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Abstract—Massive connectivity is regarded as a key re-
quirement for future networks to support new communication
paradigms, where the human-type communications coexist with
machine-type communications. Owing to the limited coherence
time but the huge number of potential devices, it is impossible
to allocate mutually orthogonal pilot sequence for all potential
devices, which may impose severe interference on the device
activity detection and channel estimation. Existing nonorthogonal
pilot design methods for conventional cellular network are not
suitable for the massive connectivity regime. To overcome this
challenge, we first formulate the pilot sequences design as an
optimization problem to minimize the average mean square
error (MSE) of channel estimation under the individual power
constraint. The proposed optimization problem is nonconvex and
highly coupled. By exploiting some approximation techniques, we
convert the problem into a more tractable form and subsequently
develop a distributed algorithm based on the matrix fractional
programming (FP) and the alternating direction method of multi-
pliers (ADMM) methods. Simulations validates that the proposed
scheme not only achieves significant gains in channel estimation
over state-of-the-art baseline schemes, but also improves the
device activity detection performance.

I. INTRODUCTION

During the last decade, the explosive growth in the number,
type and functionality of smart mobile devices has spurred
the development of new mobile services. Specifically, massive
connectivity is regarded as a key requirement for future
networks to support new communication paradigms, where
the human-type communications (HTC) coexist with machine-
type communications (MTC). Different from conventional
HTC, the distinguishing features of MTC are the huge number
of potential devices and the sporadic traffic pattern of each
devices, which pose very stringent requirements on access
schemes and scheduling overhead [1], [2]. Therefore, the
existing grant-based access scheme and resource allocation
strategies for the conventional cellular networks cannot be
applied for massive connectivity scenario. In other words,
the grant-free random access scheme is more amenable and
favorable in massive connectivity regime.

Under the grant-free random access scheme, each device is
preassigned with a unique pilot sequence to enable accurate
device activity detection and channel estimation. Owing to the
limited coherence time but the huge number of potential de-
vices, it is impossible to allocate mutually orthogonal pilot se-
quence for all devices. As a result, the nonorthogonality of the
pilot sequences may impose severe interference on the device

activity detection and channel estimation, which further affects
the availability and reliability of communications between the
devices and the BS [3]. To overcome this issue, a growing
body of literatures have recently proposed various methods.
By exploiting the sparsity in the device activity pattern, the
joint device detection and channel estimation problem can be
formulated as a compressed sensing problem, which can be
efficiently solved by applying approximate message passing
(AMP) technique [3], [4]. Further, to accommodate larger
number of devices within limited coherence time, covariance
based approach have been proposed [5] for cases in which
massive MIMO has been deployed at the BS.

It should be emphasized that most existing joint device
activity detection and channel estimation algorithms only con-
sider the independent and identically distributed (i.i.d.) random
Gaussian pilots. But this may be far from optimal, especially
with the coexistence of HTCs and MTCs. For example, HTC
and MTC devices can have different transmit power and access
probabilities and may require different types of pilots.

This paper considers the optimal pilot design problem for
grant-free nonorthogonal multiple-access (GF-NOMA). As ob-
served in earlier work, in the massive multiple-input multiple-
output (MIMO) regime, perfect device activity detection can
often be guaranteed with high probability, but channel estima-
tion error remains [6]. Hence, this paper focuses on minimiz-
ing the channel estimation error in the massive MIMO regime
by optimizing the pilot sequences. Interestingly, although the
objective function is chosen to be the channel estimation error,
simulations show that the device detection performance can
also be improved by the proposed pilot sequence design.
Specifically, we propose a distributed algorithm to optimize
the pilot sequences for the uplink transmission of massive
connectivity scenario, to alleviate the performance bottleneck
by the sporadic traffic pattern and the multi-device interfer-
ence. The proposed scheme achieves better performance than
the baselines by exploiting the distinct characteristics of the
potential devices.

