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Abstract—This paper examines the achievable rate region and
the converse of a full-duplex relay broadcast channel with three
independent messages: from the source to the relay, from the
source to the destination, and from the relay to the destination.
We are motivated to study this channel, because it models a
full-duplex wireless cellular network in which the uplink u ser
also wishes to send an independent device-to-device message
to the downlink users. For the discrete memoryless channel
case, we incorporate Marton’s broadcast coding to obtain a new
achievable rate region which is larger than previous rate regions.
We further propose a tighter converse than the cut-set bound.
For the Gaussian scalar channel case, we show that by using one
of two rate-splitting schemes depending on the channel condition,
we can already achieve the capacity region of this particular relay
broadcast channel to within a constant gap. The proposed scheme
outperforms the benchmark methods in terms of the symmetric
generalized degree-of-freedom.

I. I NTRODUCTION

This paper studies a full-duplex relay channel with three
independent messages: one messagem1 from the source to
the relay, one messagem2 from the relay to the destination,
and a messagem3 from the source to the destination. This
channel is named the relay channel with “private” messages
in [1] as illustrated in Fig. 1(a), and is a generalization of
the partially cooperative relay broadcast channel of [2], [3], if
the messagem2 is removed, as shown in Fig. 1(b). The main
contributions of this paper are two-fold. First, we proposenew
techniques to enhance the existing achievability and converse
results for the discrete memoryless version of this channel
model. Second, we provide a constant-gap-to-capacity result
for the Gaussian (scalar) case.

We are motivated to study this channel due to its connec-
tion to the communication scenario of a full-duplex wireless
cellular network (e.g., [4]) in which the base station (BS)
has full-duplex self-interference-cancellation capability, but
the user terminals are half-duplex. But in addition to the uplink
message from the uplink user to the BS and the downlink
message from the BS to the downlink user, we further assume
that the uplink user wishes to directly send a message to
the downlink via a device-to-device (D2D) side-link. The
information theoretical model for such a scenario has been
considered in our previous work [5], and it corresponds to the
relay channel with private message model of Fig. 1(a) [1], in
which node 1 plays the role of the uplink user, node 2 the BS,
and node 3 the downlink user.
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Fig. 1. (a) The relay broadcast channel with side message (orwith “private”
messages [1]); (b) The relay broadcast channel without sidemessage [2], [3].

Prior work [1] on this channel model provides two achiev-
able coding methods: a decode-and-forward scheme and a
compress-and-forward scheme. The coding scheme proposed
in this paper is closely related to decode-and-forward, but
we incorporate rate splitting and moreover utilize Marton’s
broadcast coding scheme [6] to achieve a larger achievable
rate region. On the converse, [1] derives an outer bound
based on the genie-aided method, but as indicated by the
authors, the outer bound of [1] is not computable. This
paper develops better use of the auxiliary “genie” variables
to improve upon the cut-set bound, and further comes up with
a new sum-rate upper bound that would play a key role in
characterizing the capacity region for the Gaussian case to
within a constant gap. A modified Marton’s broadcast coding
scheme has already been used in the earlier works [2], [3] for
the relay broadcast channel (which is a special case of our
channel model). The achievability part of our paper can be
thought of as a generalization of [2], [3] in incorporating the
transmission of the relay-to-destination messagem2 into the
modified Marton’s coding.

In terms of characterizing the capacity to within a constant
gap, our recent work [5] focuses on a special case with-
out the source-to-destination messagem3, so that Marton’s
coding is not needed, in which case, successive decoding
at the destination suffices to achieve the capacity region of
the Gaussian case of the channel to within a constant gap.
Although for achieving constant-gap-to-capacity for the scalar
Gaussian case, Marton’s coding [6] is not needed even with
m3 included, it turns out that successive decoding is no longer
sufficient and joint decoding needs to be used to achieve the
capacity to within 1 b/s/Hz.
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Fig. 2. Gaussian full-duplex relay broadcast channel with side messagem2.
Here, the block “D” refers to a one-epoch delay.

Notation: [1 : N ] is used to denote{1, 2, . . . , N}, C(x) the
function log2(1 + x), XN = (X1, X2, . . . , XN), C the set of
complex numbers, andCN the complex Gaussian distribution.

