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Abstract—A deep neural network (DNN) based power control
method that aims at solving the non-convex optimization problem
of maximizing the sum rate of a fading multi-user interference
channel is proposed. Towards this end, we first present PCNet,
which is a multi-layer fully connected neural network specifically
designed for the power control problem. A key challenge in train-
ing a DNN for the power control problem is the lack of ground
truth, i.e., the optimal power allocation is unknown. To address
this issue, PCNet leverages a unsupervised learning strategy and
directly maximizes the sum rate in the training phase. Observing
that a single PCNet does not universally outperform the existing
solutions, we further propose ePCNet, a network ensemble with
multiple PCNets trained independently. Simulation results show
that for the standard symmetric K-user Gaussian interference
channel, the proposed methods can outperform all state-of-the-
art power control solutions under various system configurations
with a reduced computational complexity.

I. INTRODUCTION

The capacity region of the multi-user interference channel
is a well-known open problem in information theory [1], [2].
The interference channel is a useful model for today’s wire-
less networks, as interference management has increasingly
become the bottleneck of the overall system performance due
to the broadcast nature of wireless communications and the
dense deployment of base stations and mobiles, which create
a heavily interfering environment.

In this paper, we focus on the power control problem of
maximizing the sum rate of a multi-user interference channel,
where each receiver is restricted to treating interference as
noise (TIN). This problem (including some of its variations)
is generally NP-hard, and has been investigated for decades.
Due to its non-convex nature, state-of-the-art solutions in the
literature often involve either exhaustive search (explicitly or
implicitly) [3], [4] or iterative optimization of some approx-
imate sub-problems [5]–[7]. Performance, convergence, and
complexity issues hinder the practicality of these solutions. In
particular, how to achieve efficient power control when the
number of users is large remains an open problem.

This work addresses power control from a different perspec-
tive. Instead of directly tackling the non-convex optimization
problem in an analytical fashion, we leverage the recent
advances in deep learning to investigate whether a data-driven
method can achieve better performance with lower complexity.
In particular, the proposed approach establishes a connection
between the sum-rate maximization problem and minimizing
a loss function in training a deep neural network (DNN),

and relies on the efficient network training and ensembling
mechanism to achieve near-optimal power control.

Deep learning has had great success in computer vision, nat-
ural language processing and some other applications. Recent
results also show that deep learning can be a promising tool
for solving difficult communication problems, such as channel
decoding [8] and channel estimation [9]. For the considered
power control problem, Sun et. al. [10] recently proposed a
neural network based method, in which the network is trained
with the power control results of WMMSE [7] serving as the
ground truth. This method has lower computational complexity
compared to the original WMMSE, but the sum rate is also
upper bounded by it. A natural question thus arises: in addition
to the benefit of low complexity, can we also achieve better
performance (in terms of larger sum rate) than the existing
power control methods?

In this paper, we answer this question affirmatively by
proposing a novel family of methods, called ensemble Power
Control Network (ePCNet). There are two key ingredients in
ePCNet. The first is that in order to simultaneously achieve
higher sum rate and lower computation complexity than exist-
ing methods, we skip the supervised learning stage, which is
used in some related works [10], [11], and directly carry out
the unsupervised learning for network training. This idea lifts
the performance upper bound limitation of [10] and avoids the
possible negative impact of the supervised learning stage of
[11], which allows us to better approach the ultimate ground
truth, i.e., the globally optimal power control.

The second component is ensemble learning which, to the
best of the authors’ knowledge, has not been used in the power
control problem. This is particularly useful as we observe that
a single PCNet may not universally outperform all existing
methods. The proposed ePCNet, however, creates multiple
independent “copies” of PCNet and trains them separately,
before forming an ensemble that selects the power profile
which leads to the largest sum rate. We show via simulations
that combining DNN with ensemble learning results in a
high-performance and low-complexity power control method
that outperforms state-of-the-art methods in various system
configurations.

The rest of this paper is organized as follows. The system
model is introduced in Section II. In Section III, the main con-
tributions of this paper, including the PCNet and ePCNet, are
explained in detail. Simulation results are given in Section V.



The paper is concluded in Section VI.

