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Abstract—This paper considers a grant-free massive random
access scenario for machine-type communications in which the
devices are sporadically active with small payloads to send to a
base-station (BS). Each active device transmits the identification
information as well as the data symbol by selecting a signature
sequence from a pre-assigned pilot sequence set, and the BS
detects both the device activity and the data by detecting which
sequences are transmitted. This paper makes an observation that
in the massive multiple-input multiple-output (MIMO) regime,
where the BS is equipped with a large number of antennas,
a covariance based detection scheme that solves a maximum
likelihood estimation problem for detecting both device activity
and data, is more effective than the approximate message passing
(AMP) based compressed sensing approach for sequence detec-
tion. A main contribution of this paper is an analytic framework
capable of accurately predicting the performance of the proposed
scheme in terms of the probabilities of false alarm and missed
detection for the covariance based approach. The analysis is
based on the asymptotic properties of the maximum likelihood
estimator under a non-standard condition. Simulation results
validate the analysis, and demonstrate that as compared to the
AMP based approach, the covariance based approach achieves
lower error probabilities by leveraging the multiple antennas at
the BS for reliable detection, especially when the pilot signature
length is short, as is often the case for low-latency machine-type
communications.

I. INTRODUCTION

Massive machine-type communications (mMTC) is an im-
portant application area for the fifth generation (5G) cellular
technologies [1]. A main challenge of mMTC is to enable
scalable and efficient uplink random access for a large pool of
devices, among which only a small fraction are active, to send
small payload data to the base-station (BS).

This paper investigates the grant-free random access prob-
lem [2] in which each active device needs to send a pre-
assigned unique signature sequence for user identification
and channel probing, then directly transmits the data without
waiting for the grant signal from the BS. Toward this send,
[3], [4] propose a two-phase detection scheme in which the
BS first detects the device activity together with estimating the
channels based on the signature sequences transmitted by the
devices, then subsequently decodes the data in a second phase
based on the estimated channel. However, if the payload data
contain only a few bits (e.g., for status update in mMTC), it
may be more efficient to combine the two phases and to embed
the data symbol in the signature sequence itself [5].

This paper considers such a grant-free massive random
access scenario for mMTC with very small data payloads as
investigated in [5], in which each device maintains a unique
set of pre-assigned 2J signature sequences. When a device is
active, it sends J bits of data by transmitting one sequence
from the set. By detecting which sequences are received, the
BS acquires both the identity of the active devices as well as
the J-bit messages from each of the active devices.

Due to the sparse nature of the device activity as well
as the data symbol, this sequence detection problem can
be formulated as a compressed sensing problem, for which
various efficient numerical algorithms, such as approximate
message passing (AMP), have been proposed [3]–[5]. In
contrast, this paper makes an observation that if the BS is
equipped with a large number of antennas, then an alternative
covariance based strategy, first suggested in [6] for sporadic
device detection, would have better performance. The work of
[6] formulates the sequence detection problem as a maximum
likelihood estimation problem, whose solution depends on the
received signal through certain covariance matrix only. In this
paper, we adopt this covariance based approach also for the
scenario with data embedding, and show that as compared to
the AMP based compressed sensing approach, the covariance
based approach can exploit the multiple BS antennas more
effectively, especially when the signature length is short, which
is often the case for low-latency mMTC.

Although the covariance based approach has been used in
[6] for device activity detection, a performance analysis is
still not yet available. As a main contribution of this paper,
we provide an accurate performance analysis, in terms of the
probabilities of false alarm and missed detection, for the joint
device activity detection and data decoding scheme using the
covariance based approach. This is accomplished by exploiting
the asymptotic properties of the maximum likelihood estimator
in the massive multiple-input multiple-output (MIMO) regime,
and by establishing a relationship between the distribution of
the estimation error and the associated Fisher information ma-
trix. Due to the non-standard boundary condition, the analysis
involves solving a convex quadratic programming problem. We
obtain a simple closed-form solution to the quadratic program
using a reasonable approximation, which in turn provides
insight into the distribution of the estimation error.