II. CHANNEL MODEL

The relay broadcast channel with side message consists
of three nodes, as shown in Fig 2. LetXin ∈ Xi be the
transmitted signal of the nodei and Yjn ∈ Yj be the
received signal at nodej, at timen, over the finite alphabet
sets(X1,X2,Y2,Y3). The discrete memoryless version of the
channel model is defined by the channel transition probabil-
ity p(y2n, y3n|x1n, x2n). Over theN channel uses, node 1
wishes to sendm1 ∈ [1 : 2NR1 ] to node 2, and to send
m3 ∈ [1 : 2NR3 ] to node 3, while node 2 wishes to send
m2 ∈ [1 : 2NR2 ] to node 3. The messagesm1 andm3 are
encoded atXn

1 . The messagem2 is encoded atXn
2 , and since

the transmitter ofX2n and the receiver ofY2n are co-located at
node 2, the encoding ofX2n can depend on the past received
signalYn−1

2 :

X1n = E1(m1,m3, n) and X2n = E2(m2,Y
n−1
2 , n). (1)

After N channel uses, node 3 decodes(m2,m3) based onYN
3 .

Because node 2 is both the uplink receiver and the downlink
transmitter, it can make use of bothXN

2 andYN
2 in decoding

m1, i.e.,

m̂1 = D2(Y
N
2 ,XN

2 ) and (m̂2, m̂3) = D3(Y
N
3 ). (2)

A rate triple(R1, R2, R3) is said to be achievable if there ex-
ists a set of deterministic functions(E1, E2,D2,D3) such that
the probability of error,Pr{(m̂1, m̂2, m̂3) 6= (m1,m2,m3)},
tends to zero asN → +∞.

The above discrete memoryless channel model can be
specialized to the Gaussian case by lettingXin, Yjn ∈ C,
and by imposing power constraintsPi onXin, i ∈ {1, 2}, i.e.,
∑N

n=1 |Xin|2 ≤ NPi. As illustrated in Fig. 2, we have

Y2n = g21X1n + Z2n, (3)

Y3n = g31X1n + g32X2n + Z3n, (4)

where gji ∈ C is the channel gain from nodei to nodej,
and Zjn ∼ CN (0, σ2) is the additive white Gaussian noise
at nodej in the nth channel use. Note that due to the fact
the relay (i.e., the BS) operates in a full-duplex mode, the
self-interference at the relay has been removed implicitly.

III. A CHIEVABLE RATE REGION AND CONVERSE FOR THE

DISCRETEMEMORYLESSCASE

A. Achievability

We use the existing works [2], [3] on the relay broadcast
channel as a starting point. The works [2], [3] propose to
modify the classic Marton’s coding [6] for the broadcast
channel to the case where one receiver further helps the other
receiver via a relay link. The channel model considered in
this paper is a further generalization in which the extra side
messagem2 is carried in this relay link. The coding strategy
proposed below incorporatesm2 in Marton’s coding.

The coding strategy of [2], [3] splits each message (i.e.,m1

andm3) into the private and common parts which are dealt
with differently. The common part is decoded by both node 2
and node 3; node 2 further acts as a relay to assist node 3 in
decoding the common message. In contrast, the private parts
are decoded only by the intended node through the broadcast
channel without using node 2 as relay, so Marton’s coding
can be applied. This paper makes two modifications to this
strategy in order to enable an extra transmission ofm2. First,
we letX2 be encoded based on bothm1 andm2. Second, we
let node 3 decode the original common and private message
jointly with the new messagem2. The resulting achievable
rate region is stated below.

Theorem 1: A rate triple(R1, R2, R3) of the discrete memo-
ryless relay broadcast channel with side message is achievable
if it is in the convex hull of

R1 ≤ π3, (5a)

R2 ≤ min{π5, π2 + π6 − π1}, (5b)

R1 +R3 ≤ π3 + π4 − π1, (5c)

R2 +R3 ≤ π7, (5d)

R1 +R2 +R3 ≤ min{π2 + π7 − π1, π3 + π6 − π1} (5e)

for somep(u)p(v, w1, w3, x1|u)p(x2|u) under the constraint
thatπ1 ≤ π2 + π4, where

π1 = I(W1;W3|U, V ), (6a)

π2 = I(W1;Y2|U, V,X2), (6b)

π3 = I(V,W1;Y2|U,X2), (6c)

