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Abstract—This paper considers a multicasting system in which
the base station has a large number of antennas with cost-
effective one-bit digital-to-analog converters and aims to send
a common symbol to multiple remote users. Unlike the existing
literature which seeks to design the one-bit precoder for a given
constellation, e.g., quadrature amplitude modulation (QAM) or
phase shift keying (PSK), this paper aims to jointly design
the transmit one-bit precoder and the receive constellation by
leveraging the concept of autoencoder, wherein the end-to-end
multicasting system is modeled using a deep neural network
with the one-bit percoding constraint represented by a binary
thresholding layer. To deal with the issue that such a binary
layer always produces a gradient of zero, and thus prevents an
effective end-to-end training when using the conventional back-
propagation method, this paper uses a variant of straight-through
estimator which approximates the thresholding function with a
properly scaled sigmoid function in the back-propagation phase.
Numerical results show that, for a fixed channel scenario, the
proposed autoencoder-based constellation design is superior to
the conventional QAM and PSK constellations. Using the insights
obtained from fixed channel scenarios, we also propose a con-
stellation design for varying channel scenarios and numerically
show that the proposed design achieves a better performance as
compared to the conventional constellations.

Index Terms—autoencoder, binary neurons, deep neural net-
work, one-bit precoding, multiple-input multiple-output.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems,
in which a base station (BS) with large-scale antenna arrays
serves single-antenna users, is one of the promising tech-
nologies for the next generation of the wireless systems for
achieving high spectral efficiency, reliability, and connectivity
requirements [1]. One of the main challenges in implementing
massive MIMO systems is the extensive power consumption
of the high-resolution digital-to-analog converters (DACs)
required in conventional MIMO precoding schemes, e.g., [2].

One-bit precoding is a novel precoding scheme in which
two DACs are dedicated for each antenna element but with
only one-bit resolution. The one-bit precoding architecture,
which can significantly reduce the transmitter’s circuit power
consumption, has recently attracted lots of attention. The early
works on one-bit precoding adopt linear-quantized precoding
schemes in which the precoder is designed by quantizing the
conventional linear precoders [3], [4]. To address the prob-
lem of high symbol error floor of linear-quantized precoding
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schemes in the high signal-to-noise ratio (SNR) regime, more
sophisticated non-linear precoding schemes are proposed [5]-
[10]. In all these works, the non-linear precoder is designed
under the assumption that the receive constellation is fixed to
one of the conventional constellations, e.g., QAM constella-
tions [S5]-[8] or PSK constellations [9], [10].

In this paper, we point out that the optimal constellation de-
sign is a crucial component of the overall problem, and further
both the optimal precoder and the optimal constellation can be
designed using machine learning techniques. In particular, this
paper models the end-to-end multicasting system as a deep
neural network (DNN) autoencoder with one-bit constraint at
the output of the precoder represented by a binary thresholding
layer, and aims to get insights into the structure of the optimal
constellation design by leveraging a novel training strategy
from the machine learning literature.

In the machine learning literature, the goal of an autoen-
coder is typically to find a low-dimensional representation
of its input at some intermediate layers which allows recon-
struction at the output with minimal error. In communication
systems, the concept of autoencoder has recently been used to
jointly learn the transmitter and receiver components so that
the intended message or symbol can be recovered with small
probability of error [11]-[13]. The concept of autoencoder is
ideally suited for the one-bit precoding problem, because the
1-bit DAC output can be thought of as a low-dimensional
representation of the transmitted information. However, the
training of the autoencoder is also challenging, because the
gradient of the binary thresholding layer (representing the
one-bit constraint) is always zero, so the conventional back-
propagation used in [11]-[13] does not work. To get around
with this problem, we approximate the gradients of the binary
layer with a variant of the straight-through (ST) estimator
[14]-[16]. In particular, we employ the sigmoid-adjusted ST
estimator with annealing trick proposed in [16], where the
thresholding function in the back-propagation phase is approx-
imated with a properly scaled sigmoid function.