II. SYSTEM MODEL

A. Network Architecture

Consider the uplink communication of a single-cell massive
connectivity scenario, as shown in Fig. 1, where the BS
is equipped with massive M antennas to serve K potential
devices. As in [7], we also consider that all potential devices



consist of Kh HTC devices and Km = K − Kh machine-
type devices. Without loss of generality, we assume that the
indexes k ∈ Kh , {1, · · · ,Kh} refers to HTC devices,
while k ∈ Km , {Kh + 1, · · · ,K} refers to machine-
type devices. Both HTC and MTC devices are equipped
with single antennas. To further capture the traffic nature of
such heterogeneous scenario, we thereby make the following
reasonable assumptions: (i) all devices are fully synchronized;
(ii) each device accesses the channel with probability τk in an
i.i.d fashion [4]; (iii) the average access probability of HTC
devices is much larger than that of MTC device, while the
number of MTC devices is much larger than the number of
HTC devices, i.e., Km ≫ Kh [7]. Specifically, we focus on a
coherence time interval of channel where channel is assumed
to be constant. Each coherence time interval is divided into S
time slots, where S is chosen to meet the latency requirement.

Fig. 1. An illustration of massive connectivity scenario.

Without loss of generality, the uplink channel of each device
is assumed to be a block-fading channel under a narrowband
assumption. But the proposed algorithm can be easily modified
to cover the wideband system as well. In this case, the received
signal at BS of the s-th time slot is given by

y(s) =

K∑
k=1

akhkxk(s) +w(s),∀t = 1, · · · , S, (1)

where ak is the activity indicator for device k, hk ∈ CM is
the channel vector between device k and the BS, xk(s) ∈ C
is the transmit signal by the k-th device in the s-th time slot,
w(s) is the additive complex Gaussian noise vector with i.i.d
entries distributed as CN (0, σ2

w).
For convenience, we define H = [h1, . . . ,hK ]T ∈

CK×M , X = [x(1), . . . ,x(S)]T ∈ CS×K with x(s) =
[x1(s), · · ·xK(s)]T ∈ CK , W = [w(1), · · · ,w(S)]T ∈
CS×M , Y = [y(1), . . .y(S)]T ∈ CS×M , and A =
diag (a1, · · · , aK) ∈ RK×K . Using the above notations, the
received signal Y at the BS is expressed in matrix form as

Y = XAH+W. (2)

In this paper, we model the channel vector as a Gaussian
distribution hk =

√
βkvk,∀k, where βk reflects the pathloss

and shadowing component, and vk ∼ CN (0,IM×M )∈ CM

is the Rayleigh fading component. Namely, we can obtain
hk ∼ CN (0, βkIM×M ). Following the pioneering works on
the massive connectivity scenario [3], [4], we also focus on
the scenario where the devices are stationary, so that the
path-loss and shadowing can be estimated and stored at the
BS as prior information. In other words, the BS knows the
channel statistics of each user rather than real-time channel
state information (CSI).

B. Grant-Free Nonorthogonal Multiple-Access Scheme
In this paper, we adopt the GF-NOMA scheme to enable

multiple devices share the allotted spectrum in the most
effective manner. Under the GF-NOMA scheme, the trans-
mission in each particular block is divided into two phases.
In the first phase, each device is assigned with a specific
pilot sequence and transmits its respective pilot sequence to
the BS simultaneously. In subsequent phase, the BS jointly
identifies the active devices and estimates the channels for the
active devices. Based on the knowledge of device activities
and channels obtained in the first phase, the active devices
begin to send data as in a conventional multiple-access channel
with a fixed number of transmitters and a single receiver [8].
Hence, this paper will mostly focus on the design of the pilot
sequences in the first phase. In this case, the received signal
at BS over the first phase is given by

Y1:L = ΦAH+W1:L, (3)

where Φ =[ϕ1, · · · ,ϕK ] ∈ CL×K with ϕk =
[ϕk,1, · · · , ϕk,L]

T ∈ CL is the matrix for pilot sequences, and
L is the length of the pilot sequence.