II. SYSTEM MODEL

We consider a general K-user single-antenna interference
channel. It is assumed that all transmitter-receiver pairs share
the same narrowband spectrum and are synchronized. The
discrete-time baseband signal received by the i-th receiver is

yi = hi,ixi +
∑

j∈K/{i}

hj,ixj + ni, (1)

where the set of transmitter-receiver pairs is K =
{1, 2, · · · ,K}; K/{i} denotes the set of transmitter-receiver
pairs excluding the i-th one; xi ∈ C denotes the signal
transmitted by the i-th transmitter; hi,i ∈ C denotes the
direct-link channel for the i-th user, hj,i ∈ C denotes the
cross-link channel between the j-th transmitter and the i-th
receiver; and ni ∼ CN (0, σ2

i ) denotes the receiver noise,
which is independent across both time and users. Receiver
i only intends to decode xi. For simplicity, we assume that
all receivers have the same noise power σ2. We note that this
model has been widely studied in the literature; see [3], [5],
[7], [10].

A block fading channel model is assumed, i.e., the channel
coefficients remain unchanged in one time slot but change
independently from one time slot to another. We do not impose
any limitation on the distribution of hi,i, as our method is
generic enough to handle different channel models. Random
Gaussian codebooks are assumed. Encoding is independent
across users and no interference cancellation is performed
at each receiver. Thus, the transmitter-receiver pairs do not
cooperate and multiuser interference is treated as additive
noise, i.e., TIN [12]. Therefore, the effective received noise
power at the i-th receiver is σ2

i +
∑

j∈K/{i} Pj‖hj,i‖2.
The transmit power Pi for user i is chosen from set Pi ⊆

R+. In this work, for simplicity, we consider Pi = {P : 0 ≤
P ≤ Pmax},∀i ∈ K, where Pmax is the maximum power that
transmitters can use. Note that 0 ∈ Pi. Thus, a user may
choose not to transmit. The joint power profile of all users
is denoted by a vector P = (P1, P2, · · · , PK)

T ∈ P, where
P = P1×P2×· · ·×PK and (·)T denotes matrix transpose. For
a given P and channel realizations {hij}i,j∈K, the achievable
rate of the i-th receiver under Gaussian codebooks is

Ri(P) = log

(
1 +

Pi‖hi,i‖2

σ2
i +

∑
j∈K/{i} Pj‖hj,i‖2

)
. (2)

For each slot, the channel coefficients are fixed, and the power
control algorithm outputs a power profile P based on the
channel realization.

The objective of power control for interference management
is to find the optimal power profile P for all users to maximize
some system performance under some specific constraints.
With different performance measures and different constraints,
the power control problem has different formulations. In this
paper, we focus on the specific one: sum rate maximization
(SRM), which is formally given as
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Fig. 1. Illustration of PCNet.

maximize
P

K∑
i=1

Ri(P)

subject to 0 ≤ Pi ≤ Pmax,∀i ∈ K.
(3)

Problem (3) is the simplest formulation among various power
control problems. However, it is very difficult to solve due to
its non-convex nature with respect to the power profile. The
optimization problem (3) is known to be NP-hard [13].

III. PCNET: TRAINING DNN FOR POWER CONTROL

A. Network design

We propose PCNet by exploiting a fully connected deep
neural network to address the power control problem (3). The
network structure is illustrated in Fig. 1. More specifically, the
network consists of one input layer of K2 nodes, one output
layer of K nodes, and L − 1 fully connected hidden layers.
These layers are indexed from 0 to L. The input layer of PCNet
is formed by aligning all ‖hi,j‖ as a column vector, denoted
as h. The input vector is processed by the L fully connected
layers, including L− 1 hidden layers and one output layer.

The reason that a fully connected DNN is adopted, rather
than more sophisticated networks such as convolutional neural
networks (CNN) or recurrent neural networks (RNN), is that
there is little structure to explore for the general problem (3). If
the problem exhibits certain features a more structured neural
network such as CNN may be useful. One example is in [14].

