
Multiple Access Binary Computation Offloading via
Reinforcement Learning

Mahsa Salmani∗, Foad Sohrabi†, Timothy. N. Davidson∗ and Wei Yu†
∗McMaster University, Hamilton, Canada
†University of Toronto, Toronto, Canada

Abstract—Computation offloading enables energy-limited mo-
bile devices to expand the range of applications that they
can execute. When multiple devices each seek to execute a
latency-constrained indivisible task, the problem of device energy
minimization involves jointly making binary decisions on whether
or not each user should offload its task along with the allocation
resources to the offloading users. It has been shown that for
a K-user system that employs a multiple access scheme that
exploits the full capabilities of the channel, when the binary
decisions are given, a closed-form expression for the optimal
resource allocation can be obtained. In this paper, we propose
a reinforcement learning-based algorithm for finding offloading
decisions that takes advantage of this closed-form expression for
the resource allocation. Our numerical experiments illustrate that
the proposed algorithm can achieve a better trade-off between
performance and computational cost as compared to the existing
approaches in the literature.

I. INTRODUCTION

The opportunity for computation offloading provided by the
mobile edge computing (MEC) architecture enables mobile
devices to expand the range of energy-extensive and latency-
sensitive computational tasks that they can support [1]–[3].
In order to exploit this offloading opportunity, the available
communication and computation resources must be efficiently
shared among all the devices. This resource allocation problem
usually incolves minimizing the total energy consumption of
the devices in the offloading system [4]–[6].

The structure of the resource allocation problem depends
on the nature of the tasks to be offloaded. Tasks that have
tightly coupled components are considered to be indivisible
and hence the system must make a binary decision to either
completely offload the task or execute it locally. Tasks with
more loosely coupled components may be able to exploit the
implicit parallelism between the user and the access point
by offloading a fraction of the task (partial offloading). The
energy consumed by binary or partial offloading depends on
the extent to which the multiple access scheme can exploit
the capabilities of the channel. “Capacity-achieving” schemes
that fully exploit those capabilities (FullMA) can significantly
reduce the energy consumption over sub-optimal schemes such
as the time division multiple access scheme; e.g., [7]–[10].

In this work, we consider the energy minimization problem
for a multi-user binary computation offloading system with
a FullMA scheme, in which each user seeks to complete its
indivisible computational task within its own specific latency
constraint. For such a system, the optimization problem in-
volves binary offloading decisions and a resource allocation

among the users that are selected to offload their tasks. There
are different techniques that can be considered to address the
combinatorial structure of this problem. One could relax the
binary constraints, treat the problem as a partial offloading
problem and then round the fractional solution to a binary one;
e.g., [11]. Alternatively, one could decompose the problem
into a tree search for the offloading decisions, with a resource
allocation problem being solved at each node in the tree [7].

The main goal of this paper is to tackle the energy min-
imization problem in a FullMA binary offloading system by
training a deep neural network (DNN) in such a way that it can
generate a set of good binary offloading decisions based on the
channel gains of the users and the requirements of the tasks
that the users seek to complete. To train such a network, we
take the advantage of the closed-form optimal solution to the
resource allocation problem for a given set of binary offloading
decisions in [7] to propose an algorithm based on the reinforce-
ment learning (RL) framework. Our numerical results illustrate
that the proposed algorithm outperforms the algorithms that
are based on rounding and randomized rounding approaches,
in terms of the performance and the computational cost. It
is also exhibited in our numerical experiments that with a
performance close to that of the greedy search approach in [7],
the computational cost of the proposed RL-based algorithm is
about one order of magnitude less than that of the greedy
search in [7]. Although the RL framework has been explored
in other offloading settings [12]–[14], those works have been
limited to simplified multiple access schemes. We believe
that this work is the first that employs the RL framework to
address the energy minimization problem in a FullMA binary
computation offloading system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an offloading system with K single-antenna users,
each of which seeks to complete its computational task within
its specific latency constraint. The computational tasks are
considered to be indivisible, and hence each user either fully
offloads its task or completes it locally. The offloading system
employs a multiple access scheme that exploits the full capa-
bilities of the channel, i.e., a FullMA scheme, and the users
are served by a single-antenna access point equipped with a
computational resource that is large enough to provide all the
users with the option of offloading their tasks. To develop
a communication model for this scenario we let sk denote
the transmitted signal from user k and we let hk denote the