For the fixed-channel scenario, we numerically show that the
proposed trained autoencoder can achieve a good performance
in terms of the average symbol error rate (SER), and the
constellations designed by autoencoder is superior to QAM
and PSK constellations. Further, using the insights obtained
from fixed channel scenarios, we propose a constellation
design for varying channel scenarios and numerically show



that the proposed constellation can achieve a better SER
performance as compared to the conventional constellations.

II. SYSTEM MODEL

Consider the downlink transmission of a multicasting sys-
tem in which a BS with M transmit antennas aims to simul-
taneously communicate one single common symbol from a
constellation of size |C|, i.e., s € C, to K single-antenna users
in each channel use. For such a system, if we denote the vector
of channel gains between the BS and user k by h, € CM,
the M -dimensional transmitted signal can be written as a
function of the instantaneous channel state information (CSI),
H = [hy,...,hx]", and the intended symbol s as:

x =P (s, H), (1)

where P : C x CK*M s CM represents the precoder. The
received signal at user k can then be modeled as:

yr = philx + 2z, )

where x = p~!x € CM is the normalized transmitted signal

with p = \/P/2M, z, ~ CN(0,202) is the white Gaussian
noise, and P is the total transmit power budget. Upon reception
of yi, user k seeks to recover the intended symbol by mapping
its received signal to the nearest constellation point, i.e.,
3 = Q(yg). In this paper, we consider the multicast system
for simplicity. However, the proposed autoencoder framework
can be extended to the more general unicast scenario with
independent symbols transmitted to each user.

One-bit precoding refers to the scenario in which one-bit
DAC:s are employed at the transmit antennas. This means that
X must come from a finite alphabet, ie., x € X M , where
X = {£1 £}, with ¢ denoting the imaginary unit. In this
case, the process for designing x is combinatorial and for this
reason most existing design strategies are based on discrete
optimization heuristics, e.g., the precoding algorithm proposed
in [8] is a combination of greedy and exhaustive search.

Moreover, existing one-bit precoding methods [3]-[10] al-
ways consider a fixed receive constellation, e.g., QAM or PSK
constellations. The investigation of the optimal constellation
design, which can potentially impact the eventual system
performance, is still not yet available. The main goal of this
paper is to obtain insights into the structure of the optimal
constellation design by jointly designing the transmitted signal
and the receive constellation via the autoencoder framework.

In this paper, we consider the conventional massive MIMO
setup with time-division duplex assuming uplink-donwlink
channel reciprocity, in which the BS can obtain an estimate
of CSI via training on the uplink, and then use that CSI for
the purpose of downlink precoding. In order to focus on the
impact of constellation design and one-bit precoding scheme,
similar to the existing literature on one-bit precoding [3]-[10],
we assume perfect uplink-downlink reciprocity so that full CSI
can be obtained at the BS. At the receivers’ side, we do not
assume the availability of the CSI, and instead we assume that
the required information about the constellation is available
at the users. In this paper, we first restrict our attention to a

fixed channel scenario in which the constellation is designed at
the BS for that particular channel, and the information about
the designed constellation is then fed back to the users. By
applying the insights obtained from designed constellations in
the fixed channel scenario, we then propose a constellation
design for more realistic varying channel scenarios. In that
design, the general shape of the constellation is fixed for
different fading blocks and only a single parameter needs to
be fed back to the users in each coherence time.

III. END-TO-END ONE-BIT PRECODING SYSTEM DESIGN
USING AUTOENCODER

In this section, we show how to represent an end-to-end
multicasting communications system with one-bit precoder as
an autoencoder and how to train that autoencoder to find the
constellation design and the corresponding one-bit precoding
scheme for a given channel matrix H.