We denote the number of nodes in the k-th layer as lk. If the
k-th layer is a hidden layer, its output is calculated as follows:

ck = ReLU (BN (Wkck−1 + bk)) , (4)

where ck−1 and ck are the output vectors of the previous and
current layers; their dimensions are lk−1 × 1 and lk × 1; Wk

is the lk× lk−1 weight matrix and bk is the lk×1 bias vector;
BN(·) denotes batch normalization (BN) [15]; ReLU(·) is the
widely used Rectified Linear Unit function (max(x, 0)). For
the first hidden layer, we define c0 = h and l0 = K2.

The output layer decides the transmit power of all trans-
mitters; its calculation is different from previous layers and is
given as follows:

cL = Sig (WLcL−1 + bL) , (5)

where Sig(x) denotes the standard sigmoid function:

Sig(x) =
1

1 + exp(−x)
.



First, noting that the transmit power must be within the
range [0, Pmax], the sigmoid function is used as the activation
function instead of ReLU to regulate the output. Second, BN is
skipped in the output layer, as we have empirically observed
that it would degrade the network performance. Finally, the
transmit power of user i is

Pi = PmaxcL,i, (6)

where cL,i is the ith element of cL.
We note that the fully connected DNN structure can be

completely captured by the number of nodes in each layer
and it is concisely denoted as:

{l0, l1, l2, ..., lL}. (7)

Remark 1: We add BN layers in the PCNet design, which
was rarely considered in the existing literature for power
control. We emphasize that although it is well known that
employing BN layers will accelerate the training process for
a general DNN, its impact goes beyond the general training
and is particularly important to the considered power control
problem. This is because the sigmoid layer is naturally applied
to limit the output power in the range [0, Pmax]. If the input
value of a sigmoid node is far from 0, the gradient of the
sigmoid node will vanish and the network training cannot
converge. Inserting BN layers will prevent the input value of
the sigmoid nodes from moving toward infinity too quickly,
and hence prevent the training process from stopping earlier.

B. Training PCNet

The performance of a neural network largely depends on
how it is trained. As mentioned before, in the recent work
[10], the authors proposed to train the network using WMMSE
as the ground truth. The loss function is defined to measure
the distance between the network output and the ground
truth. Obviously, the network trained with this strategy cannot
outperform WMMSE, and thus the main benefit of [10] comes
from the (online) computational complexity.

Ideally, were we able to obtain the globally optimal power
control P∗ = (P ∗1 , · · · , P ∗K)T for a given channel realization,
we would have designed PCNet by using the optimal solution
as the ground truth. However, such approach is inapplicable
considering that obtaining the global optimum efficiently is
often not possible.

Noting that the sum rate is the ultimate goal of the SRM
problem, we define a loss function to directly maximize the
sum rate, which is

lossSRM = − 1

|H|
∑
h∈H

R(h,θ), (8)

where H is a mini-batch of training samples and |H| denotes
the number of samples in H. Therefore, in each iteration, (8)
is used for gradient descent optimization.
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Fig. 2. ePCNet with an ensemble of M PCNets.

IV. EPCNET: ENSEMBLING PCNETS

Training PCNet with sufficiently representative data and the
new loss functions defined in (8) cannot guarantee that PCNet
outputs the globally optimal power profile P(h)∗ for a given
channel realization h. Due to the inherent deficiency of gradi-
ent descent, the trained PCNet may fall into a local optimum.
As will be corroborated in the numerical experiments, a single
PCNet does not universally outperform existing methods.

To boost the power control performance and approach the
global optimum, we incorporate the idea of ensemble learn-
ing and propose ensemble PCNet, i.e., ePCNet. A pictorial
illustration is given in Fig. 2. Note that ensemble learning
[16] is a commonly used machine learning method to achieve
better performance by combining multiple weak local learners,
each of which is powerful only for certain local use cases.
Similarly, for the power control problem, we propose to build
an ensemble of PCNets to achieve a better performance. Al-
though each individual PCNet is not “powerful” enough, i.e.,
it cannot universally achieve better performance, a carefully
formed ensemble of these weak local learners may be able to
“ride the peak” of individual PCNets and output a universally
better power profile.