2019 16th Canadian Workshop on Information Theory (CWIT)

978-1-7281-0954-1/19/$31.00 ©2019 IEEE

corresponding channel. The received signal at the access point
can then be written as y =

∑K
k=1 hksk + v, where v is a

circular zero mean white Gaussian noise with variance σ2.
The problem of interest in this paper is to minimize the

energy that the mobile users expend on completing their com-
putational tasks. This involves the decisions on whether or not
each user offloads its task and the allocation of communication
resources to the offloading users so that the selected users
can simultaneously offload their tasks with minimal energy
consumption. In order to formulate that problem, let xk denote
the offloading decision for the kth user as follows,

xk =

{
1, if user k offloads its task,
0, if user k completes its task locally.

(1)

If Eoffk and Elock denote the energy consumptions of the kth

user in the case that it offloads its task, or executes it locally,
respectively, then the total energy consumption of the users is

Etotal =
∑
k xkEoffk + (1− xk)Elock . (2)

Let Bk denote the description length of the task of the
kth user. If Rk and Pk denote the transmission rate and the
transmission power (in units per channel use) of that user,
respectively, then the energy that user k would expend to
offload its task is

Eoffk = TsBk
Rk

Pk, (3)

where Ts is the symbol interval of the channel. In this
paper, we assume that the users employ dynamic voltage
scaling computation architecture which has been shown that
minimizes the local computation energy consumption in the
users [15]. The local energy consumption in that architecture
is modeled as [15],

Elock = Mk

L2
k
B3
k, (4)

where the coefficient Mk depends on the characteristics of the
chip of user k.

We consider an offloading model in which the full descrip-
tion of a computational task should be received before the
access point starts executing the task, and the results will be
sent back to the kth user when its task has been fully executed.
If tULk denotes the time it takes for the kth user to send its
task to the access point, texek denotes the time it takes for
the access point to execute that task, and tDLk denotes the
time it takes to send the result back to the user k, the latency
constraint of the kth user can be written as

tULk + texek + tDLk ≤ Lk, (5)

in which Lk denotes the maximum allowable latency for user
k. Under the assumption of sufficiently large computational
resources in the access point, and also sufficiently large
downlink communication resources for sending the results
back to the users, we can assume that Tk = texek + tDLk
is a constant for each user, e.g., [4], [16], [17]. Finally, the
transmission time of the kth user can be written as

tULk = Ts
(
Bk
Rk

)
. (6)

In order to define the achievable rate region of a FullMA
scheme, let S = {1, 2, . . . ,K} denote the set of users, and
let N denote any subset of that set, N ⊆ S . The achievable
rate region of a FullMA scheme is constrained by 2K − 1
constraints of the form∑

i∈N Ri ≤ log
(
1 +

∑
i∈N αiPi

)
. (7)

Using the notations and the definitions above, the user
energy minimization problem for a system with a full multiple
access scheme can be written as

min
{xk,Rk,Pk}Kk=1

∑
k xk(

TsBk
Rk

Pk) + (1− xk)Mk

L2
k
B3
k (8a)

s.t. xk
(
Ts
(
Bk
Rk

)
+ Tk

)
≤ Lk, ∀k, (8b)

0 ≤ Rk, ∀k, (8c)

2
∑
i∈N Ri ≤ 1 +

∑
i∈N αiPi, ∀N ⊆ S, (8d)

xk ∈ {0, 1}, ∀k, (8e)

in which αi =
|hi|2
σ2 . Note that the constraints in (8c) and (8d)

imply that the powers are all non-negative.
This problem has a mixture of binary and continuous

variables. One conventional way to address the resulting
combinatorial structure is to partition the problem into an
energy minimization problem over the continuous variables,
{Rk}Kk=1 and {Pk}Kk=1, for a given set of offloading decisions,
{xk}Kk=1, and a searching strategy over the binary offloading
decisions to find a good set of offloading decisions.

In [8], a closed-form solution for the optimal resource allo-
cation for a given set of offloading decisions was obtained. In
theory, an exhaustive search over all possible binary offloading
decisions can then be applied to the problem in (8) to achieve
the optimal set of offloading decisions. However, the search
space of 2K possibilities results in a large computational cost.
In this paper, we take the advantage of the closed-form optimal
solution of the resource allocation problem in [8] to propose
a reinforcement learning-based algorithm to obtain a close-to-
optimal offloading decisions. In Section III, we will provide a
brief explanation of the closed-form solution to the resource
allocation problem for a given set of offloading decisions. In
Section IV, we will exploit that closed-form optimal solution
to propose a RL-based approach that tackles the problem of
finding the solutions for offloading decisions.