The massive random access problem has a rich history.
Many of the well-known protocols are based on the (slotted)



ALOHA or its variations; see [7]–[10] and references therein.
In ALOHA, each transmitter sends the data as one packet
repeatedly, and the receiver decodes the packet if there is no
collision. Although there are extensive studies on the ALOHA
based schemes, most of the works (e.g., [7], [8]) abstract
the physical channel model into a collision channel model
and focus on the contention resolution design. Different from
the works mentioned above, this paper studies random access
with physical channel model containing both fading and noise.
Other closely related works in the context of mMTC include
[11], [12], where compressed sensing techniques are used for
channel and data estimation, and our previous works [3], [4],
[13] that mainly focus on the device activity detection.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider an uplink single-cell system consisting of one BS
with M antennas and N single-antenna devices. Assume that
the channel model is block fading, i.e., the channel is static
in each coherence block while varies among different blocks.
Due to the sporadic traffic, only K ≪ N devices are active
in each block, and each active device has a message of J
bits to transmit, where J is assumed to be a small number in
the context of mMTC. To enable efficient random access, we
consider a grant-free scheme where device activity detection
and data detection are performed simultaneously as in [5].

For the purpose of device identification and information
transmission, assume that each device n maintains a unique
sequence set of size Q , 2J as

Sn =
{
s1n, s

2
n, . . . , s

Q
n

}
, (1)

where sqn = [sqn1, s
q
n2, . . . , s

q
nL]

T ∈ CL×1, 1 ≤ q ≤ Q
is a sequence of length L, where L is smaller than the
coherence block length. When device n is active and needs
to transmit J bits data to the BS, the device transmits one
sequence from Sn. The BS then performs the user activity
detection and data decoding simultaneously by detecting which
sequences are transmitted based on the received signal, which
is a superposition of the transmitted signals from all the
active devices. In this paper, we assume that all sequences
are generated from independent and identically distributed
(i.i.d.) complex Gaussian distribution with zero mean and unit
variance. Since the size of Sn increases exponentially as J
increases, such a sequence selection scheme is suitable for
small values of J .

Let aqn ∈ {1, 0} indicate whether or not sequence q of device
n is transmitted. Since at most one sequence is selected by each
device, aqn satisfies

∑Q
q=1 a

q
n ∈ {0, 1}, where

∑Q
q=1 a

q
n = 0

indicates that device n is inactive, and
∑Q

q=1 a
q
n = 1 indicates

that device n is active. Let gnhn denote the channel vector
between device n and the BS, where hn ∈ CM×1 is the
Rayleigh fading component over multiple antennas following
i.i.d. complex Gaussian distribution with zero mean and unit
variance, and gn is the large-scale fading component depending
on the user location. Assume that the sequences selected by all

the active devices are transmitted synchronously. The received
signal Y ∈ CL×M at the BS can be expressed as

Y =
N∑

n=1

Q∑
q=1

aqns
q
ngnh

T
n +W

=
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] a
1
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h

T
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hT
n
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,
N∑

n=1

SnDnHn +W, (2)

where Sn , [s1n, . . . , s
Q
n ] ∈ CL×Q is a stack of all sequences

of device n, Dn , diag{a1ngn, . . . , aQn gn} ∈ CQ×Q is a
diagonal matrix with at most one non-zero diagonal entry since∑Q

q=1 a
q
n ∈ {0, 1}, Hn , [hn, . . . ,hn]

T ∈ CQ×M is the n-
th channel matrix with repeated rows, and W ∈ CL×M is
the effective i.i.d. Gaussian noise whose variance σ2

w is the
background noise power normalized by the device transmit
power. By further concatenating all sequence matrices of N
users as S , [S1, . . . ,SN ] ∈ CL×NQ, the received signal in
(2) can be written in a more compact form as

Y =
[
S1 . . . SN

] D1

. . .
DN


H1

...
HN

+W

, SΓ
1
2H+W, (3)

where Γ
1
2 , diag{D1, . . . ,DN} ∈ CNQ×NQ is a diagonal

matrix since it is a block diagonal matrix where each block
Dn is also diagonal, and H , [HT

1 , . . . ,H
T
N ]T ∈ CNQ×M .