Assume that we have M PCNets trained for a given interfer-
ence channel model. For simplicity, we further assume that all
PCNets have the same network structure. Operationally, this
simplification also facilitates the deployment of the proposed
ePCNet, since all local learners share the same computational
architecture. Each of the local PCNets is trained with a
different set of initial parameters, together with a set of
independently generated training data. These measures are
taken to enhance the diversity of the M local learners, which is
an important principle in ensemble learning [16]. The network
input h is first fed into all PCNets in the ensemble and the m-
th PCNet outputs a power control result Pm(h). The selector
collects all M outputs {Pm(h),∀m = 1, · · · ,M} as well
as the channel vector h, then computes the sum rate for each
PCNet. The selector outputs the power profile with the highest
sum rate, i.e.,

PePCNet(h) = argmax
Pm(h)

RPCNet(h,Pm (h)) , (9)

where PePCNet(h) is the output power profile of ePCNet,
RPCNet(h,Pm (h)) is the achieved sum rate of PCNet with
the channel realization h and the power profile Pm(h).



We make the following remarks on the proposed ePCNet.
First, it is well-known that training a neural network with
stochastic gradient descent may often lead to local optima.
Thus, combining several local weak DNNs effectively looks
at multiple local optima and leads to significantly improved
sum rate performance. Second, PCNet only requires a few
matrix multiplications and is of low computational complex-
ity1. Therefore, combining several PCNets only increases the
online complexity in a linear fashion with respect to the
total number of local learners. Furthermore, all networks are
trained independently and training can be conducted in parallel
to reduce the overall running time. Last but not the least,
creating diversity by training multiple PCNets is applicable
not just to DNN. Some existing methods for power control
may also benefit from such diversity. For example, a random
initialization is often needed to start an iterative algorithm.
Giving such algorithms multiple random initializations may
also produce multiple local optima and selecting one with the
best performance would also help. However, such performance
improvement is often achieved while sacrificing computational
efficiency.

V. NUMERICAL EVALUATIONS FOR SRM

In this section, we intend to compare the performance and
the computational complexity of various methods.

A. Schemes for comparison

1) PCNet and ePCNet: We implement the proposed PCNet
and ePCNet in TensorFlow, following the detailed descriptions
in Section III and IV. Per common practice, we use Xavier
initialization [17] to initialize the network parameters and
ADAM [18] to train the network. The stochastic gradient
descent is used to calculate the gradient and the mini-batch
size is set to 103. A total of 105 iterations are executed to
train the network. The training data can be easily generated
based on the channel model. As the mini-batch size is 103 and
total iteration number is 105, a total of 108 channel samples
are generated for training the network.

For SRM, it is observed that PCNet almost always outputs
power profiles close to binary power control, which is also
observed in another work [10]. Therefore, we round the power
profiles of PCNet to binary ones. Although this will cause a
small deviation from the true performance, the impact is very
minor. Binary power control facilitates practical implementa-
tion as it is easy for transmitters to configure binary transmit
power and hence user scheduling is implicitly considered.

2) Round-Robin Power Control (RR): The RR algorithm
proposed for SRM in [5] is implemented for comparison. The
basic idea of RR is to update the power of one user while
keeping others fixed. This sub-problem is addressed by solving
a polynomial function optimization. The algorithm stops when
the following condition is satisfied,

|R(P(t))−R(P(t−1))|
R(P(t−1))

≤ 10−4, (10)

1This is also observed and numerically validated in [10].

where R(P(t)) and R(P(t−1)) denotes the sum rates in the
current and last iterations respectively.

3) Iteratively Weighted MMSE (WMMSE): WMMSE is
proposed to solve the sum-utility maximization problem for a
MIMO interfering broadcast channel [7]. Its simplified version
can be used to solve the considered SRM problem. In the
literature, WMMSE is also used to generate the ground truth
for the network training in [10]. Note that the same stopping
condition (10) is also used for WMMSE.

4) Greedy Binary Power Control (GBPC): The greedy
binary power control method in [6] is also implemented for
comparison. It has been shown in [6] that GBPC can provide
desirable performance that approaches the optimal binary
power control in some instances.

