users is 3 Km/h. The CSI delay for the full
channel matrix is set to be τ = 4 ms except for Fig. 4. We
consider PFS utility. Three baseline schemes are considered
for comparison: the spatial-compression-and-forward (SCF)
scheme in [3], the analog SCF (A-SCF) scheme in [4] and
the slow-timescale SCF (S-SCF) obtained by removing the
short-term optimization in the proposed scheme.

Fig. 3 shows the performance comparison of different
schemes versus per-RRH fronthaul capacity C varies from
C = 16 Mbps to C = 160 Mbps. It can be observed that the
best PFS utility is achieved by the SCF scheme without CSI
delay, followed by the proposed THCF scheme. Furthermore,
the proposed THCF scheme achieves significant gain over
A-SCF and S-SCF, which demonstrates the importance of
hybrid analog-and-digital processing and two-timescale joint
optimization. Finally, it is observed that the performance of
SCF is inferior to the proposed THCF since the full-CSI
delay is larger than the effective-CSI delay. In Fig. 4, we
plot the PFS utility versus the CSI delay, where the the per-
RRH fronthaul capacity is fixed as C = 64Mbps. We can

0 2 4 6 8

Full-CSI delay (ms)

9

10

11

12

13

14

15

16

17

18

19

20

P
ro

p
o
rt

io
n
al

 F
ai

rn
es

s 
U

ti
li

ty

SCF Scheme

Proposed THCF Scheme

S-SCF Scheme

A-SCF Scheme

Figure 4: PFS utility versus the CSI delay.

see that as the CSI delay increases, the PFS of all schemes
decreases gradually. It is observed that the PFS achieved with
the proposed THCF scheme is higher than that achieved by
the other schemes for moderate and large full-CSI delay. This
is because the performance of the proposed THCF scheme is
insensitive to the full-CSI delay. Although the performance
of the S-SCF scheme is also insensitive to the full-CSI
delay, its performance is still much worse than the proposed
THCF scheme due to the lack of optimal power control and
quantization bits allocation.

VI. CONCLUSION

We propose a two-timescale hybrid compression and for-
ward (THCF) scheme to reduce the fronthaul consumption in
Massive MIMO aided C-RAN. We formulate the optimization
of THCF as a general utility maximization problem, and
propose a BC-SSCA algorithm to find stationary solutions
of this two-stage non-convex stochastic optimization problem.
Simulations verify that the proposed BC-SSCA algorithm
achieves significant gain over existing solutions.
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