A. Autoencoder Representation

Since most of the existing deep learning libraries only
support real-value operations, we first need to transform the
complex model in (2) to the following equivalent real model:

Riwed | [R{b} —S{h}| (R{x}] [R{a}

Sy} S(hily  R{h} | [S{x}]  [S{=}]
yk ﬁk SE zk

Now, let m € {1,...,|C|} denote the index of the intended

symbol and let 1,,, € RICl denote the one-hot representation of
m, i.e., a |C|-dimensional vector with the m™ element being
one and the other elements being zero. By considering 1,, as
the input of the autoencoder, the non-linear one-bit precoder
in (1) can be modeled by a DNN with multiple dense layers
followed by a binary layer ensuring that the one-bit constraints
on elements of X are met. In this model, the 2M/-dimensional
real-valued normalized transmitted signal X can be written as:

X =sgn (Wror (--- Wao (Wil +by)+---bry) + br),

where T is the number of layers, o is the activation func-
tion for the t" layer, Or = {Wy, b}, is the set of the
transmitter’s trainable parameters, and sgn(-) denotes the sign
function. Here, the dimensions of the trainable matrices and
the bias vectors are respectively:

€l><|C|, tzl,
dlm(Wt): glxet_l, t:27...,T_1, (3)
OM x by, t=T,

and

, bx1, t=1,....T—1,
dim (b) = {2tM X1, t=T @

where /; is the number of neurons in the " hidden layer.
Analogously, the receivers’ operations are modeled by an-

other DNN with R dense layers, where the 7" layer includes ¢/
neurons. In this paper, one common DNN is used to represent
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Fig. 1: A block diagram of the end-to-end autoencoder representing a K -user multicasting system in which the BS has one-bit precoding architecture.

the decoding procedure of different users. The motivation of
considering such a common receive DNN structure is two-
folded. First, it reduces the dimensions of the receivers’ train-
able parameters which can potentially lead to a faster training
procedure. Second, since in this model different users employ
the same decision rules to recover m, the final decision bound-
aries and consequently the designed receive constellation will
be the same for all the users. Therefore, after designing the
constellation, the BS only needs to broadcast the common
constellation parameters to all the users which significantly
reduces the amount of required feedback compared to the case
that different users adopt different constellations.

In the receive DNN, the activation function of the last
layer is set to be a softmax activation in order to generate
the probability vector at user k, pr € (0,1)I¢l, where its
it" element indicates the probability for the index of the
intended symbol to be i. Finally, receiver k declares 7715, which
corresponds to the index of the element of p with the highest
probability, as the decoded index of the intended symbol.
The block diagram of the proposed end-to-end autoencoder
that represents a multicasting system with one-bit precoder
is shown in Fig. 1. The next step is to learn the transmitter’s
precoding scheme and the receivers’ decision rules by properly
training the autoencoder in Fig. 1.

B. Training Autoencoder with a Binary Layer

The proposed autoencoder can be trained end-to-end using
stochastic gradient descent (SGD) on the set of all possible
symbol indices using the average cross entropy loss function
between the input layer 1,,, and the probability vectors gener-
ated by the users, which can be written as:

K [c]

T PP T O

k=1m=1

Lcg = —Ez

where py ., is the m™ element of the probability vector
generated by the k™ user, py, and the expectation is over the
distribution of the noise.

SGD-based training methods require partial derivatives of
the loss function with respect to all the trainable parameters
in order to update those parameters in each iteration. A
common practice in SGD-based training to obtain those partial
derivatives is back-propagation, which is an efficient method
of computing gradients in directed graphs of computations.

However, the binary layer that is adopted as the last layer of
the transmitter impedes the use of simple conventional back-
propagation method. This is because the derivative of the out-
put of a binary neuron with sgn(-) activation function is zero
almost everywhere with the exception of the origin at which
the function is not even differentiable. As a result, gradients
can never flow through a binary layer and consequently any
neural layers before a binary layer cannot be trained with the
conventional back-propagation method.