B. Performance comparison

We currently focus on the symmetric interference chan-
nel model with i.i.d. Rayleigh fading for all channels. For
the symmetric Rayleigh fading IC model, we have hi,j ∼
CN (0, 1),∀i, j ∈ K. The noise power at each receiver is
set to the same σ2. These settings are widely used in the
literature [3], [5], [7], [10]. Without loss of generality, we
assume Pmax = 1 and define the EsN0 as

EsN0 = 10 log

(
Pmax

σ2

)
. (11)

For PCNet/ePCNet, we present the results under three typical
values of EsN0, 0dB, 5dB and 10dB.

We first focus on evaluating ePCNet for the SRM problem.
In this case, the considered compared algorithms include
RR, WMMSE and GBPC. We use RPN (h) to denote the
achievable sum rate of one PCNet or ePCNet, given channel
coefficients h. Correspondingly, Rc(h) denotes the sum-rate of
a compared scheme. We evaluate the performance of ePCNet
from different perspectives.

First, we focus on comparing the achievable average sum
rates of all methods, i.e., Eh(RPN (h)) and Eh(Rc(h)). The
results are shown in Fig. 3 under different system settings.
Specifically, for evaluating ePCNet, we show the performance
of a network ensemble of different sizes to highlight how the
overall performance of ePCNet (the ensemble) scales with the
number of PCNets (its local learners). The network structures
for PCNet are {400, 400, 200, 20} and {100, 200, 100, 10} for
K = 20 and K = 10, respectively.

As we mention before, WMMSE is an iterative method
and it needs a random initialization to start the algorithm. If
complexity is not an issue, giving WMMSE multiple random
initializations would also generate multiple local optima and
selecting one with the best performance would also be a strat-
egy to achieve better performance. Therefore, as comparison,
we also evaluate the performance of WMMSE with multiple
random initializations.

RR is an iterative method for which multiple initializations
is also possible. However, it finds a local optimum by solving
a high-order equation and is of extremely high computational
complexity. Thus, we do not consider multiple initializations
for the RR algorithm. As for GBPC, it is a deterministic
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Fig. 3. Sum rate comparison of different power control methods. The top row is for K = 10 and the bottom row is for K = 20. The legend OptBPC denotes
the optimal binary power control via an exhaustive search. The performance of WMMSE is presented with multiple random initializations.

algorithm and no randomness is contained. Hence, multiple
random initializations are not possible for GBPC. The perfor-
mances of RR and GBPC are plotted as horizontal lines for
comparison. When K is not very large, it is possible to obtain
the optimal binary power control via exhaustive search. We
thus also plot the performance of optimal binary power control
for K = 10 in Fig. 3.

We first focus on comparing PCNet/ePCNet and WMMSE
with multiple random initializations. A general observation
is that PCNet/ePCNet can outperform WMMSE when the
user number is not too large and when SNR is high. As
shown in Fig. 3(b), Fig. 3(c) and Fig. 3(f), the ePCNet with
ensemble size as 10 outperforms WMMSE with 10 random
initializations by 0.14%, 0.77% and 1.57% in these three cases.
We comment that the performance improvement of WMMSE
with multiple random initializations comes with larger (online)
complexity. If the computational resource is constrained and
only one initialization is allowed, the performance gain of
ePCNet becomes more obvious. As shown in Fig. 3(c) and
Fig. 3(f), ePCNet with 10 networks outperforms WMMSE by
5.92% and 6.12% in these two cases.

We note that ePCNet does not necessarily achieve a per-
formance gain when the user number K is large, as shown
in Fig. 3(b) and Fig. 3(e). This can be explained by the fact
that training a neural network of large size is not an easy task.
We also note that WMMSE performs quite well when SNR
is low. One possible explanation is that the background noise
can smooth over those local optima of the optimization space.
Thus at low SNR, WMMSE does not suffer severely from
being stuck at a steep local optimum.