III. PILOT OPTIMIZATION FORMULATION FOR MTC
A. Problem Formulation

From Theorem 4 in [4], it is proved that even though
assigning random Gaussian pilot sequences to all devices,
accurate device activity detection is also guaranteed with high
probability in the massive MIMO regime for a massive con-
nectivity MTC, but channel estimation error remains. Hence,
we assume that accurate device activity detection is performed
for specific device activity pattern in this paper, and focus on
minimizing the average channel estimation error by optimizing
the pilot sequences. As will be verified in the simulations,
such a metric will also help to improve the device detection
performance because the average channel estimation error also
depends on the probability distribution of device activity.

Under the assumption that accurate device activity detec-
tion is performed for specific device activity pattern a ,
[a1, · · · , aK ], we define the MMSE estimate for channel as
Ĥ(a) and corresponding MSE

V , Ea

[
MSE(Ĥ;a)

]
=

R∑
r=1

ρrMSE(Ĥ; r), (4)

where MSE(Ĥ;a) , EH

[
||Ĥ(a)−H||2

]
is the MSE for

device activity pattern a, ρr ,
∏K

k=1 τ
ar,k

k (1 − τk)
1−ar,k is



the probability of r-th device activity pattern, and ar,k ∈
{0,1} is the k-th bit of r in binary form1, R = 2N

is the total number of all possible device activity pattern,
MSE(Ĥ; r) , EH

[
||Ĥ(r)−H||2

]
is the MSE for r-th device

activity pattern.
It is noted that for fixed device activity pattern r, the

corresponding MMSE estimate of Ĥ(r) is given by(
IM×M

⊗
ΦA(r)G

)(
IM×M

⊗
Q(r)

)−1

vec(Y1:L),

where G , diag (β1, · · · , βK) ∈ RK×K is the
large-scale channel strength matrix, and Q(r) ,
σ2
wIL×L+ΦA(r)GA(r)ΦH ∈ CL×L is the covariance

matrix of the received signal at BS for the r-th device activity
pattern. Using standard Kronecker product properties, we
obtain a closed-form expression for MSE(ĥ; r) as

MSE(ĥ; r) ,
(
R(r)−R(r)ΦHQ−1(r)ΦR(r)

)
,

where R(r) , A(r)GA(r) ∈ CK×K is the covariance matrix
of effective channel at BS for the r-th device activity pattern.

Using the above notations, the pilot sequences design for
massive connectivity scenario can be formulated as the follow-
ing power-constrainted average MMSE minimization problem
(PC-AMP):

min
Φ

R∑
r=1

ρrTr
{
R(r)−R(r)ΦHQ−1(r)ΦR(r)

}
s.t. Tr(ϕkϕ

H
k ) ≤ Pk,∀k = 1, · · · ,K, (5)

where Pk is the individual power budget at each user. Since
the matrix R(r) is independent of the optimization variable
Φ, problem (5) can be equivalently written as

max
Φ

R∑
r=1

ρrTr
{
R(r)ΦHQ−1(r)ΦR(r)

}
s.t. Tr(ϕkϕ

H
k ) ≤ Pk,∀k = 1, · · · ,K, (6)

B. Problem Approximation

From (6), we can find that there are R = 2K sum terms in
the expression of average MSE, which leads to exponential
computational complexity. To address the above issue, we
must resort to approximation techniques to make problem
(6) more tractable. In this paper, we propose the following
approximation

R∑
r=1

ρrTr
{
R(r)ΦHQ−1(r)ΦR(r)

}
=

2Kh∑
i=1

ρhi

2Km∑
j=1

ρmj Tr
{
R(ri,j)Φ

HQ−1(ri,j)ΦR(ri,j)
}

≈
Ih∑
i=1

ρhi Tr
{
R(i)ΦHQ

−1
(i)ΦR(i)

}
, (7)