III. OPTIMAL RESOURCE ALLOCATION FOR GIVEN
OFFLOADING DECISIONS

For a given set of offloading decisions, {xk}Kk=1, if S ′ ,
{k|xk = 1}, with |S ′| = K ′, denotes the set of users that
are selected to offload their tasks, then the remaining resource
allocation problem can be written as

min
{Rk,Pk}K

′
k=1

∑
k∈S′

TsBk
Rk

Pk (9a)

s.t. Ts
(
Bk
Rk

)
+ Tk ≤ Lk, ∀k ∈ S ′, (9b)

0 ≤ Rk, ∀k ∈ S ′, (9c)

2
∑
i∈N′ Ri ≤ 1 +

∑
i∈N ′ αiPi, ∀N ′ ⊆ S ′. (9d)

2019 16th Canadian Workshop on Information Theory (CWIT)

978-1-7281-0954-1/19/$31.00 ©2019 IEEE

To outline the closed-form solution to this problem that was
obtained in [8], we first decompose the problem into an inner
problem over the powers and an outer problem over the rates:

min
{Rk}K

′
k=1

min
{Pk}K

′
k=1

∑
k∈S′

TsBk
Rk

Pk (10)

s.t. (9b), (9c), s.t. (9d).

For a fixed set of transmission rates, the inner problem in
(10) is a linear programme in {Pk}K

′

k=1 with the feasibility
region being a polyhedron. As such, it is sufficient to consider
the vertices of the polyhedron, each of which is described by
the simultaneous satisfaction of K ′ of the linear inequality
constraints in (9d) with equality [8]. If ρk , Bk

αkRk
, and if π

denotes the permutation such that

ρπ(K) ≤ ρπ(K−1) ≤ · · · ≤ ρπ(1), (11)

exploiting the polymatroid structure of the achievable rate
region of a FullMA scheme [18] enables us to obtain the
closed-form optimal solution for the transmission powers as

Pπ(k) = (2
Rπ(k)−1
απ(k)

)2
∑k−1
j=1 Rπ(j) , ∀k ∈ S ′. (12)

With that solution in place, the outer problem in (10) can be
written as

min
{Rk}K

′
k=1

∑K′

k=1
TsBπ(k)

Rπ(k)
(2
Rπ(k)−1
απ(k)

)2
∑k−1
j=1 Rπ(j) (13a)

s.t.
(
TsBk
Lk−Tk

)
≤ Rk, ∀k ∈ S ′. (13b)

Since the objective in (13a) is increasing in each transmission
rate and the constraints are separable, the optimal rate for each
user is the minimum feasible rate according to its latency
constraint, namely, Rk = (TsBk

Lk−Tk). Having obtained the
optimal transmission rates for all the users in the set S ′, the
values of ρk can be sorted and the optimal transmission power
of each user can be obtained using (12).

IV. OFFLOADING DECISION MAKING VIA
REINFORCEMENT LEARNING

Since we have a closed-form expression for the optimal
resource allocation for a given set of offloading decisions, we
now aim to develop an efficient algorithm to find good binary
offloading decisions. In particular, we seek to find the mapping
of the system parameters, namely, the channel gains, {hk}Kk=1,
the latency constraints, {Lk}Kk=1, and the problem description
lengths, {Bk}Kk=1, to the optimal set of offloading decisions,
{xk}Kk=1, as

f : v→ x, (14)

where v = [h1, . . . , hK , L1, . . . , LK , B1, . . . , BK], and x =
[x1, . . . , xK]. In this work, we develop such a mapping
by employing an N -layer deep neural network, which is
parametrized by

θ = {W1,b1,W2,b2, . . . ,WN ,bN}, (15)

where Wn and bn denote the weights and the biases of the
neurones in the nth layer. If σn denotes the activation function

in the nth layer of the network, the mapping function of the
algorithm can be written as

fθ(v) = σN (WNσN−1(· · ·W2σ1(W1v+b1)+ · · ·)+bN).