B. Problem Formulation
Our goal is to detect the binary variable aqn, which indicates

both the activity of device n and its data if it is active. One
potential approach is to treat (3) as a compressive sensing
problem with multiple measurement vectors by using the row
sparsity of Γ

1
2H. Once Γ

1
2H is recovered from Y, aqn can be

determined by the rows of Γ
1
2H. However, such an approach

usually requires an algorithmic complexity that scales with M
since Γ

1
2H is of size NQ×M , which may not be preferred for

a large M . Moreover, the channel state information contained
in Γ

1
2H is not necessary for data detection in the considered

scheme. Therefore, instead of recovering Γ
1
2H, we consider

to estimate diagonal matrix Γ, from which aqn can be also
determined.

We formulate the estimation of Γ as a maximum likelihood
estimation problem as suggested in [6]. Let γ ∈ CNQ×1

denote the diagonal entries of Γ, i.e., γ = [γT
1 , . . . ,γ

T
N ]T ,

where γn = [a1ng
2
n, . . . , a

Q
n g

2
n]

T ∈ CQ×1. We will use γ
and Γ interchangeably due to the correspondence. From (3)
we observe that given γ, the columns of Y, each denoted as
ym ∈ CL×1, 1 ≤ m ≤M , can be seen as independent samples
from a multivariate complex Gaussian distribution as

ym ∼ CN
(
0,SΓ

1
2ΛΓ

1
2SH + σ2

wI
)
, (4)



where Λ , diag{E, . . . ,E} ∈ RNQ×NQ is a block diagonal
matrix with each block E ∈ RQ×Q representing the all-one
matrix, and I is an identity matrix. Note that the all-one matrix
E comes from the fact that H in (3) contains repeated rows.
By noticing that each diagonal block Dn in Γ

1
2 has at most

one non-zero entry in the diagonal, it can be verified that
D

1
2
nED

1
2
n = Dn, which implies that the covariance matrix in

(4) can be simplified as SΓ
1
2ΛΓ

1
2SH +σ2

wI = SΓSH +σ2
wI.

Based on (4), we express the likelihood of Y given γ as

p(Y|γ) =
M∏

m=1

1

|πΣ|
exp

(
−yH

mΣ−1ym

)
=

1

|πΣ|M
exp

(
−Tr

(
Σ−1YYH

))
(5)

where Σ , SΓSH + σ2
wI, | · | denotes the determinant

of a matrix, and Tr(·) denotes the trace of a matrix. The
maximization of the log-likelihood log p(Y|γ) can be casted
as the minimization of − log p(Y|γ) expressed as follows

minimize
γ

log |Σ|+ 1

M
Tr

(
Σ−1YYH

)
(6a)

subject to γ ≥ 0, (6b)
|γn|0 ≤ 1, n = 1, 2, . . . , N, (6c)

where | · |0 denotes the number of non-zero entries of a vector.
Note that constraint γ ≥ 0 is due to aqng

2
n ≥ 0, which defines

a natural parameter space of γ that guarantees the positive
definiteness of covariance matrix Σ. The constraint |γn|0 ≤ 1
comes from the sequence selection, i.e.,

∑Q
q=1 a

q
n ∈ {0, 1}.

The solution to (6) depends on Y through 1
MYYH ∈

CL×L, which is the sampled covariance of the received signal
averaged over different antennas, whose size scales with L
instead of M . For this reason, the formulation (6) is called the
covariance based approach.

It is worth mentioning that the use of maximum likelihood
for parameter estimation with multivariate Gaussian observa-
tions has appeared in various contexts. For example, in the
direction of arrival (DOA) estimation, a similar optimization
problem is formulated in [14] for angle estimation. More other
related examples include the sparse approximation in [15] and
the sparse user activity detection in [6], where the maximum
likelihood is used for sparse signal recovery. The considered
problem slightly differs from previously mentioned problems
in that the parameter γ exhibits an extra block structure as
indicated in (6c). However, in despite of the difference, the
algorithms developed previously in [6], [15] are still very
useful to solve (6), as we discuss in the next section.

