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Abstract—This paper studies the massive random access prob-
lem in which a large number of sporadically active devices wish
to communicate to a base-station (BS) equipped with a large
number of antennas. The devices are pre-assigned unique pilot
sequences for random access. It has been shown previously that
the device activity detection problem at the BS can be formulated
as a maximum likelihood estimation (MLE) problem, whose
solution depends on the sample covariance matrix of the received
signal. This paper adopts the MLE formulation, and proposes an
approach to analyze the covariance based detection by studying
the asymptotic properties of the MLE via its associated Fisher
information matrix. This paper proposes a necessary condition on
the Fisher information matrix such that the estimation error tends
to zero in the massive multiple-input multiple-output (MIMO)
regime. A phase transition analysis is carried out based on the
necessary condition. This paper also analyzes the distribution of
the estimation error for the case with a large but finite number of
antennas at the BS. Numerical experiments validate the analysis.

I. INTRODUCTION

Random access is a challenging task for massive machine-
type communications (mMTC), where a large number of
sporadically active devices communicate with the base-station
(BS) in the uplink. Conventional grant-based random access
with orthogonal sequences is not suitable for mMTC due to the
fact that the number of potential devices often greatly exceeds
the number of time-frequency dimensions. Instead, a grant-free
based random access strategy is envisioned to be a promising
approach [1], [2], in which each active device directly transmits
the pilot and the data to the BS without waiting for the grant.

There are various designs for the grant-free based random
access. Most of them rely on the use of non-orthogonal
sequences to accommodate massive number of devices. The
non-orthogonal sequences can be used as signatures in active
device identification, e.g., [3]–[5], as codewords in information
transmission, e.g., [6]–[8], or as both [2], [9]. The common
idea is that in the random access phase, each active device
transmits a non-orthogonal sequence to the BS, and by de-
tecting which sequences are transmitted, the BS acquires the
identification of the active devices, or/and the information bits.

Non-orthogonal sequence detection at the BS is a crucial
task in mMTC. The sequence detection problem is closely
related to a sparse signal recovery problem due to the spo-
radic nature of the device activity. In particular, the sequence
detection problem can be formulated as a compressed sensing
problem, for which a variety of techniques can be explored. For
example, the use of the efficient approximate message passing

(AMP) has been proposed for the massive device activity
detection problem in [3], [4]. An important feature of AMP is
that there is an analytical framework called state evolution [10]
for performance analysis, based on which the probabilities of
false alarm and missed detection can be accurately predicted.

As an alternative to AMP, for the massive multiple-input
multiple-output (MIMO) systems, a covariance based approach
for device activity detection is proposed in [5], in which the
sequence detection problem is formulated as either a maxi-
mum likelihood estimation (MLE) problem, or a non-negative
least square (NNLS) problem. In both cases, the optimization
problem is formulated in terms of certain covariance matrix.
The covariance based method is used in [5] for device activity
detection and in [8] for data decoding, where it is shown
that the covariance based method with the MLE formulation
outperforms AMP in the massive MIMO regime. In [11], a
reconstruction error bound and a scaling law on the system
parameters for the NNLS formulation are provided. It is also
shown in [11] that the same scaling law applies to a binary
constrained version of the MLE formulation.

In this paper, we consider the device activity detection prob-
lem in the massive MIMO setup similar to [5] and [11], and
analyze the performance of the covariance based method under
the general MLE formulation. We provide a numerical phase
transition analysis by exploiting the asymptotic properties of
the MLE with non-negative constraint, and by studying its
associated Fisher information matrix.

As compared to our previous work [9] that deals with only
non-singular Fisher information matrix, this paper considers
general Fisher information matrix, based on which a new
necessary condition to make the estimation error to approach
zero in the massive MIMO regime is proposed. The condition,
which involves solving a linear programming (LP) problem,
helps identify a phase transition in the system parameter space
to differentiate the success region and the failure region for the
covariance based approach. As compared to the scaling law
in [11] that analyzes the asymptotic order of the number of
identifiable active devices as a function of the pilot length, the
phase transition analysis in this paper is based on solving an
LP, so it is numerical in nature; but it is non-asymptotic in the
number of active devices. Moreover, this paper characterizes
the distribution of the estimation error using the general Fish-
er information matrix. The characterization, which involves
solving a quadratic programming (QP) problem, accurately
predicts the error probabilities in device activity detection.