While the activation functions at the internal layers,
σ1, σ2, . . . , σN−1, are design parameters of the network, in
order to generate binary offloading decisions as the outputs,
the activation function in the last layer of the DNN ought
to be a binary thresholding function. However, the fact that
the gradient of the binary thresholding function is zero almost
everywhere, it precludes training the network. To address this
issue, we use the sigmoid function as the activation function in
the last layer of the neural network, i.e., σN (x) = 1/(1+e−x).
This results in an output vector that provides a soft offloading
decision (the probability of offloading) for each user.

Conventional DNNs employ a supervised learning approach,
in which a large number of previously labeled input-output
data pairs is required. However, in the case of combinatorial
problems, due to the complexity of finding the optimal com-
bination for each input data sample, providing a large number
of labeled data for training the DNN is computationally costly.
In order to address this impediment, we propose an algorithm
based on the RL framework, which avoids the requirement of
labeled data to train the DNN.

The structure of the proposed algorithm is illustrated in
Fig. 1. As shown in that figure, our proposed iterative algo-
rithm contains two main phases. In the first phase, the network
takes a random set of system parameters, v, as an input and
generates soft offloading decisions (between zero and one) as
an output based on the characteristics of the DNN, i.e., the
current value of θ. The generated soft offloading decisions
(the offloading probabilities) are then used to generate different
candidates for the offloading decisions. We obtain the energy
consumption of the users for each candidate, and then we
choose the candidate with the minimum energy consumption
as the desired offloading decisions, x?. The obtained pair of
the system parameters-offloading decisions, (v,x?), is then
added to a memory of size D. After performing the first
phase for D different data samples, in the second phase of the
algorithm, the pairs of system parameters-offloading decisions
in the memory are used to update the offloading policy
by updating the parameters of the network, θ. By iterating
between those two phases, the neural network continuously
observes more samples, generates better offloading decisions
for each sample, and finally improves its offloading policy. In
the rest of this section, we will describe each of those phases
of the proposed algorithm in more details.

A. Offloading Decision Generation
In the first phase of each iteration, the network takes D

data samples and it aims to generate appropriate offloading
decisions for each data sample. To do so, in the ith iteration
of the algorithm with the offloading policy of the network
being θi, the system parameters of sample d, i.e., vi,d, are
first mapped to the set of soft offloading decisions x̂i,d as

x̂i,d = fθi(vi,d), d = 1, 2, . . . , D. (16)

2019 16th Canadian Workshop on Information Theory (CWIT)

978-1-7281-0954-1/19/$31.00 ©2019 IEEE

Input
Construction

Deep Neural
Network

Binary Offloading
Candidate Generation

Best Candidate
Selection

Input: !",$ Output: %",$∗
Input: !",' Output: %",'∗

Input: !",(Output: %",(∗

Memory

Soft Offloading
Decisions

)%",*

Binary Offloading
Decisions

%",*∗

{ℎ-}
{/-}
{0-} !",*

DNN Input

Training

Fig. 1: The structure of the proposed RL-based algorithm to obtain offloading decisions in a binary offloading system.

Now, by utilizing the obtained soft offloading decisions,
we can find the binary offloading decision vector. The choice
of the approach to generating the binary offloading decisions
involves a trade-off between the efficiency and the complexity
of the algorithm. A straightforward approach is to round the
soft offloading decisions in x̂i,d to binary decisions [11].
However, in that case the binary decisions for the users
with soft decisions close to the rounding threshold, 0.5, may
not be sufficiently accurate. In order to address this issue,
rather than generating a single binary offloading decision
vector, we consider a list Ci,d of size M ∈ Z+ of binary
offloading decision candidates that are generated based on the
soft offloading decisions in x̂i,d.

There exist various techniques in the literature of different
context to generate a list of candidates, with binary entries,
based on a given probability vector for each element. As we
will explain below, we will consider two different approaches,
namely, the order-preserving quantization approach [13], and
a bit-flipping approach, e.g., [19], [20]. Note that for ease of
explanation, we will abuse the notation by dropping indices d
and i for the generated candidates in the following subsections.

1) Order-Preserving Quantization: This approach has been
introduced in [13] to generate a list of candidate for binary of-
floading decisions in a wireless-powered TDMA-based mobile
edge network. The basic idea in this approach is to preserve the
order of the probabilities (soft decisions) during quantization
and only to change the quantization threshold based on which
the binary decisions are made.