III. JOINT DEVICE ACTIVITY AND DATA DETECTION

To perform joint device activity and data detection at the
BS, the main task is to solve the optimization problem (6).
Without considering the constraint (6c), the problem can be
relaxed to find the optimal γ in the NQ-dimensional parameter
space [0,+∞)NQ. Although the relaxed problem is still not
convex in general due to the fact that log |Σ| is concave
whereas Tr

(
Σ−1YYH

)
is convex, there already exist various

Algorithm 1 Coordinate descent to estimate γ

1: Initialize γ̂ = 0, Σ̂ = σ2
wI, Σ̂

−1
= σ−2

w I.
2: for i = 1, 2, . . . do
3: Randomly select a permutation i1, i2, . . . , iNQ of the

coordinate indices {1, 2, . . . , NQ} of γ̂
4: for n = 1 to NQ do
5: δ = max{ s

H
in

Σ̂
−1 YYH

M Σ̂
−1

sin−sHin Σ̂
−1

sin

(sHin Σ̂
−1

sin )2
,−γ̂in}

6: γ̂in ← γ̂in + δ

7: Σ̂
−1
← Σ̂

−1
− δ

Σ̂
−1

sinsHin Σ̂
−1

1+δsHin Σ̂
−1

sin
8: end for
9: end for

10: Output γ̂ = [γ̂1, . . . , γ̂NQ]
T .

algorithms that perform well in practice. For example, the au-
thors of [15] propose a multiple sparse Bayesian learning (M-
SBL) algorithm based on expectation maximization (EM) that
estimates γ iteratively. The authors of [6] suggest a coordinate
descent algorithm that randomly updates each coordinate of
γ until convergence. Note that although the relaxed problem
is non-convex, the global optimality of M-SBL or coordinate
descent for such a problem can be justified if Γ

1
2H or S

satisfies certain conditions; see [15] and [6].
In this paper, we adopt the coordinate descent approach

from [6] to first solve problem (6) without constraint (6c).
After an estimate γ̂ is obtained, we then use a coordinate
selection operation with thresholding to enforce the block-
wise constraint and to detect aqn. The coordinate descent
algorithm is given in Algorithm 1. As compared to [6], we
add random index permutation and rank-1 update to further
improve the efficiency. To perform the coordinate selection
and thresholding, let lth be a predefined threshold, and γ̂q

n be
the q-th entry in the n-th block of γ̂, we determine aqn by

aqn =

{
1, if γ̂q

n ≥ lth, γ̂
q
n = maxQi=1 γ̂

i
n,

0, else,
(7)

where the condition γ̂q
n = maxQi=1 γ̂

i
n guarantees that∑Q

q=1 a
q
n ∈ {0, 1} is satisfied, and the purpose of the threshold

lth is to balance the missed detection and the false alarm since
the estimate γ̂ may not be sparse.

It is worth mentioning that instead of enforcing (6c) after
an estimate of γ is obtained, we can also enforce (6c)
during the updating of each block, which leads to a block
coordinate descent. However, the performance improvement is
not substantial, especially when M is large. In the simulation,
we observe that even without considering (6c) in solving (6),
the estimate γ̂ given by coordinate descent is approximately
sparse, hence constraint (6c) is already approximately satis-
fied. We will further explain this via the consistency of the
maximum likelihood estimator in the next section.

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

As the main contribution of this paper, we provide a way
to analyze the performance of the considered random access



scheme in the massive MIMO regime. The difficulty of such
an analysis lies in the characterization of the error probability
of device activity detection or data decoding, which requires
the distribution information of the estimation error γ̂ − γ.
The method used in this paper is to consider the maximum
likelihood estimator γ̂ML as a surrogate of γ̂, and to exploit
the asymptotic properties of the maximum likelihood estimator
to analyze the estimation error. In the following, we first
discuss γ̂ML in the regime M → ∞, and later establish
the connection between the distribution of γ̂ML − γ and the
associated Fisher information matrix as M →∞.

Since it is difficult to directly analyze the estimation error
γ̂−γ given by Algorithm 1, as an alternative, we consider the
global optimal solution, i.e., the maximum likelihood estimator
γ̂ML, to the original maximum likelihood problem (6) without
considering (6c). After dropping (6c), the feasible parameter
space of γ is [0,+∞)NQ, which is easier to deal with. Later
we show that (6c) is automatically satisfied if M →∞. Note
that γ̂ML can be regarded as a good surrogate of γ̂ because:
(i) γ̂ is at least a local minimizer; (ii) as suggested in [6] γ̂ is
also a global minimizer if S satisfies certain conditions.