II. SYSTEM MODEL

Consider an uplink single-cell massive MIMO system with
M antennas at the BS and N single-antenna devices. We
assume that only K � N devices are active during a time
slot. For the purpose of active device identification, suppose
that each device n in the system maintains a unique signature
sequence sn = [s1, . . . , sL]T ∈ CL×1, where L is the length
of the sequence and is assumed to be shorter than the channel
coherence length. When device n is active during a time slot,
it transmits sequence sn to the BS as a random access request.

Let an ∈ {1, 0} denote the activity of device n in a given
time slot. Let gnhn denote the channel vector between the
BS and device n, where hn ∈ CM×1 is the Rayleigh fading
component following independent and identically distributed
(i.i.d.) complex Gaussian distribution with zero mean and unit
variance, and gn is the large-scale fading component including
path-loss and shadowing. We assume block fading channel,
i.e., the channels are constant during a coherence block, and
assume that the sequences are transmitted synchronously. The
received signal Y ∈ CL×M at the BS can be expressed as

Y =

N∑
n=1

ansngnhT
n + W , SΓ

1
2 H + W, (1)

where S , [s1, . . . , sN ] ∈ CL×N is the sequence matrix,
Γ , diag{γ1, . . . , γN} ∈ RN×N with γn = ang

2
n is a

diagonal matrix that indicates both the device activity and the
large-scale fading components, H , [h1, . . . ,hN ]T ∈ CN×M

is the channel matrix, and W ∈ CL×M is the effective i.i.d.
Gaussian background noise whose variance σ2

w is normalized
by the device transmit power for simplicity. We use γ ,
[γ1, . . . , γN ]T ∈ RN×1 to denote the diagonal entries of Γ.

We assume that all signature sequences are known at the BS,
and all sequences are generated from i.i.d complex Gaussian
distribution with zero mean and unit variance.

III. COVARIANCE BASED DEVICE ACTIVITY DETECTION

A. Problem Formulation

The BS identifies the active devices by detecting an from
the received signal Y. Since an is contained in the diagonal
entries of Γ in (1), the detection of an can be formulated as
the estimation of Γ (or γ), by exploiting the statistics of the
channels and the background noise. Once an estimate γ̂ is
obtained, the binary indicator an can be determined through
simple operations on γ̂, e.g., element-wise thresholding.

It is worth noting that if channel estimation is needed in
addition to device activity detection, we can use an alternative
compressed sensing approach treating Γ

1
2 H as a row sparse

matrix. However, such a problem involves many more param-
eters and is therefore more challenging to solve.

Following the approach suggested in [5], we estimate γ
from Y using the MLE. To compute the likelihood, we first
observe from (1) that given γ, the columns of Y, denoted by
ym ∈ CL×1, 1 ≤ m ≤ M , are independent due to the i.i.d.

channels, and each column follows a multivariate complex
Gaussian distribution as

ym ∼ CN
(
0,SΓSH + σ2

wI
)
, (2)

where the mean and the covariance are obtained by computing
E[ymyH

m] from (1). Let Σ , SΓSH + σ2
wI. Due to the

independence of the columns of Y, the likelihood of Y is

p(Y|γ) =

M∏
m=1

1

|πΣ|
exp

(
−yH

mΣ−1ym

)
=

1

|πΣ|M
exp

(
− tr

(
Σ−1YYH

))
, (3)

where | · | and tr(·) denote the determinant and the trace of a
matrix, respectively. The maximization of log p(Y|γ) can be
cast as the minimization of − 1

