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Abstract—This paper tackles the problem of channel estimation
in mmWave large-scale communication systems. To leverage the
sparsity of mmWave MIMO channels in the beam domain, we use
discrete Fourier transform (DFT) precoding and combining and
recast the channel estimation problem as a compressed sensing
(CS) problem. The generalized approximate message passing
(GAMP) algorithm is then used to find the minimum mean square
estimate (MMSE) of each entry of the unknown mmWave MIMO
channel matrix. Unlike the existing works, this paper models the
angular-domain channel coefficients by a Laplacian prior and
accordingly establishes the closed-form expressions for all the
statistical quantities that need to be updated iteratively by GAMP.
Further, to render the proposed algorithm fully automated, we
develop an expectation-maximization (EM)-based procedure which
can be readily embedded within GAMP’s iteration loop in order
to learn the unknown scale parameter of the underlying Laplacian
prior along with the noise variance. Numerical results indicate that
the proposed EM-GAMP algorithm under a Laplacian prior yields
substantial improvements both in terms of channel estimation
accuracy and computational complexity as compared to the
existing methods that advocate a Gaussian mixture (GM) prior.

I. INTRODUCTION

Massive MIMO technology in which the transceivers are

equipped with large-scale antennae arrays has recently at-
tracted considerable research interests [1], [2], especially in the

mmWave spectrum due to its shorter wavelength which allows

more antennas to be packed in the same physical dimension
[3]. One of the crucial requirements for mmWave massive

MIMO systems is the acquisition of high-quality channel state
information (CSI). This is, however, a challenging task par-

ticularly due to the large number of antennas at both ends of

the communication link. In fact, the direct application of tradi-
tional MIMO channel estimation techniques lead to prohibitive

overhead [4]. Fortunately, many recent channel measurement

campaigns [5], [6] have revealed that the number of scatterers in
mmWave frequencies is limited, i.e., the signal propagates from

the transmitter to the receiver only through a small number of

path clusters. This has motivated the use of various compressed
sensing (CS) techniques to accurately estimate massive MIMO

mmWave channels from relatively short pilot sequences by

capitalizing on the beam-domain sparsity (see [4], [7] and
references therein).

In this paper, we use the generalized approximate message-

passing (GAMP) [8] for CS to estimate the single-user massive
MIMO mmWave channel. Unlike the original approximate

message-passing (AMP) algorithm [9], GAMP is able to ac-

commodate arbitrary priori distributions on the components of
the unknown sparse vector, further it is applicable to both linear

and nonlinear observation models. This algorithm has already

been applied to estimate single- and multi-user massive MIMO
mmWave channels in [7] and [10], respectively. In both works,

GAMP is used in conjunction with a Gaussian mixture (GM)
prior on the channel coefficients.

This paper makes an observation that the use of GAMP with

a Laplacian prior on the beam-domain coefficients of massive

MIMO mmWave channels can lead to better channel estimation
performance. Our use of the Laplacian prior is in part motivated

by its wide success in Bayesian image reconstruction practices

where it is widely recognized [11] that the sparsity of the
discrete cosine coefficients (DCT) coefficients of natural images

is well captured by a Laplacian prior. In this paper, we make a

case that the Laplacian prior is also a good model for capturing
the sparsity of DFT (i.e., beam-domain) coefficients of massive

MIMO mmWave channels.
This paper further recognizes that the model parameters

required by GAMP need to be estimated in real time in

practical implementation. These include the noise variance

and the scale parameter of the postulated Laplacian prior
which captures the large-scale fading coefficient between the

transmitter and the receiver. To address this issue, this paper

devises a computationally efficient approach that learns these
parameters as well using the expectation-maximization (EM)

principle. The proposed EM-based approach comes with almost

no additional cost since all the statistical quantities it requires
are already available as by-products of GAMP while trying

to reconstruct the unknown channel. Simulation results suggest
that the Laplacian prior indeed leads to enhanced reconstruction

performance, as compared to the GM prior advocated in [7],

while speeding up the convergence of GAMP at the same time.