1The binary form of r is given by (r)2 = ar,1ar,2 · · · ar,K ,and ar,k is a
constant for the fixed device activity pattern

where (ri,j)2 , (i)2(j)2, ρhi =
∏Kh

k=1 τ
ai,k

k (1 − τk)
1−ai,k

with
∑

i=1 ρ
h
i = 1 is the probability of activity pat-

tern for human-type device, ρmj =
∏K

k=Kh+1 τ
aj,k

k (1 −
τk)

1−aj,k with
∑

j=1 ρ
m
j = 1 is the probability of ac-

tivity pattern for machine-type device, Ih = 2Kh is the
total number of HTC device activity pattern, Ã(i) =
diag

(
ai,1, · · · , ai,Kh , τKh+1, · · · , τK

)
is the approximated

activity pattern for all potential devices, R(i) , Ã(i)GÃ(i)
is the covariance matrix of effective channel vector at BS
for the i-th activity pattern for HTC device, and Q(i) ,
σ2
wIL×L+ΦR(i)ΦH is the covariance matrix of the received

signal at BS for the i-th activity pattern for HTC device.
Note that the idea behind the above approximation is due

to the fact that the average access probability of HTC devices
is much larger than that of MTC device, while the number
of MTC devices is much larger than the number of HTC
devices. In this case, we approximate the activity indicator for
MTC devices under any device activity pattern by the average
access probability τk,∀k ∈ Km. In the special case when there
only exists MTC device in the system, the approximated MSE
in (7) is equivalent to the MSE achieved by applying linear
MMSE estimator. Based on (7), the approximated optimization
problem is given by:

max
Φ

Ih∑
i=1

ρhi Tr
{
R(i)ΦHQ

−1
(i)ΦR(i)

}
s.t. Tr(ϕkϕ

H
k ) ≤ Pk,∀k = 1, · · · ,K. (8)

IV. DISTRIBUTED PILOT DESIGN

There are several challenges in finding stationary solutions
of problem (8), elaborated as follows. First, problem (8)
is typically a function of multiple-ratio fractional program-
ming (FP), where the optimization variable Φ appear in
both numerator and the denominator. In particular, solving
the above multiple-ratio FP is always NP-hard. Second, the
problem size will grow exponentially as the number of HTC
devices increases. In other words, the traditional centralized
optimization algorithms cannot be applied to here.

To the best of our knowledge, there lacks an efficient
and distributed algorithm to handle such high-dimension non-
convex optimization problem (8). In this section, we propose
a distributed FP-ADMM algorithm to find stationary solutions
to problem (8). We shall first outline the proposed FP-ADMM
algorithm. Then, we elaborate the implementation details.

A. Algorithm Outline

In this subsection, we propose a distributed algorithm that
solves problem (8) to a stationary solution. To this end,
we propose to integrate two existing algorithms. The first
one is the matrix quadratic transform based algorithm de-
veloped in [9], which is used for fractional programming
(FP) with multiple ratios. By applying the above matrix FP
algorithm, it addresses the issue of nonlinear fractional and
high coupling. The second one is the well-known ADMM
algorithm for large-scale optimization [10]. The key advantage
of ADMM algorithms is well-suited for distributed and parallel



implementation, which is attractive for the considered massive
connectivity scenario. The proposed FP-ADMM algorithm is
summarized in Algorithm 1.

Algorithm 1 FP-ADMM Algorithm for problem (8)
Initialization: Let j = 0, ∥ϕk∥2 = Pk, ∀k,Zi = Φ, ∀i, and Ei =
0,∀i. Define the maximum number of iterations J and the penalty
parameter µ.
Step 1 (Update P): For i = 1, ..., Ih, let

Pj+1(i) = Q
−1

(i)ΦRg(i). (9)

Step 2 (Update Zi): Let Zj+1
i = Z∗

i , ∀i, where Z∗
i is given in (22).

Step 3 (Update Φ): For k = 1, ...,K, let

ϕj+1
k = ϕ∗

k(λk), (10)

where ϕ∗
k(λk) is given in (24).

Step 4 (Update Ei): Let Ej+1
i = Ej

i + Zj+1
i −Φj+1, ∀i.