M log p(Y|γ) expressed as

minimize
γ

log |Σ|+ tr
(
Σ−1Σ̂

)
(4a)

subject to γ ≥ 0, (4b)

where Σ̂ , 1
M YYH is the sample covariance matrix of

the received signal averaged over different antennas, and the
constraint γ ≥ 0 is due to the fact γn = ang

2
n ≥ 0, which

defines a natural parameter space of γ.
We observe from (4) that the MLE depends on Y through

the sample covariance matrix Σ̂. As M increases, Σ̂ will tend
to the true covariance matrix Σ, but the size of the problem in
(4) does not change, which makes it preferred in the massive
MIMO regime. Meanwhile, due to the averaging operation
over antennas in the sample covariance, the channel hardening
effect offered by massive MIMO is exploited.

B. Algorithms

The optimization problem (4) is not convex in general
due to the fact that log |Σ| is concave whereas tr(Σ−1Σ̂)
is convex. However, various algorithms have shown excellent
performance in practice for solving (4). For example, the
authors of [12] propose a multiple sparse Bayesian learning
(M-SBL) algorithm based on expectation maximization that
estimates γ iteratively. The authors of [5] suggest a coordinate
descent algorithm that randomly updates each coordinate of the
estimate γ̂ until convergence. Although the problem is non-
convex, the global optimality of the solution by M-SBL or
coordinate descent for such a problem can be justified if Γ

1
2 H

or S satisfies certain conditions; see [12] and [5].
In this paper, we adopt the coordinate descent method from

[5] to solve (4) in the simulations. Once an estimate γ̂ is
obtained, we can employ the element-wise thresholding to
determine an from γ̂i with some common threshold lth. The
probabilities of missed detection and the false alarm can be
traded off by setting different values of the threshold.

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

The goal of this paper is to analyze the performance of
the covariance based device activity detection. The analysis is
based on the characterization of the solution γ̂ to problem



(4) in the regime M → ∞. We aim to investigate two
questions: (i) What are the conditions on the system parameters
L,N,K, σ2

w such that the estimate γ̂ can approach the true
parameter γ0 as M → ∞? (ii) How is the estimation error
γ̂ − γ0 distributed, if those conditions are satisfied but under
finite M? The first question helps identify the desired operating
regime in the space of L,N,K, σ2

w for getting an accurate
estimate γ̂ via the MLE with massive MIMO, and the second
one helps characterize the error probabilities.

We investigate these two questions by exploiting the asymp-
totic properties of the MLE: consistency and asymptotic nor-
mality. Recall from [13] that under certain regularity condi-
tions, as the number of i.i.d. samples increases, the estimate
γ̂ is consistent, i.e.,

γ̂
P→ γ0, as M →∞, (5)

where P→ denotes convergence in probability. Furthermore, if
the true parameter γ0 is an interior point in the parameter space
of γ, the estimation error M

1
2 (γ̂ − γ0) tends to a Gaussian

distribution as the number of i.i.d. samples increases, i.e.,

M
1
2 (γ̂ − γ0)

D→ N (0,MJ−1(γ0)), as M →∞, (6)

where D→ denotes convergence in distribution, and J(γ) is the
Fisher information matrix, whose (i, j)-th entry is defined as

[J(γ)]ij = E
[(

∂ log p(Y|γ)

∂γi

)(
∂ log p(Y|γ)

∂γj

)]
, (7)

where p(Y|γ) is given in (3), and the expectation is taken
with respect to Y.

However, for the MLE considered in this paper, the results in
(5) and (6) cannot be directly applied as two of the regularity
conditions may be violated: (i) the consistency of the MLE
requires that the true parameter γ0 is identifiable, i.e., there
exists no other γ′ 6= γ0 such that p(Y|γ′) = p(Y|γ0). This
may not be the case in our considered problem because the
dimension of γ0 could be very large and ambiguity may occur;
(ii) the asymptotic normality of the MLE requires that the
true parameter γ0 is an interior point in its parameter space,
which is [0,+∞)N , but in our problem γ0 in fact lies on the
boundary as most of the entries in γ0 are zero. The boundary
condition makes the estimation error γ̂ − γ0 always non-
negative at some coordinates, instead of being Gaussian.