π4 = I(W3;Y3|U, V,X2), (6d)

π5 = I(X2;Y3|U, V,W3), (6e)

π6 = I(W3, X2;Y3|U, V ), (6f)

π7 = I(U, V,W3, X2;Y3). (6g)

Proof: Split mi into the common-private message pair
(mi0,mii) ∈ [1 : 2nRi0 ]× [1 : 2nRii ] for i ∈ {1, 3}. Introduce
a total ofT blocks for block-Markov coding. For each block
t ∈ [1 : T ], in an i.i.d. manner according to their respective
distributions, generate a common codebookuN (m10,m30), a
relay codebookvN (m10,m30|m10,m30), a private codebook
xN
2 (m2|m10,m30), a binning codebook(wN

1 (ℓ11),w
N
3 (ℓ33))

for (ℓ11, ℓ33) ∈ [1 : 2NR′

11 ] × [1 : 2NR′

11 ] whereR′
ii ≥ Rii,

with eachℓii uniformly mapped to the bin ofmii, i.e.,mii =



Bi(ℓii), and another private codebookxN
1 (ℓ11, ℓ33|m10,m30).

In block t, node 1 finds(ℓt11, ℓ
t
33) such thatmt

ii = Bi(ℓ
t
i) for

i ∈ {1, 3} and that(wN
1 (ℓt11),w

N
3 (ℓt33)) is strongly typical,

then transmitsxN
1 (ℓt11, ℓ

t
33|mt−1

10 ,mt−1
30 ). This encoding is

guaranteed to be successful provided that

R′
11 + R′

33 −R11 −R33 ≥ I(W1;W3|U, V ). (7)

In block t, after obtaining(m̂t−1
10 , m̃t−1

30 ) from the previous
block t − 1, node 2 transmitsxN

2 (mt
2|m̂t−1

10 , m̃t−1
30 ), and

recovers(m̂t
10, m̃

t
30) jointly from the received signalyN

2 ; this
decoding is successful if

R′
11 ≤ I(W1;Y2|U, V,X2), (8)

R10 +R30 +R′
11 ≤ I(V,W1;Y2|U,X2). (9)

Node 3 decodes the blocks in a backward direction (unlike the
sliding window decoding of [3]), i.e., blockt−1 prior to block
t. In block t, after obtaining(m̃t

10, m̂
t
30) from the previous

block t+1, node 1 recovers(m̃t
10, m̂

t
30, m̂

t
33, m̂

t
2) jointly; the

following conditions guarantee successful decoding:

R′
33 ≤ I(W3;Y3|U, V,X2), (10)

R2 ≤ I(X2;Y3|U, V,W3), (11)

R′
33 +R2 ≤ I(W3, X2;Y3|U, V ), (12)

R10 +R30 +R′
33 +R2 ≤ I(U, V,W3, X2;Y3). (13)

Combining (7)–(13) withR11 ≤ R′
11, R33 ≤ R′

33, R1 =
R10+R11, R3 = R30 +R33, and a nonnegative constraint on
all the rate variables, and lettingT → +∞, we establish the
proposed inner bound, including the constraintπ1 ≤ π2 + π4,
via the Fourier-Motzkin elimination.

In Theorem 1, the termπ1 is due to Marton’s coding [6],
reflecting the extent to which the encodings of the private
messagesm11 andm33 are coordinated. The following propo-
sition further shows that the constraintπ1 ≤ π2 + π4 must
be satisfied automatically ifp(u)p(v, w1, w3, x1|u)p(x2|u) is
optimally chosen for maximizing the rate region (5).

Proposition 1: The achievable rate region of Theorem 1
remains the same if the constraintπ1 ≤ π2 + π4 is removed.

Proof: LetA1 be the achievable rate region of Theorem 1,
and letA2 be the version without the constraintπ1 ≤ π2+π4.
Clearly,A1 ⊆ A2, so it suffices to proveA2 ⊆ A1. Consider
somep(u)p(v, w1, w3, x1|u)p(x2|u) such thatπ1 > π2 + π4.
Under this probability mass function, it can be shown that
A2 ⊆ A′

2 whereA′
2 is

R2 ≤ min{π5, I(X2;Y3|U, V )}, (14a)

R1 +R3 ≤ I(V ;Y2|U,X2), (14b)

R1 +R2 +R3 ≤ I(U, V,X2;Y3). (14c)

In the meanwhile,A′
2 can be attained by settingW1 = ∅ in

Theorem 1. Thus,A2 ⊆ A1.
Remark 1: Theorem 1 encompasses the following existing

achievability results. It reduces to the inner bound of [2],[3]
for the relay broadcast channel whenU = X2, and reduces
to a decode-forward inner bound of [1] for the same channel
whenW1 = W3 = ∅.