II. SYSTEM MODEL

Consider a massive MIMO mmWave communication system

wherein the transmitter and the receiver are equipped with
and antennas, respectively. The components of each

pilot symbol, T,

are drawn independently with .
Under the block fading narrowband assumption1, the received

signal, , can be modeled as follows:

(1)

Here, is the unknown channel matrix and
T is the additive white

Gaussian noise vector with . The
mmWave channels are typically modeled with few (say ) path

clusters each containing a small number of sub-paths, e.g., for
uniform linear array (ULA) configurations, we have:

H (2)

1We also assume that each antenna element is equipped with a dedicated RF
chain. Generalization of the results to hybrid structures is left to a future work.



where is the gain of the sub-path within the cluster,

and are its directional
cosine with respect to the transmit and receive antennae arrays,

respectively. Moreover, and are the transmit and

receive array response vectors. The goal of this paper is to
estimate given the set of observations and

training symbols .

The channel matrix as expressed in (2) is not visibly sparse.

Expressing it in the angular domain, however, reveals that it
has indeed very few dominant entries. To see this, let and

denote the and unitary DFT matrices and

consider the angular-domain representation of [12]:

H H H H
(3)

Intuitively, in (3), the columns of and act as transmit

and receive beamforming vectors, respectively, capturing how
much energy is present along their associated transmit/receive

beams. If the angular spread is small (which is the case in

mmWave bands), then each cluster have most of its energy
along one particular pair of transmit/receive beamforming vec-

tors, thereby reflecting the sparsity of the channel in the angular

domain. Note, however, that is not exactly sparse but rather

approximately sparse due the spectral leakage phenomenon.

To exploit the virtual model in (3), we apply the DFT

precoder, , and transmit instead of . We also

combine the corresponding received noisy vector using H. In
this way, the observation model is as follows:

H H (4)

where H is the resulting combined noise which

has exactly the same statistics as since is a unitary

matrix. Consequently, the space-time observation matrix

is given by:

(5)

with the matrices and being constructed in the same

way as . Now, by defining vec , vec ,

vec , and T , with returning the Kronecker

product, it follows from (5) that:

(6)

Recall here that the vector is approximately sparse due to the

approximate sparsity of . This paper captures the underlying

sparsity by a Laplacian prior. Since the Laplace distribution is
defined for real-valued RVs only, we transform the complex

model in (6) as follows:

We recognize here the well-known inverse problem, i.e., recon-

struct a sparse vector from the fewest possible number of noisy

linear observations, , in which ,
, and , with and .

Algorithm 1 Sum-Product GAMP for MMSE Estimation

Require: ; ; ; , , precision
tolerance ( ), maximum # of iterations ( MAX)

Ensure: MMSE estimates for

1: Initialization

2:

3:

4:

5:

6: repeat

7:

8:

9: var

10:

11:

12:

13:

14:

15: var

16:

17:

18: until or MAX

III. PROPOSED MMWAVE CHANNEL ESTIMATION

ALGORITHM

A. GAMP for Bayesian Sparse Signal Reconstruction

This paper uses the GAMP framework [8] to find the MMSE

estimate of while accommodating a prior on its components

. Assume that ’s are independent and identically
distributed (i.i.d.) with a common prior distribution

that is parameterized by an unknown parameter vector . After
a linear transformation and propagation through a

probabilistic channel, we have:

(7)

For now we assume to be perfectly known. Later

in Section IV, we describe an efficient procedure that allows
learning of online as well. Given the knowledge of , ,

and , GAMP runs iteratively according to the algorithmic

description provided in Algorithm 1.

B. Modeling the Angular-Domain Channel Coefficients

In conventional sub-3 GHz MIMO communications, the

entries of are usually modeled by a Gaussian distribution

due to rich scattering. In this case, the entries of in (3),

or equivalently the components of , also follow the same
Gaussian distribution since and are unitary matrices.