In this paper, we deal with the consistency issue by propos-
ing a new necessary condition for the parameter identifiability,
and deal with the asymptotic distribution of M

1
2 (γ̂ − γ0)

by taking the boundary case into consideration. Since J(γ)
plays a key role in our analysis, we first provide an explicit
expression of J(γ), which has been derived in [9], as follows.

Proposition 1. Consider the likelihood function in (3), where
γ is the parameter to be estimated. The Fisher information
matrix for estimating γ is

J(γ) = M (P�P∗) , (8)

where P , SH
(
SΓSH + σ2

wI
)−1

S, � is the element-wise
product, and (·)∗ is the conjugate operation.

It is worth noting that J(γ) in (8) may be singular depending
on the values of L and N . This can be seen by checking the
rank of J(γ). Using Rank(U�V) ≤ Rank(U) Rank(V) for
arbitrary matrices U and V and Rank(P) ≤ L, we get

Rank(P�P∗) ≤ Rank(P)2 ≤ L2. (9)

Since P�P∗ is of size N×N , J(γ) is singular if N > L2, i.e.,
the dimension of γ is larger than the size of the sample covari-
ance matrix Σ̂ in (4). The singularity of J(γ) complicates the
analysis of the estimation problem. Our analysis below takes
the singular J(γ) into consideration.

A. A Necessary Condition for Consistency of γ̂

We first establish a necessary condition on J(γ) such that
γ̂ can approach γ0 in the large M limit.

Theorem 1. Let γ0 denote the true parameter, and let γ̂
denote the solution of (4). Let I be an index set corresponding
to the zero entries of γ0, i.e., I , {i | γ0i = 0}. We define two
sets N , C in the space RN , respectively, as follows

N , {x | xTJ(γ0)x = 0,x ∈ RN},
C , {x | xi ≥ 0, i ∈ I,x ∈ RN},

where xi is the i-th entry of x. Then a necessary condition
for the consistency of γ̂, i.e., γ̂ → γ0 as M →∞, is that the
intersection of N and C is zero, i.e., N ∩ C = {0}.

We define N , C in RN since J(γ) is real. An interpretation
of the conditionN∩C = {0} is as follows. SetN is a subspace
in RN spanned by the eigenvectors of J(γ0) corresponding to
zero eigenvalues, i.e., the null space of J(γ0). Set C is a cone
with the coordinates indexed by I being non-negative. Base
on C, we can express the neighborhood of γ0 in the parameter
space [0,+∞)N as γ0 + tx for any x ∈ C and some positive
scalar t. The condition says that any direction from γ0 to the
feasible neighborhood cannot lie in the null space of J(γ0).

Proof: We prove this by contradiction. We show that if
there exists a non-zero vector x ∈ N ∩ C, then the likelihood
function p(Y|γ) stays unchanged when γ moves from γ0

to the neighborhood along the direction x. The unchanged
p(Y|γ) indicates that the true parameter γ0 cannot be uniquely
identified around its neighborhood based on p(Y|γ). There-
fore, it cannot be guaranteed that the estimate γ̂ obtained from
MLE arbitrarily approaches the true parameter γ0.

To prove the result, we note that x satisfies xTJ(γ0)x = 0
since x ∈ N . By plugging (7) into xTJ(γ0)x, we get

xTJ(γ0)x = E

[∑
i

∂ log p(Y|γ)

∂γi
xi

]2
γ=γ0

= 0. (10)

By noting that the term in the middle is non-negative, we get∑
i

∂ log p(Y|γ)

∂γi
xi

∣∣∣
γ=γ0

= 0, (11)

from which we conclude that log p(Y|γ) stays unchanged
when γ moves from γ0 to its neighborhood along the direction
x, which implies non-identifiability.