B. Converse

The existing works [2], [3] on the relay broadcast channel
use auxiliary “genie” variables to improve the cut-set bound.
Similarly, with the aid of genie, [1] enhances the cut-set bound
for the case with side message. As compared to [1], we provide
two improvements. First, we further tighten the genie-aided
bound by using more suitable auxiliary variables. Second, we
propose a new upper bound onR1 + R2 + R3 that improves
the cut-set bound. Our converse is specified in the following.

Theorem 2: Any achievable rate triple(R1, R2, R3) of
the discrete memoryless relay broadcast channel with side
message must be in the convex hull of

R1 ≤ I(U ;Y2|X2), (16a)

R1 ≤ I(X1;Y2, Y3|V,X2), (16b)

R2 ≤ I(X2;Y3|X1), (16c)

R3 ≤ I(X1;Y2, Y3|U,X2), (16d)

R3 ≤ I(V ;Y2, Y3|X2), (16e)

R1 +R3 ≤ I(X1;Y2, Y3|X2), (16f)

R2 +R3 ≤ I(X1, X2;Y3), (16g)

R1 + R2 +R3 ≤ I(X1;Y2, Y3|X2) + I(X2;Y3), (16h)

for somep(u, v, x1, x2).
Proof: Observe that (16c), (16f) and (16g) are directly

from the cut-set bound. The rest of the bound except (16h) is
based on the auxiliary variablesU andV . The existing work
[1] assumes a genie that providesUn = (Yn−1

2 ,Yn−1
3 ) and

Vn = M3 to node 1 and node 2. In contrast, by lettingUn =
(M1,M2,Y

n−1
2 ,Yn−1

3 ) and Vn = (M2,M3,Y
n−1
2 ,Yn−1

3 ),
we propose a different genie that providesUn to node 1 and
node 3, and providesVn to node 1 and node 2. This new use
of genie yields a tighter outer bound.

Regarding (16h), the main idea is to relax both encoding
and decoding. Considering node 2 and node 3 as two receivers,
we follow Sato’s approach in [7] and assume that they could
fully coordinate in their decoding. Considering node 2 as
the transmitter ofm2, we introduce a genie that provides
feedbackYn−1

3 to it to improve encoding. The converse is
then established by lettingN → +∞. Specifically,

N(R1 +R2 +R3 − ǫN )

≤ I(M1;X
N
2 ,YN

2 ) + I(M2;Y
N
3 ) + I(M3;Y

N
3 )

(a)

≤ I(M1,M3;Y
N
2 ,YN

3 ,XN
2 |M2) + I(M2;Y

N
3 )

(b)
= I(M1,M3;Y

N
2 ,YN

3 |M2) + I(M2;Y
N
3 )

(c)

≤
N
∑

n=1

[

I(M1,M3;Y2n, Y3n|M2,Y
n−1
2 ,Yn−1

3 )

+ I(M2,Y
n−1
2 ,Yn−1

3 ;Y3n)
]

(d)
=

N
∑

n=1

[

I(M1,M3;Y2n, Y3n|M2,Y
n−1
2 ,Yn−1

3 , X2n)

+ I(M2,Y
n−1
2 ,Yn−1

3 , X2n;Y3n)
]



R1 ≤ min

{

C

(

(1− ρ2)|g21|2P1

σ2 + α(1− ρ2)|g21|2P1

)

,C

(

β(1− ρ2)|g21|2P1

σ2

)}

, (15a)

R2 ≤ C

(

(1− ρ2)|g32|2P2

σ2

)

, (15b)

R3 ≤ min

{

C

(

α(1− ρ2)(|g21|2 + |g31|2)P1

σ2

)

,C

(

(1− ρ2)(|g21|2 + |g31|2)P1

σ2 + β(1 − ρ2)(|g21|2 + |g31|2)P1

)}

, (15c)