Let j = j + 1. If j = J , terminate the algorithm and output ΦJ .
Otherwise, go to Step 1.

B. Matrix FP Method

In this part, we first apply the matrix FP method to refor-
mulate the problem (8) as a convex optimization problem.

Lemma 1. Define Ω ,
{
Φ|Tr(ϕkϕ

H
k ) ≤ Pk

}
. Then Φ∗

solves the problem in (8) if and only if it solves

max
Φ∈Ω

f (Φ) ,
Ih∑
i=1

ρhi Tr
{
2R
{
R(i)ΦHP(i)

}
−PH(i)Q(i)P(i)

}
, (11)

where P(i) = P∗(i) ∈ CL×K is the auxiliary variable
introduced for each matrix ratio term given by

P∗(i) , Q
−1

(i)ΦR(i). (12)

Proof: Lemma 1 can be proven by a similar approach
as in [11]. It is clear that f (Φ,P) is concave over P while
fixing Φ and also analytic in complex region. Applying the
first-order optimal condition, we obtain the optimal P∗(i) as
Q−1(i)ΦR(i). By simply substituting this optimal P∗(i) back
into problem (11), we can have the equivalent problem (8). As
a result, problem (8) is equivalent to problem (11).

It is noteworthy that the numerator and denominator in (8)
are now decoupled in the reformulated problem (11).

C. Consensus ADMM Algorithm for Solving problem (11)

In this part, we apply the consensus ADMM algorithm for
solving problem (11). We emphasize that the difficulty in
designing the distributed algorithm comes from the variable
coupling in f (Φ), and the large number of all possible device
activity pattern. To overcome this difficulty, we first introduce
auxiliary variables and then design a special variable splitting
scheme in order to separate the variable coupling in f (Φ).
Following this, we elaborate the implementation details of the
consensus ADMM-based algorithm.

We first introduce auxiliary variable Zi ,
[Zi,1, · · · ,Zi,K ] ∈ CL×K to reformulate problem (11)
into a consensus form, which is given by

max
Φ,Z

Ih∑
i=1

fi (Zi) (13)

s.t. Tr(ϕkϕ
H
k ) ≤ Pk,∀k = 1, · · · ,K,

Zi = Φ,∀i = 1, · · · , Ih,

where

fi (Zi) , ρhi Tr
{
2R
{
R(i)ZH

r P(i)
}

−PH(i)Q(i,Zi)P(i)
}
, (14)

is the cost function for the i-th device activity pattern, and

Q(i,Zi) , σ2
wILM + ZiR(i)ZH

i , (15)

is the covariance matrix of the total received signal at BS for
the i-th device activity pattern.

By moving the additional equality constraints Zi = Φ,∀i,
into the objective function of problem (13), we can obtain the
corresponding augmented Lagrangian function and it can be
expressed as

L(ϕ, z, e;p) =

Ih∑
i=1

fi (Zi)− µ ∥Zi −Φ+Ei∥2 , (16)

where µ ≥ 0 is the constant penalty parameter for adjusting
the convergence speed of ADMM, Ei , [Ei,1, · · · ,Ei,K ] ∈
CL×K is the Lagrangian multiplier corresponding to the
equality constraint Zi = Φ.

Then the consensus ADMM iterative update equation for
problem (13) can be subsequently obtained as

Zj+1
i = arg max

Zi

fi (Zi)−µ
∥∥∥Zi −Φj +Ej

i

∥∥∥2, (17)

Φj+1 = arg min
Φ∈Ω

µ

Ih∑
i=1

∥∥∥Zj+1
i −Φ+Ej

i

∥∥∥2 , (18)

Ej+1
i = Ej

i + Zj+1
i −Φj+1,∀i = 1, · · · , Ih. (19)

where j is the iteration index.
There are several advantages of the above consensus AD-

MM algorithm. First, the convergence of the above consen-
sus ADMM algorithm is guaranteed when the optimization
problem is convex and the penalty parameter µ is in positive
regime [12]. Note that the reformulated problem (11) is a
convex optimization problem after applying the matrix FP
method. Second, each Zi can be updated in parallel manner
and the corresponding subproblem can be solved efficiently in
closed form. In a nutshell, each step of the consensus ADMM
algorithm is easily computable and amenable for distributed
implementation. The choice of the initial point and the update
equation for each variable is elaborated below.