Note that to establish Theorem 1, we make use of the notion
that the true parameter γ0 should be uniquely identified by
the likelihood function in its neighborhood. Such a property is
often referred to as the local identifiability [14]. The condition
is necessary because γ0 can only be locally identified. To prove
sufficiency, one would need to establish that it is identifiable
globally in the whole parameter space.

In the special case when J(γ0) is non-singular, which is
often true if N ≤ L2 from (8), we have N = {0}, and the
condition in Theorem 1 is immediately satisfied.

Since there is no closed-form expression ofN∩C in general,
the condition N ∩ C = {0} for a given J(γ0) cannot be
verified analytically. However, by noting that both N and C are
convex sets, the condition can be tested numerically. By some
algebraic manipulations, the following proposition transforms
the verification of N ∩ C = {0} to a LP problem.

Proposition 2. Let A ∈ R(N−K)×(N−K) be a submatrix
of J(γ0) with row indices and column indices from I. Let
C ∈ RK×K be a submatrix of J(γ0) with row indices and
column indices from Ic, where Ic is the complement of I with
respect to {1, 2, . . . , N}. Let B ∈ R(N−K)×K be a submatrix
of J(γ0) with row indices from I and column indices from Ic.
If C is invertible (which is usually the case in the considered
problem), then the condition N ∩ C = {0} in Theorem 1 is
equivalent to the following feasibility problem

find x (12a)

subject to (A−BC−1BT )x > 0, (12b)

where vector x ∈ RN−K .

Proposition 2 shows that if there exists a vector x in RN−K

such that (A −BC−1BT )x lies in the positive orthant, then
N ∩ C = {0} holds. Note that the feasibility problem in (12)
depends on the matrix (A − BC−1BT ) only. The class of
matrices that satisfies the constraint in (12b) is referred to as
M+, which is introduced in [15] in the study of NNLS, and
also used in [11] for the performance analysis via NNLS. Note
that in this paper, we do not formulate the estimation of γ0

as an NNLS problem. Interestingly, the notion of M+ still
appears (likely due to the non-negative constraint on γ).

By solving (12) for different J(γ0) under various setups of
N,L,K, σ2

w, and randomly generated S and γ0, the necessary
condition in Theorem 1 can be efficiently tested. Numerically
we can identify a region in the space of N,L,K, σ2

w such that
γ̂ can approach γ0 in the large M limit.

It is worth mentioning that an analytic form of the scaling
law on N,L,K has been recently derived in [11] for the
covariance based approach using the NNLS formulation and
a binary constrained version of the MLE formulation. We
emphasize that the phase transition analysis of Theorem 1
is for the general MLE formulation. Moreover, the condition
in Theorem 1 provides a precise criterion for any given
N,L,K, σ2

w, sequence matrix S, and γ0, whereas the scaling
law of N,L,K presented in [11] is asymptotic in showing
that the number of the identifiable active devices, K, is in the
order of O(L2), up to a logarithmic factor.

B. Distribution of Estimation Error γ̂ − γ0

We now assume that the estimate γ̂ is consistent asymptot-
ically as M →∞, and aim to characterize the distribution of
the estimation error γ̂ − γ0 for finite M . We achieve this by
first characterizing the asymptotic distribution of M

1
2 (γ̂−γ0)

in the regime M → ∞, based on which we then obtain
an approximated distribution of γ̂ − γ0 for finite M . As
mentioned before, M

1
2 (γ̂ − γ0) does not tend to a Gaussian

distribution due to the non-negative boundary. The following
result considers the fact that γ0 is a boundary point, and
characterizes the asymptotic distribution of M

1
2 (γ̂−γ0) via a

QP problem. The result extends our previous work [9] with
non-singular Fisher information matrix, which is based on
[16], to the case of general Fisher information matrix.

Theorem 2. Let x ∈ RN×1 be a random vector sampled
from the multivariate Gaussian distribution N

(
0,MJ†(γ0)

)
,

where † denotes Moore-Penrose inverse. Let µ ∈ RN×1 be the
solution to the following constrained QP

minimize
µ

1

M
(x− µ)TJ(γ0)(x− µ) (13a)

subject to µ ∈ C, (13b)

where C is defined in Theorem 1. Then M
1
2 (γ̂ − γ0) has

asymptotically the same distribution as µ as M →∞.