This issue has been tackled in machine learning literature
by approximating sgn(-) by another differentiable function in
the back-propagation phase. In [14], Hinton proposes straight-
through (ST) estimator in which a binary neuron is treated as
an identity function during the back-propagation phase. This
means that the ST estimator simply estimates the gradient of
a binary neuron as 1. A variant of the ST estimator, called
sigmoid-adjusted ST, replaces the derivative factor with the
gradient of 2sigm(u) — 1, where sigm(u) = 1/(1+exp(—u))
is the sigmoid function [15]. The performance of the sigmoid-
adjusted ST estimator can be further improved by using the
slope-annealing trick, in which the slope of the sigmoid
function is slowly increased as training progresses [16]. Partic-
ularly, the sigmoid-adjusted ST with slope annealing estimator
approximates sgn(u) in the back-propagation phase with

2

2sigm(aPu) ~1= — >
Slgm(a ’LL) 1+ eXp(—oz(Z)u)

-1 (6)
where a(?) is the annealing factor in the i™ epoch satisfying
a® > =1 1In this paper, we employ sigmoid-adjusted ST
with annealing during the back-propagation phase to compute
the gradients of the binary layer considered at the last stage
of the transmitter in the autoencoder in Fig. 1. In the next
section, we explain the adopted annealing strategy and the
implementation details of the end-to-end autoencoder training.

C. Implementation Details

We implement the autoencoder network in Fig. 1 on
TensorFlow which is an open source Python-based machine
learning framework [17]. To train such an autoencoder, we
use a variant of the stochastic gradient descent method for
optimizing deep networks, called Adam optimizer [18] with an
adaptive learning rate whose initial value is set to be 0.001.

In our implementation, the number of transmit and receive
hidden layers are set to 7' = 12 and R = 5, respectively,
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Fig. 2: The receive constellation points and their corresponding decision
boundaries obtained from a trained autoencoder. The circle depicted with a
blue solid line is centered at the origin and has radius d*.

while the number of transmit and receive hidden neurons
are set to ¢, = 6M, Vt and ¢, = 2M, Vr, respectively.
These large values for the network dimensions are chosen in
order to illustrate the ultimate performance of the proposed
autoencoder. Further, we employ exponential linear units
(ELUs) [19] as the activation function of the hidden layers.
In the training stage, we assume that the noise variance is
unknown and it is randomly generated so that the signal-to-
noise ratio, SNR £ 10log, (557 ), is uniformly distributed
in a reasonable range. This approach allows us to train
the network such that it can operate on a wide range of
SNRs. Moreover, we replace the expectation in (5) by the
empirical average over the training samples to compute the
average cross entropy loss function. Finally, we remark that
numerical experiments suggest that considering a sigmoid-
adjusted ST estimator with slow annealing strategy leads to
the best performance. Therefore, in our simulations, we update
the annealing parameter in the i epoch as a9 = 1.002a(*~1)
where o(®) = 1 so that the annealing parameter after 2000
epochs becomes 1.0022°%° ~ 55 which is reasonably large to
accurately approximate the sgn(-) function.

After the autoencoder is trained, we obtain the one-bit
precoding scheme and constellation design obtained by the
autoencoder. In particular, the transmitted signal in (1) can
simply be constructed from x,, € {£1}*, which is the
output of the binary layer in Fig. 1 when the input is set to
be m. Further, the receive constellation points can be obtained
by averaging the noiseless received signals of different users.

I'V. NUMERICAL RESULTS

In the numerical experiments, we consider a multicasting
system in which a BS with M = 128 antennas serves K =
4 users by transmitting symbols from a constellation of size
|C| = 64 in an environment with hy ~ CN(0,1), Vk.