Based on the standard estimation theory [16], as the number
of i.i.d. samples increases, the maximum likelihood estimator
γ̂ML is consistent, i.e.,

γ̂ML → γ, as M →∞, (8)

where γ is the true parameter, and → denotes convergence in
probability. Thus γ̂ML should concentrate around the true γ
and become an approximate sparse vector for large M , which
suggests that (6c) is satisfied approximately when M is large.

To further analyze the distribution of the estimation error
γ̂ML−γ, the asymptotic normality of the maximum likelihood
estimator [16] can be exploited. This property states that
M

1
2 (γ̂ML−γ) tends to a Gaussian distribution as the number

of i.i.d. observations increases, i.e.,

M
1
2 (γ̂ML − γ)→ N (0,MJ−1(γ)), as M →∞, (9)

where J(γ) is the Fisher information matrix, whose (i, j)-th
entry is defined as

[J(γ)]ij = −E
[
∂2 log p(Y|γ)

∂γi∂γj

]
. (10)

The probability p(Y|γ) in the above is given in (5), and the
expectation is taken with respect to Y. Note that the asymp-
totic normality involves J−1(γ) and is closely related to the
Cramer-Rao bound [16]. However, such asymptotic normality
holds only when the true value of γ is an interior point of
the parameter space [0,+∞)NQ. In the considered problem,
most of the entries in γ are zero, indicating that the true value
of γ is always on the boundary of [0,+∞)NQ. Under such
a case, the distribution of γ̂ML − γ is no longer multivariate
Gaussian with covariance J(γ)−1. Instead, γ̂ML−γ depends
on J(γ) through a more complicated way. Such boundary
case has been studied in [17] for general estimation problems.
Based on Theorem 2 in [17], the asymptotic distribution can
be characterized in the following proposition.

Proposition 1. Let x ∈ RNQ×1 be a random vector sampled
from the multivariate Gaussian distribution N

(
0,MJ−1(γ)

)
.

Let µ ∈ RNQ×1 be the solution to the following constrained
quadratic programming problem

minimize
µ

1

M
(x− µ)TJ(γ)(x− µ) (11a)

subject to µi ≥ 0, i ∈ I, (11b)

where µi is the i-th entry of µ, and I is an index set
corresponding to the zero entries of γ, i.e., I , {i|γi = 0}.
Note that µ is random due to the randomness of x. Then
M

1
2 (γ̂ML−γ) has asymptotically the same distribution as µ

as M →∞.

The above proposition provides a way to accurately compute
the asymptotic distribution of M

1
2 (γ̂ML−γ). A special case is

when the index set I is empty, i.e., all entries of γ are strictly
larger than zero, the solution to (11) is µ = x, indicating that
the distribution of M

1
2 (γ̂ML−γ) becomes Gaussian as stated

in (9). When some entries of γ are zero, as the case in the
considered activity detection and data decoding problem, (11)
does not admit a closed-form solution in general. However, the
proposition is still very useful in the sense that the distribution
of M

1
2 (γ̂ML − γ) can be empirically calculated by solving

the convex optimization problem (11) efficiently, rather than
solving the original non-convex problem (6).

Besides employing a numerical algorithm to solve (11), it is
also possible to get an approximate analytic solution if J(γ)
exhibits some special structure. To this end, we first derive an
explicit expression of J(γ) in the following proposition.

Proposition 2. Consider the likelihood function in (5), where
γ is the parameter to be estimated. The Fisher information
matrix of γ defined in (10) can be expressed as

J(γ) = M (P⊙P∗) , (12)

where P , SH
(
SΓSH + σ2

wI
)−1

S, ⊙ is the element-wise
product, and (·)∗ is the conjugate operation.

Proof. Please see Appendix A.