Note that µ is random due to the randomness of x. Based
on µ, the distribution of the estimation error γ̂ −γ0 for finite
M can be approximated from M−

1
2µ. Note that x is drawn

from a degenerate multivariate Gaussian distribution if J†(γ0)
is singular. An explanation of the QP in Theorem 2 is that we
draw a sample x from the Gaussian distribution specified by
the Fisher information matrix, and project the sample to the
cone C such that the estimation error satisfies the constraints
enforced by the fact that γ0 is on the boundary.

Since QP does not admit a closed-form solution in gener-
al, it is difficult to characterize the distribution analytically.
However, Theorem 2 is still useful in the sense that it reveals
the connection between the Fisher information matrix and the
error distribution, and by solving (2) the distribution can be
obtained numerically.

V. NUMERICAL RESULTS

Consider an mMTC system with one cell of radius 1000m.
Assume that all devices are in the cell-edge for simplicity. The
power of the background noise is −169dBm/Hz over 10 MHz,
and the transmit power of each device is 23dBm.

We numerically test the necessary condition in Theorem 1
under a variety of choices of L and K, given N = 1000, 1500,
or 2000. We draw the region of L,K in which the necessary
condition is satisfied for each N . It is worth mentioning
that we fix σ2

w, whose value depends on the signal-to-noise
ratio. We are interested in the case L2 < N where J(γ0)
is singular. Further, since the estimation of K active devices
is based on effectively O(L2) observations of the covariance
matrix, we plot L2/N versus K/N in Fig. 1. Given L,K, we
generate J(γ0) based on random S and γ0, and identify the
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Fig. 1. Phase transition of the covariance based method with the
MLE. The curve is based on 100 realizations of S and γ0 for each
K,L. Error bars indicates the parameter range beyond which either
all 100 realizations or 0 realizations satisfy the condition.

region where condition can/cannot be satisfied. To validate the
prediction by Theorem 1, we also run the coordinate descent
algorithm to solve the MLE problem in (4) for N = 1000 in
the large M limit, i.e, with ideal sample covariance matrix,
to empirically plot a phase transition curve. We first observe
from Fig. 1 that the curves with different N overlap, implying
that the phase transition depends on N,L,K via the ratios
L2/N,K/N . We also observe that the curves by Theorem 1
and by the coordinate descent with N = 1000 match well,
indicating that the necessary condition is sufficient for this
example.

In Fig. 2, we validate the approximated distribution of γ̂−γ0

with M = 256 obtained from Theorem 2, by comparing it with
the result from running coordinate decent to solve (4). We set
N = 1000, K = 50, and L = 20 (L2/N = 0.4,K/N = 0.05).
For simplicity, we treat each coordinate of γ̂−γ0 as indepen-
dent, and plot the empirical distribution of the coordinate-wise
error. We consider two types of coordinates depending on if the
true value on that coordinate is zero, and plot their distributions
separately. We observe that the curves by Theorem 2 match
those by solving (4) with coordinate descent in both cases. We
also observe that there is a point mass in the distribution of
the error for the zero entries. This is the probability that the
inactive devices are correctly identified at finite M = 256.

VI. CONCLUSIONS

This paper studies the MLE approach to the pilot based
device activity detection problem for mMTC with massive
MIMO. We analyze the asymptotic performance of the covari-
ance based MLE problem by studying its associated Fisher
information matrix. This paper proposes a necessary condition
on the Fisher information matrix such that the estimation error
tends to zero in the massive MIMO regime, from which a
phase transition analysis is obtained. The distribution of the
estimation error is also analyzed.
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Error on zero entries, by Theorem 2, M=256
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Fig. 2. Probability density functions (PDFs) of the error on the zero
entries and the error on the non-zero entries.
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