R1 +R3 ≤ C

(

(1− ρ2)(|g21|2 + |g31|2)P1

σ2

)

, (15d)

R2 +R3 ≤ C

( |g31|2P1 + |g32|2P2 + Jρ

σ2

)

, (15e)

R1 +R2 +R3 ≤ C

( |g31|2P1 + |g32|2P2 + Jρ

σ2

)

+ C

(

(1− ρ2)g221P1

σ2 + (1− ρ2)g231P1

)

,whereJ = 2|g31g32|
√

P1P2. (15f)

=

N
∑

n=1

[

I(M1,M3;Y2n, Y3n|M2,Y
n−1
2 ,Yn−1

3 , X2n)

+ I(M2,Y
n−1
2 ,Yn−1

3 ;Y3n|X2n) + I(X2n;Y3n)
]

≤
N
∑

n=1

[

I(M1,M2,M3,Y
n−1
2 ,Yn−1

3 ;Y2n, Y3n|X2n)

+ I(X2n;Y3n)
]

(e)
=

N
∑

n=1

[

I(X1n;Y2n, Y3n|X2n) + I(X2n;Y3n)
]

≤ NI(X1;Y2, Y3|X2) +NI(X2;Y3) (17)

where (a) follows by letting node 1 and node 3 fully
coordinate, both(b) and (d) follow as X2n is a function
of (M2,Y

n−1
2 ), (c) introduces a genie that provides the

past Yn−1
3 to the encoder ofX2n, and (e) follows since

(M1,M2,M3,Y
n−1
2 ,Yn−1

3 ) → X1n → (Y2n, Y3n) form a
Markov chain givenX2n.

Remark 2: As compared to the converse in [1], the converse
of Theorem 2 has extra inequalities (16a), (16d) and (16h). We
remark that the sum-rate bound (16h) is new; it is crucial for
proving the approximate capacity result for the Gaussian case
as shown in the next section.

IV. CAPACITY TO WITHIN CONSTANT GAP FOR THE

GAUSSIAN CASE

We now characterize the capacity region of the Gaussian
relay broadcast channel with side message to within one bit.

A. Achievability and Converse

First, we specialize the converse of Theorem 2 to the
Gaussian case. The following outer bound is an evaluation of
(16), but the evaluation relies on the entropy power inequality
and is nontrivial. We omit the detailed proof here.

Proposition 2: Any achievable rate triple(R1, R2, R3) of
the Gaussian relay broadcast channel with side message is in
the convex hull of (15), which is displayed at the top of the
page, for some parameters0 ≤ α, β, ρ ≤ 1.

For achievability, instead of evaluating the full mutual
information bounds of Theorem 1, we propose two simpler
schemes, corresponding to rate splitting of eitherm1 or m3,
that turn out to be sufficient for proving the constant-gap result.

Proposition 3 (D2D Message Rate Splitting): A rate triple
(R1, R2, R3) of the Gaussian relay broadcast channel with
side message is achievable if it is in the convex hull of

R1 ≤ C

(

b|g21|2P1

σ2 + c|g21|2P1

)

, (18a)

R2 ≤ C

(

e|g32|2P2

σ2

)

, (18b)

R1 +R3 ≤ C

(

b|g21|2P1

σ2 + c|g21|2P1

)

+ C

(

c|g31|2P1

σ2

)

,

(18c)

R1 +R2 +R3 ≤ C

(

b|g21|2P1

σ2 + c|g21|2P1

)

+

C

(

c|g31|2P1 + e|g32|2P2

σ2

)

, (18d)

R1 +R2 +R3 ≤ C

( |g31|2P1 + |g32|2P2 + J
√
ad

σ2

)

, (18e)

for somea, b, c, d, e ≥ 0 with a+ b+ c = 1 andd+ e = 1.

Proof: Splitting only m3 into (m30,m33), we treat
(m1,m30) as the common part to be decoded at both n-
ode 2 and node 3. The codebookswN

2 (m2), wN
3 (m33),

v̌N (m1,m30), anduN (m1,m30) are generated randomly and
independently according toCN (0, 1). In block t ∈ [1 : T ],
node 1 transmits

xN
1 (t) = vN (t) +

√

cP1w
N
3 (mt

33) (19)

where

vN (t) =
√

aP1u
N (mt−1

1 ,mt−1
30 ) +

√

bP1v̌
N (mt

1,m
t
30).