1) Choice of Initial Point: For pilot sequence ϕ, we choose
the initial point to be ∥ϕk∥2 = Pk,∀k, i.e., each device
transmits at the maximum power. For all Zi and Ei, we choose
the initial point to be Zi = Φ,∀i, and Ei = 0,∀i, respectively.



2) Solving Subproblem (17): Since the first term in
Q(i,Zi) is independent of Zi, we rewrite problem (17) as

max
Zi

Tr
{
2R
{
R(i)ZH

i P(i)
}

−PH(i)ZiR(i)ZH
i P(i)

}}
− µ

∥∥∥Zi −Φj +Ej
i

∥∥∥2 . (20)

It is seen that problem (20) is an unconstrained quadratic
optimization, which can be efficiently solved by applying the
first-order optimal condition. After some tedious calculations
and appropriate rearrangement, it is shown that the first-order
optimal condition can be expressed in a compact form as

BiZ
∗
iC+DZ∗

i = Fi, (21)

where Bi , P(i)PH(i),Ci , R(i), D , µIL×L and Fi ,
P(i)R(i) + µ

(
Φj −Ej

i

)
. By vectorizing the both side of

equation (21), we can obtain the optimal Z∗
i as

vec (Z∗
i ) = J−1

i vec (Fi) , (22)

where Ji , CT
i

⊗
Bi + IK

⊗
D.

3) Solving Subproblem (18): The subproblem (18) is given
by

min
Φ

Ih∑
i=1

∥∥∥Zj+1
i −Φ+Ej

i

∥∥∥2 (23)

s.t. Tr(ϕkϕ
H
k ) ≤ Pk,∀k = 1, · · · ,K, .

Clearly, problem (23) is an quadratically constrained
quadratic optimization problem. Thus, it can be solved by
dealing with its dual problem. To this end, by introduc-
ing Lagrange multiplier λk for the corresponding constraint
Tr(ϕkϕ

H
k ) ≤ Pk, we define the Lagrangian associated with

problem (23) as

L(Φ, λ) ,
Ih∑
i=1

∥∥∥Zj+1
i −Φ+Ej

i

∥∥∥2 + K∑
k=1

λk

(
Tr(ϕkϕ

H
k )−Pk

)
=

K∑
k=1

(
Ih∑
i=1

∥∥∥Zj+1
i,k − ϕk +Ej

i,k

∥∥∥2 + λk

(
Tr(ϕkϕ

H
k )−Pk

))

=

K∑
k=1

Lk(ϕk, λk)

Since Lk(ϕk, λk) with respect to ϕk for fixed Lagrange
multiplier is an unconstrained quadratic optimization problem,
it can be efficiently solved by checking its first-order optimal
condition, which yields the optimal ϕ∗

k as

ϕ∗
k(λ) =

1

Ih + λk

Ih∑
i=1

(
Zj+1

i,k +Ej
i,k

)
, (24)

where λ is chosen to be zero if ||ϕ∗
k(0)||2 ≤ Pk and chosen

to satisfy ||ϕ∗
k(λ)||2 = Pk otherwise.