A. Fixed Channel Scenario

In this experiment, we randomly generate a realization of
H for which we numerically evaluate the performance of the
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Fig. 3: Average SER versus SNR in a fixed channel scenario.

proposed autoencoder-based one-bit precoding and constella-
tion design. As a competitor, we consider one of the existing
one-bit precoding algorithms [8] in combination with QAM
and PSK constellations. The one-bit precoding algorithm in
[8] involves two steps. In the first step the transmitted signal
of M, antennas is designed in a greedy fashion to minimize
mean squared error, while in the second step the transmitted
signal of remaining My = M — M; antennas are designed
using an exhaustive search method. Here, we set M; = 120
and M, = 8. Further, [8] suggests to design the constellation
range for a one-bit unicasting system such that the condition

s" (HH") 's< 2P, (7)

in which s is the vector of intended symbols, is almost always
satisfied. By applying (7) to a multicasting system, we set the
range in QAM and PSK constellations so that the distance of
furthest constellation points from the origin becomes

2
17 (HHP) "1
Fig. 2 depicts the constellation points as well as their
corresponding decision boundaries obtained from a trained
autoencoder. Interestingly, we observe that d* in (8) can
accurately approximate the distance of the furthest constel-
lation points from the origin. We would like to remark that,
although we only present the obtained constellation for one
particular realization of H, in the simulations we observe that
the general shapes of the designed constellations are similar
for different channel matrix realizations. In particular, constel-
lations designed by the autoencoder suggest that constellation
points should be placed in a circle with radius d* in a way
that the minimum distance in the constellation is maximized.
We use this observation in the next subsection to tackle the
constellation design problem for varying channel scenarios.
Fig. 3 plots the average SER against SNR. It can be seen
that the proposed autoencoder-based scheme achieves a better
performance over a reasonable range of SNRs as compared
to the one-bit precoding method [8] in combination with
either 64-QAM or 64-PSK. However, in high SNR regime,

d* ®)
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Fig. 4: Average SER versus SNR in the varying channel scenario.

one-bit precoding algorithm in [8] with QAM constellation
outperforms the proposed autoencoder-based method. To in-
vestigate the reason of such a performance behavior, Fig. 3
also plots the performance of the one-bit precoding method
[8] adopted for the receive constellation designed by the
autoencoder. Interestingly as shown in Fig. 3, such a method
achieves the best performance as compared to all the previous
schemes. This suggests that the proposed autoencoder can
indeed help find a better receive constellation design, however,
the performance of its precoding scheme is not necessarily
better than [8] with M5 = 8 in its exhaustive search step.

B. Varying Channel Scenario

The proposed autoencoder-based one-bit precoding and con-
stellation design is restricted to scenarios that the channel is
fixed for a long period of time so that it is feasible to consider
constellation design for that particular channel. However, in
more realistic scenarios, the channel is changing, and we need
to design a common receive constellation (with few tunable
parameters) for all channel realizations. To tackle the con-
stellation design problem for such scenarios, this paper uses
the insights obtained from designed constellations in the fixed
channel scenario. Particularly, we observe that the general
shapes of the designed constellations are similar regardless of
the realization of H and the only parameter of the constellation
that depends on realization of H is its range which can
be accurately characterized by d* in (8). Inspired by those
observations, we propose to use a constellation designed for
one particular H, e.g., Fig. 2 for a constellation with size 64,
and for other H only to rescale that constellation properly so
that the range of the constellation becomes d*.

Fig. 4 plots the average SER against SNR for the varying
channel scenario. Fig. 4 shows that the proposed constellation
design with one-bit precoding algorithm [8] can improve
the performance by about 1.5dB and 8dB as compared to
the QAM and PSK constellations with the same precoding
scheme, respectively. This indicates that the proposed con-
stellation design, which is inspired by the autoencoder-based
constellation design in the fixed channel scenario, is indeed
effective.

V. CONCLUSION

This paper first proposes a joint one-bit precoding and con-
stellation design for a multicasting system with a fixed channel
matrix, by training a DNN autoencoder. Using the insights
obtained from the fixed channel scenario, this paper then ex-
tends its constellation design to the varying channel scenario.
Numerical results show that the proposed autoencoder-based
constellation design for one-bit precoding can achieve a better
performance as compared to the conventional constellations.
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