Due to the sparse scattering environment in mmWave bands,

however, a more appropriate statistical model for the angular-
domain channel coefficients needs to be specified. In this

context, [7] and [10] use the i.i.d. GM prior to model :

(8)

with T. In this paper, we

propose to use a Laplacian prior with scale parameter :

(9)



In the next subsection, we derive the explicit expression for the

posterior means and variances involved in Lines 15 and 16 of
Algorithm 1 under the Laplacian prior in (9).

C. Derivation of the Posterior Means and Variances

First, since is a large-size matrix, then owing to the central
limit theorem, GAMP models the components of , by a

Gaussian distribution with mean and variance (in lines
7 and 8 of Algorithm 1), i.e., . Therefore,

it can be shown that the posterior mean and variance of

(in lines 9 and 10 of Algorithm 1) are given by:

and

Next, we establish the expressions for the posterior mean and

variance, and (in Lines 16 and 15 of
Algorithm 1), respectively. Given any prior, , on ’s

GAMP approximates their marginal posteriors by:

(10)

Using the Laplacian prior, , in (9) we first show that:

(11)

in which the functions and are given by:

(12)

(13)

with being the standard signum function. Plugging (11)

back into (10), it follows that:

(14)

in which the normalization factor is given by:

(15)

Using (12) and (13) in (15), it can be shown that:

Q Q (16)

in which Q is the tail probability of the standard normal
distribution and the quantities, , , , and are:

and (17)

and (18)

Now, owing to (14), the posterior mean, , is given by:

Then, by using (12)-(13) along with (17)-(18) and resorting to

some algebraic manipulations, we show that:

(19)

in which is defind as follows:

(20)

Moreover, it can be shown that is expressed as:

Q (21)

Plugging (21) in (19), it follows that:

Q Q

(22)

Besides, from (17)-(18), we establish the following identity:

(23)

This cancels the last two terms in (22) thereby leading to:

Q Q

The posterior variance in Line 15 of Algorithm 1 is given by:

(24)

where is the posterior second moment of :

E (25)

Using the posterior distribution in (14), it follows that:

whose analytical expression is also established (using equiva-

lent algebraic manipulations) as follows:

Q

Q

Plugging this result back in (24) yields the required
update for the th posterior variance, .

IV. LEARNING THE SCALE PARAMATER OF THE

LAPLACIAN PRIOR AND THE NOISE VARIANCE

We now address the issue of how to find the maximum

likelihood estimate (MLE) of given by:

(26)

The direct maximization of the log-likelihood function,
, is analytically intractable. This paper proposes to



use the EM concept [13] in order to find the MLEs approxi-

mately. Observe that GAMP already returns the adequate poste-
rior probabilities that are required by the EM algorithm in order

to update its estimates. Hence, the implementation of the EM

algorithm incurs little additional cost. We define the so-called
incomplete and complete data sets (in EM terminology), as

and , respectively. Then, starting with some initial

guess, , the EM algorithm updates the MLEs iteratively by
alternating between the following two main steps:

Expectation step (E-STEP): Find the average log-

likelihood of the complete data:

(27)

Maximization step (M-STEP): Maximize the average

log-likelihood of the complete data:

(28)

Now, using the fact that , it follows that:

which is used back in (27) to yield:

(29)

Consequently, the EM updates, ,

given in (28) are obtained as follows:

(30)

(31)

Furthermore, since the components of are assumed to be i.i.d.
with , it follows from (30) that:

(32)

The expectation in (32) is taken with respect to the posterior

density which we further approximate by:

(33)

Using (33) in (32), it follows that:

(34)

Clearly, is the value of that zeros:

(35)

By using the Laplacian distribution given in (9) into (35),

setting the result to zero, then solving for , we obtain:

(36)

The expectations in (36) are computed with respect to the pos-

terior distributions which are readily obtained

from the auxiliary outputs of GAMP according to (14) in which
the true parameter vector is replaced by its previous EM

update . By doing so and resorting to somewhat tedious

algebraic manipulations, we establish the EM update for the
scale parameter, , as follows:

in which and are explicitly given by:

Q Q

Q Q

Using equivalent manipulations, it can also be shown that the
EM update for the noise variance is given by:

(37)

Finally, it is worth mentioning that the results disclosed in
this paper can be readily applied to the mmWave frequency-

selective channel estimation problem since the latter can also

be recast as a CS recovery problem under linear mixing as
shown in [7]. In this case, the beam-domain coefficients of

each channel tap can be modelled by a Laplacian prior and

the GAMP updates for their posterior means and variances are
computed using the same expressions established in this paper.