D. Implementation Consideration

Using graphic processing units (GPUs) implemented at
the BS, we can apply parallel processing to accelerate the
computation speed. But in order to maximize the efficiency
of GPU, the algorithm needs to have some good distributed
features such as those provided by the proposed algorithm.
For example, from (17) and (19), we can see that the Zi and
Ei can be updated in a parallel manner, which further speeds
up the calculations under the GPU implementation.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the numerical performance
of the proposed pilot design in a cell of radius 250 m.
There are 20 HTC devices and 80 MTC devices randomly
distributed in the cell. The path-loss for device k is modeled
as 15.3 + 37.6 log 10 (dk) in dB [13], and dk is the distance
between BS and device k in meters. The shadowing is assumed
to be a Gaussian distribution with zero mean and variance
σ2
S = 8 [3]. The background noise is −169 dBm/Hz over 10

MHz. At any given time slot, the access probability of human-
type devices follows a uniform distribution over the interval
[0.4, 0.6], while the access probability of machine-type devices
follows a uniform distribution over the interval [0.1, 0.2].
Unless otherwise specified, we consider M = 64 antennas
and the length of pilot sequence is L = 30. The transmit
power constraint for each device is Pk = 23 dBm. Two
baseline schemes are considered for comparison: the random
scheme [4] and the linear MMSE scheme [14] obtained by
approximating the activity indicator for all potential devices
by their average access probability.
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Fig. 2. NMSE performance versus the length of pilot sequence L.

In Fig. 2, we plot the NMSE performance versus the length
of pilot sequence L for the different schemes. We can see
that the proposed FP-ADMM scheme achieves significant gain
over all the other competing schemes. This is due to the
fact that the proposed FP-ADMM can make full use of the
statistical information of devices with higher average access
probability. When the length of pilot sequence L increases, the
performance gap between the proposed FP-ADMM scheme
and other schemes becomes larger. In Fig. 3, we plot the
cumulative distribution function (CDF) of NMSE for the
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different schemes. The MSE achieved by the proposed FP-
ADMM outperforms other schemes, and concentrates on a
small range.
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Fig. 4. Device activity detection error probability versus the length of the
pilot sequences

In Fig. 4, we plot the device activity detection error prob-
ability versus the length of the pilot sequences. Specifically,
the error probability of device activity detection corresponds
to two types of error events, i.e., missed detection and false
alarm, respectively. The missed detection occurs when an
active device is viewed as in the inactive status, while the
false alarm occurs when a inactive device is declared active.
It is observed that as L increases, the error probability of all
schemes decreases and gradually gets closer to zero. In other
words, near-perfect device activity detection is guaranteed
in the massive MIMO regime, which is consistent with the
theoretical analysis of [4]. This indicates that our proposed
FP-ADMM scheme not only achieve better channel estimation
over all the other competing schemes, but also guarantee
superior performance of the device activity detection.

Table I compares the performance of different schemes
in terms of the average mutual coherence. The mutual co-
herence is defined as the degree of orthogonality between
pilot sequences of different devices, i.e., κj,n , |ϕH

j ϕn|
|ϕj ||ϕn| .

According to the strength of channel pathloss, we further
divide all potential devices into four classes: 1) HTC devices
with large pathloss; 2) HTC devices with small pathloss; 3)
MTC devices with large pathloss; 4) MTC devices with small
pathloss. In the Table I, we let κh

L, κh
S , κm

L , and κm
S denote the

average mutual coherence of corresponding class of devices,

respectively. It is observed that different from other competing
schemes, the proposed FP-ADMM scheme allocates more
orthogonal pilots to the HTC devices with large pathloss,
while assigning more nonorthogonal pilots to the MTC devices
with small pathloss. This demonstrates that the proposed FP-
ADMM schme can achieve better pilots allocation according
to the distinic characteristics of devices.

κh
L κh

S κm
L κm

S

FP-ADMM Scheme 0.1442 0.4673 0.3028 0.7175
Linear Scheme 0.1984 0.4146 0.3422 0.6343

Random Scheme 0.5030 0.5006 0.5134 0.5389

TABLE I
THE AVERAGE MUTUAL COHERENCE COMPARISON

VI. CONCLUSIONS

In this paper, we consider the distributed design of pilot
sequences for massive connectivity in cellular networks. We
formulate the optimization of pilot sequences as the PC-
AMP, and propose a distributed FP-ADMM algorithm to find
stationary solutions of this non-convex problem. Simulations
verify that the proposed FP-ADMM algorithm achieves better
channel estimation MSE over existing solutions.
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