For the comparison between PCNet/ePCNet and other al-
gorithms, it can be observed from Fig. 3 that GBPC achieves
the best performance among the three traditional methods if
only one local optima is allowed in WMMSE and RR. When
further compared to PCNet and ePCNet, we have the following
observations. First, a single PCNet cannot achieve universally
better sum rate than existing methods. There exists a perfor-
mance gap between GBPC and a single PCNet. Second, when
ePCNet is used and the ensemble size increases, it can quickly
outperform standard WMMSE (with single initiation), RR,
GBPC in most cases except the case K = 20,EsN0 = 0dB.
When K = 20,EsN0 = 10dB, ePCNet with M = 2 is already
capable of outperforming GBPC. Even in the relatively diffi-
cult case of K = 20,EsN0 = 5dB, ePCNet with M = 5 has
the best performance. Third, taking the three system settings
shown in Fig. 3(c), Fig. 3(f), and Fig. 3(e) as examples, the
sum rate gain of ePCNet with M = 10 over GBPC is 3.5%,
4.6% and 1.2%, respectively. Further increasing M continues
to help, but the improvement becomes marginal. Furthermore,
from Fig. 3(c), we find that ePCNet achieves near-optimal
performance with respect to the optimal binary power control.

C. Complexity analysis

Comparing the complexity of neural networks and tradi-
tional communication algorithms is a difficult task. Simply
looking at the number of floating-point operations (FLOP) is
not enough for a fair conclusion, as how these operations are
executed and what architecture is used also have profound
impact. We note that generally PCNet has more FLOPs than
WMMSE, but PCNet also has higher degree of parallelism



K,EsN0 PCNet-TF2 PCNet-NP3 WMMSE RR GBPC

10, 10dB 2.7 1.5 3.8 261 28
20, 10dB 3.5 8.4 5.7 1000 112
20, 5dB 3.3 7.8 5.2 1020 112

TABLE I
COMPARISON OF THE RUNNING TIME (SECONDS) OF ALL CONSIDERED

METHODS.

while WMMSE is an iterative method and it has to wait for
the completion of one iteration to execute the next iteration.
More importantly, the implementation of neural networks
has been highly optimized nowadays in libraries such as
TensorFlow. A comprehensive comparison, especially in real-
world platforms, is an important topic that is worth further
investigation. We also comment that although training PCNet
is time sconsuming, it only takes place in an offline setting.

In this subsection, we perform an approximate comparison
in terms of the running time of the inference task for all
methods in the same computational environment. This may
not be totally accurate but it can give us at least some
qualitative complexity comparison. We implement all power
control methods in Python with NumPy [19] for algebra
calculations. Specially, two version of PCNet are implemented
in Python with TensorFlow [20] and NumPy respectively.
All programs are run using the same Intel Core i7-6700
processor (3.40GHz). To handle the potential problem that
different programs may have different CPU utilizations, we
only enable a single CPU core for all simulations, and multi-
core processing is not allowed.

In Table I, we report the running time of different schemes
for 104 channel samples. First, by comparing PCNet-TF and
PCNet-NP, we find that the running time of PCNet depends
on which library is used for implementation. When K = 10,
NumPy performs better while TensorFlow is more efficient
when K = 20. Compared with WMMSE, PCNet-TF has
less running time but PCNet-NP runs a little slower. Overall,
PCNet and WMMSE are comparable in terms of running
time. However, if PCNet is executed in a highly parallel
platform such as GPU, its running time will be much less
than WMMSE. In addition, RR and GBPC are much more
computationally complex. Note that the computation time of
training is not accounted for here, since training is done off-
line.

VI. CONCLUSION

This paper studies a long-standing optimization problem
from a new machine learning perspective. We first develop
PCNet – a fully connected multi-layer neural network which
takes the channel coefficients as input and outputs the transmit
power of all transmitters. An unsupervised learning strategy is
adopted to train PCNet by directly maximizing the system
sum rate. An ensemble of PCNets, i.e., ePCNet, is proposed

2PCNet-TF means PCNet is implemented with TensorFlow.
3PCNet-NP means PCNet is implemented with NumPy.

and shown to improve the sum-rate performance over the
traditional expert-based methods. Extensive experiments have
been carried out to verify the performance of ePCNet. Sum rate
and complexity comparison show that ePCNet achieves better
power control while consuming less computational resources.
There are several directions worth further research in the
future, such as different problem formulations, the network
generalization to different scenarios, robustness to channel
estimation errors, distributed power control and so on.
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