V. SIMULATION RESULTS

This section assesses the performance of the proposed
massive MIMO mmWave channel estimator using Monte-

Carlo simulations. The normalized mean-square error (NMSE),

NMSE , is used as a performance
measure. The received powers are normalized to one such that

the SNR of the system is simply given by SNR .

As baselines, we consider the least-squares (LS) estimator

LS
T T , as well as, the GAMP-based estimator

under the GM prior investigated recently in [7] and referred to

here as GAMP-GM. As a representative example, we consider
a system with antennas in an environment with

path clusters each of which consisting of sub-

paths with angular spread of 3.5 degrees. The results reported
here are obtained using 100 Monte-Carlo trials. Further, we set

the maximum number of iterations max and the precision
tolerance for GAMP (cf. Algorithm 1).

Fig. 1 depicts the NMSE performance of the different

methods against SNR for two different sizes of the training
sequence, namely and . First, Fig. 1(a)

indicates that the performance of the LS estimator is very poor

since corresponds to the case where the number of
unknowns is equal to the number of observations

. In fact, it is widely known that LS estimation

requires more observations than unknowns. This is confirmed
by Fig 1(b) in which we double the number of observations. In

the latter case, the advantage of the two Bayesian approaches

over the non-Bayesian LS estimator in low-to-moderate SNRs
is due to their ability to exploit the prior information about the
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Fig. 1: Estimation NMSE for GAMP-Laplace, GAMP-GM, and ML versus
SNR: (a) and (b) .

unknown channel instead of simply assuming it to be unknown

but deterministic. It is also seen that in both cases GAMP-
Laplace offers remarkable performance gains over GAMP-GM,

e.g., at target NMSE dB, the gains in terms of SNR
are as high as 10 dB and 5 dB for and ,

respectively. We also verified via computer simulations that

these NMSE improvements lead to substantial improvements
in terms of achievable rates but the results were not included

here due to space limitations.

Fig. 2 plots the average number of iterations required by
GAMP (until the condition in Line 18 of Algorithm 1 is

satisfied) under both the GM and Laplace priors. There, it is

seen that GAMP-Laplace converges much faster than GAMP-
GM. For instance, at SNR dB, GAMP-Laplace converges

in almost 25 iterations when as opposed to 35 iterations

for GAMP-GM thereby leading to tremendous computational
savings in practice. Recall here that GAMP performs four

matrix/vector multiplications at each iteration (cf. Algorithm

1 which is actually a scalarized version of GAMP). Hence,
GAMP-Laplace saves on average 40 matrix/vector multiplica-

tions over GAMP-GM. This is to be added to the computational

savings stemming from the fact that GAMP-Laplace needs to
learn only one parameter, , under each iteration, as opposed to

different parameters for GAMP-GM where is the order

of the Gaussian mixture.

VI. CONCLUSION

This paper proposes a new channel estimator for massive

MIMO mmWave systems that leverages the inherent sparsity
of the channel in the angular domain. The proposed estimator

belongs to the family of Bayesian estimators and builds upon

the GAMP algorithm. As compared to prior works, our key
observation is that the angular-domain channel coefficients

should be modeled by a Laplacian prior distribution. This paper

also proposes an EM-based approach to systematically learn the
unknown scale parameter of the underlying Laplace distribution
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Fig. 2: Average number of iterations until convergence for GAMP-GM and
GAMP-Laplace: (a) and (b) .

and the noise variance. As compared to the Gaussian mixture

model advocated in the recent literature, it is seen that the
Laplacian prior leads to remarkable performance improvements

in terms of channel estimation accuracy on the top of speeding

up the convergence of GAMP.
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