We observe from (12) that J(γ) is diagonally dominant, if
all sequences in S are randomly generated. This is because
with random sequences the columns and rows of S are
approximately mutually orthogonal, which leads to diagonally
dominant matrices SΓSH + σ2

wI and P, and also J(γ).
Note that even though all these are coarse approximations,
they still help us get insights about the estimation error. By
approximating J(γ) as a diagonal matrix, the coordinates in
(11) are decoupled, and a simple solution is

µi =

{
xi, if i /∈ I,
x+
i , if i ∈ I,

(13)

where x+
i , max{xi, 0}, and xi is the i-th entry of x. Note

that by Propositions 1 and 2, x follows N (0, (P⊙P∗)
−1

).
The solution in (13) indicates that with such an approximation,
the estimation error on the non-zero entries of M

1
2 (γ̂ML−γ)



is Gaussian with variance [(P⊙P∗)
−1

]ii, i /∈ I, whereas the
estimation error on the zero entries of M

1
2 (γ̂ML − γ) is half

Gaussian with variance [(P⊙P∗)
−1

]ii, i ∈ I plus a point
mass at 0. Therefore, for given M the error γ̂ML−γ depends
on a Gaussian distribution with variance M−1[(P⊙P∗)

−1
]ii,

whose value drops linearly as M increases since (P⊙P∗)
−1

does not depends on M .
It is worth mentioning that in the asymptotic analysis so

far we implicitly assume that the Fisher information matrix
J(γ) is non-singular (invertible), i.e., Rank(P⊙P∗) = NQ.
By using Rank(A ⊙ B) ≤ Rank(A)Rank(B) for arbitrary
matrices A and B, we obtain a necessary condition on L and
NQ to fulfill the non-singularity

NQ = Rank(P⊙P∗) ≤ Rank(P)2 ≤ L2, (14)

from which NQ ≤ L2 is necessary to guarantee the existence
of J−1(γ). In other words, at most L2 device sequences can be
supported for the asymptotic analysis discussed above. When
the Fisher information matrix is singular, some more involved
techniques are required to reformulate the estimation problem.

V. SIMULATION RESULTS

We consider a single cell of radius 1000m containing
N = 400 potential devices, among which K = 80 devices are
active. We consider the worst case that all devices are located
in the cell-edge such that the large-scale fading components
gn are the same for an ease of demonstration. The power
spectrum density of the background noise is −169dBm/Hz,
and the transmit power of each device is set as 25dBm.

The performance metrics are the probabilities of false alarm
and missed detection, which are defined as follows. The
probability of false alarm corresponds to the event that a
device is inactive but declared active. The probability of
missed detection corresponds to two types of error events: a
device is active but is declared to be inactive, or a device
is active but the data is not correctly decoded although the
device is declared active. Note that the probability of missed
detection used here slightly differs from its standard definition.
Different probabilities of false alarm and missed detection can
be obtained by adjusting the value of the threshold lth in (7).

We first validate the asymptotic analysis in Fig. 1 with
J = 1 and M = 128, or 256. We compare the simulated
performance obtained by Algorithm 1, and the theocratical
performance predicted by Propositions 1 and 2. We observe
that the simulated and theocratical curves match very well.
There are slightly larger differences when the probability of
missed detection or probability of false alarm is very small,
which might be due to the mismatch in the tail distributions.

In Fig. 2 we compare the covariance based method used
in this paper with an AMP based method from compressed
sensing that has been used to solve the random access problem
in [3]–[5], as the signature length L increases. We set J = 2.
Since there are two types of detection errors, to conveniently
show the error behavior with L, we properly select the
threshold lth to achieve a point where probability of false
alarm and probability of missed detection are equal, which is
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Fig. 1. Comparison of the simulated results and the analysis in terms
of probability of false alarm and probability of missed detection.
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Fig. 2. Performance comparison between the covariance based method
and the AMP based method with different L and J = 2.

represented as “probability of error” in Fig. 2. We observe that
increasing L substantially decreases the error probability for
the covariance based method. However, for the AMP based
method, the benefit of increasing L becomes obvious only
when L exceeds some threshold, e.g., L = 60 when M = 32.
This can be explained by the phase transition in AMP [18],
which requires L to be sufficient large, depending on the
problem size. We observe that the covariance based method
consistently outperforms the AMP based method. Fig. 2 also
shows that the covariance based method is more suitable for
small L in which case AMP may not work well.