(20)
In block t, with (m̂t−1

1 , m̃t−1
30 ) obtained from the previous

block t− 1, node 2 transmits

xN
2 (t) =

√

dP2u
N (m̂t−1

1 , m̃t−1
30 ) +

√

eP2w
N
2 (mt

2). (21)



Using the decoding strategy of Theorem 1 establishes the
proposed achievability result.

Alternatively, we can splitm1 to obtain the following inner
bound. Full proof is omitted here.

Proposition 4 (Uplink Rate Splitting): A rate triple
(R1, R2, R3) of the Gaussian relay broadcast channel with
side message is achievable if it is in the convex hull of

R2 ≤ C

(

e|g32|2P2

σ2 + c|g31|2P1

)

, (22a)

R1 +R3 ≤ C

(

(b+ c)|g21|2P1

σ2

)

, (22b)

R2 +R3 ≤ C

(

(a+ b)|g31|2P1 + |g32|2P2 + J
√
ad

σ2 + c|g31|2P1

)

,

(22c)

R1 +R2 +R3 ≤ C

(

c|g21|2P1

σ2

)

+

C

(

(a+ b)|g31|2P1 + |g32|2P2 + J
√
ad

σ2 + c|g31|2P1

)

.

(22d)

for somea, b, c, d, e ≥ 0 with a+ b+ c = 1 andd+ e = 1.

B. Constant Gap Optimality

We now have two achievable rate regions based on two
different rate-splitting strategies. Suppose that the source-to-
destination channelg31 is much stronger than the uplink
channelg21, we would let node 3 decode the entirem1 for
interference cancellation, som1 ought not to be split in this
situation. Likewise, we would not splitm3 if g21 is much
stronger. Hence, we propose to apply the side-message rate
splitting strategy if|g31| ≥ |g21|, and the uplink rate splitting
strategy otherwise. This approach turns out to benear-optimal
as stated in the following main result of this paper.

Theorem 3: For the Gaussian relay broadcast channel with
side message, the outer bound of Proposition 2 is at most 1
b/s/Hz from the inner bound of Proposition 3 if|g31| ≥ |g21|,
and at most 1 b/s/Hz from the inner bound of Proposition 4 if
|g31| < |g21|. Thus, the achievability result of Theorem 1 and
the converse result of Theorem 2 are within 1 b/s/Hz from each
other for the Gaussian case. This constant gap result carries
over to the Gaussian relay broadcast channel of [2], [3].

Proof: We use the power splitting strategy of [8] to set
a = d = 0, b = 1 − c, and e = 1, but to setc differently
for the two strategies. We choosec = min{1, |g21|2P1/σ

2}
in Proposition 3, and choosec = min{1, |g31|2P1/σ

2} in
Proposition 4. The gap is established after some algebra.

Remark 3: To split rate differently depending on the channel
condition is crucial in the above result; using either of thetwo
strategies alone does give us a bounded gap.

Finally, we give a numerical example to illustrate the per-
formance of the proposed scheme. Let|g21|

2P1

σ2 = |g32|
2P2

σ2 =

SNR and |g31|
2P1

σ2 = INR, we compute the symmetric
generalized degree-of-freedom (GDoF) defined asdsym =

limSNR→+∞
mini{Ri}
log SNR

for the differentα = log INR

log SNR
. Note
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Fig. 3. Symmetric GDoFdsym vs. α =
log INR

log SNR
for the Gaussian relay

broadcast channel with side message.

that when |g31| ≥ |g21|, we use the rate-splitting strategy
of Proposition 3; when|g31| < |g21|, we use the strategy of
Proposition 4. In addition to the decode-and-forward scheme
of [1], we also plot the following benchmarks: (i) treating-
interference-as-noise; (ii) rate splitting; (iii) half-duplex, all
with a separate frequency band for side message, and with the
portionalities of the frequency band optimally determinedby
the exhaustive search. Fig. 3 shows that the proposed scheme
outperforms all other scheme in terms of GDoF.

V. CONCLUSION

The paper models the full-duplex wireless cellular network
with D2D link as a (partially cooperative) relay broadcast
channel with side message. We provide novel achievability
and converse results and prove its capacity to within 1 b/s/Hz
for the Gaussian case.
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