Fig. 3 compares the covariance based method and the AMP
based method as the number of antennas at the BS increases.
We consider the signature length L = 60, or 80, and show the
behavior of the detection error against M . We observe that
for the covariance based method the error drops effectively as
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Fig. 3. Performance comparison between the covariance based method
and the AMP based method with different M and J = 2.

M increases, whereas for the AMP based method, the error
becomes saturated when M exceeds some point, e.g., M = 32
when L = 80. This can be explained by the state evolution of
the AMP in [4] which requires that L grows faster than M to
fully exploit the benefit of multiple antennas.

VI. CONCLUSION

This paper studies a grant-free random access scheme for
mMTC with sporadically active devices. Each active device
transmits its identification and payload by selecting a signature
sequence from a pre-assigned set, and the BS detects the device
activity and the data by detecting their sequences. The paper
formulates the detection problem as a maximum likelihood
estimation problem based on the covariance matrix of the
received signal, and employs the coordinate descent algorithm
to solve the problem. The main contribution of this paper is a
method to analyze the probabilities of false alarm and missed
detection in the massive MIMO regime by exploiting the
asymptotic properties of the maximum likelihood estimator.
Simulation results validate the analysis, and also show that
as compared to the AMP based method from compressive
sensing, the covariance based method is much better at making
use of the multiple antennas to improve reliability especially
when the signature length is short.

APPENDIX A
DERIVATION OF THE FISHER INFORMATION MATRIX

Let L(γ) , log p(Y|γ). Based on (5), the second order
derivative of L(γ) with respect to γi and γj is

∂2L(γ)
∂γi∂γj

= −M ∂2 log |Σ|
∂γi∂γj

−
∂2

(
Tr

(
Σ−1YYH

))
∂γi∂γj

, (15)

where the first term in the right hand side can be derived as

M
∂2 log |Σ|
∂γiγj

= −M Tr
(
Σ−1sjs

H
j Σ−1sis

H
i

)
, (16)

and the second term can be computed as

∂2
(
Tr

(
Σ−1YYH

))
∂γi∂γj

= −
∂ Tr

(
Σ−1sis

H
i Σ−1YYH

)
∂γj

=Tr
(
Σ−1sjs

H
j Σ−1sis

H
i Σ−1YYH

)
+Tr

(
Σ−1sis

H
i Σ−1sjs

H
j Σ−1YYH

)
. (17)

Combining (16) and (17), and taking the expectation with re-
spect to Y by using E

[
YYH

]
= E

[∑M
m=1 ymyH

m

]
= MΣ,

we get the (i, j)-th entry of the Fisher information matrix as

−E
[
∂2L(γ)
∂γi∂γj

]
= M(sHi Σ−1sj)(s

H
j Σ−1si), (18)

based on which J(γ) can be written in a matrix form as (12).
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valho, “Sparse signal processing for grant-free massive connectivity: A
future paradigm for random access protocols in the internet of things,”
IEEE Signal Process. Mag., vol. 35, no. 5, pp. 88–99, Sep. 2018.

[3] Z. Chen, F. Sohrabi, and W. Yu, “Sparse activity detection for massive
connectivity,” IEEE Trans. Signal Process., vol. 66, no. 7, pp. 1890–
1904, Apr. 2018.

[4] L. Liu and W. Yu, “Massive connectivity with massive MIMO —Part I:
Device activity detection and channel estimation,” IEEE Trans. Signal
Process., vol. 66, no. 11, pp. 2933–2946, Jun. 2018.

[5] K. Senel and E. G. Larsson, “Grant-free massive MTC-enabled massive
MIMO: A compressive sensing approach,” IEEE Trans. Commun., 2018.

[6] S. Haghighatshoar, P. Jung, and G. Caire, “Improved scaling law for
activity detection in massive MIMO systems,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 381–385.

[7] G. Liva, “Graph-based analysis and optimization of contention resolution
diversity slotted ALOHA,” IEEE Trans. Commun., vol. 59, no. 2, pp.
477–487, Feb. 2011.

[8] K. R. Narayanan and H. D. Pfister, “Iterative collision resolution for
slotted ALOHA: An optimal uncoordinated transmission policy,” in
Proc. Int. Symp. Turbo Codes Iterative Inf. Process. (ISTC), Aug. 2012,
pp. 136–139.
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