In this approach, each candidate, say candidate m, is gener-
ated based on a threshold, denoted by x(m)

th . The first candidate
is generated based on the natural choice of x(0)th = 0.5; the jth

entry of the first candidate, x(0)
op , is generated as follows

x(0)opj
=

{
1, if x̂j ≥ 0.5,

0, if x̂j < 0.5,
(17)

for j = 1, 2, . . . ,K. In order to define the thresholds for gener-
ating the other candidates in the list, we let the permutation β
determine the order of the entries of the vector x̂ with respect
to the distance to 0.5, namely,

|x̂β(1) − 0.5| ≤ |x̂β(2) − 0.5| ≤ · · · ≤ |x̂β(K) − 0.5|, (18)

and, we set the threshold for generating candidate m to be

x
(m)
th =

{
x̂β(m) + ε, if x̂β(m) > 0.5,

x̂β(m) − ε, if x̂β(m) ≤ 0.5,
(19)

where ε is a small number that ensures that for each user there
exists a candidate with a binary offloading decision different
from the one obtained in generating the first candidate; see
(17). Accordingly, up to K + 1 candidates can be generated
by using this approach with candidate m being written as

x(m)
opj

=

{
1, if x̂j ≥ x(m)

th ,

0, if x̂j < x
(m)
th .

(20)

2) Bit Flipping: The bit flipping approach to generating
binary candidates has been used in a variety of contexts, e.g.,
[19], [20]. The basis of this approach is the binary decision
vector that is obtained by rounding the given probabilities (soft
decisions). The list is then generated by flipping each of the
entries of that vector. The rationale behind this approach is
to explore broader range of possibilities for the offloading
decisions, and, more importantly, to avoid one-bit error that
may occur in generating the first candidate from the given
probabilities.

If we let x(0)
bf = x

(0)
op denote the offloading decision vector

obtained by rounding the soft decisions, then the K candidates
are generated by flipping one of the entries of x(0)

bf as

x
(m)
bfj =

{
1− x(0)bfj , if j = m,

x
(0)
bfj , otherwise.

(21)

The list that we consider in this work contains all the
candidates generated by each of the two approaches explained
above. That is, we consider a list of M = 2K + 1 binary
decision candidates, with K + 1 candidates generated by the
order-preserving approach in Section IV-A1, and K candidates
generated by the bit-flipping approach in Section IV-A2.

Having generated the list, in order to find solutions for the
binary offloading decisions, we need to first find the minimum
user energy consumption for each of the candidates in the list,
Etotal(v,x

(m)). That can be done by using the closed-form
optimal solution explained in Section III. The candidate with

2019 16th Canadian Workshop on Information Theory (CWIT)

978-1-7281-0954-1/19/$31.00 ©2019 IEEE

the minimum user energy consumption would be then selected
as solution for the binary offloading decisions, namely,

x?i,d = arg min
xi,d∈Ci,d

Etotal(vi,d,xi,d). (22)

We remark that by using the closed-form optimal solution
for the total energy consumption in a system with given of-
floading decisions, explained in Section III, and by computing
those energies in parallel for different candidates in the list, the
step of selecting the best candidate in (22) can be performed
with a reasonable computational cost.

B. Updating Policy

In the second phase of each iteration of the proposed RL-
based algorithm, we use the D samples of system parameters-
binary decisions pairs, (vi,d,x?i,d) d = 1, 2, . . . , D, that have
been written in the memory to train the DNN by updating the
network parameter, θi, i.e., updating the offloading policy of
the network.

The considered DNN can be trained by applying stochastic
gradient descent (SGD) [21] on the set of all data samples in
the memory. The loss function that we consider is the average
cross entropy between the desired offloading decisions, x?i,d,
obtained in the first phase of the current iteration, and the
output of the DNN.

Training methods that are based on the SGD require the
computation of partial derivative of the loss function with
respect to all the (trainable) parameters of the network in
order to update those parameters—a task that can be per-
formed efficiently using back-propagation. The number of
back-propagation steps that is performed on each batch of
size D is a parameter that impacts the trade-off between the
performance and the computational cost of training a DNN.
Performing a large number of steps over a given batch of
data from the first phase can result in over-fitting, whereas
performing a small number of steps may not effectively extract
the information available in the given batch of data.

C. Implementation Details

We implement the RL framework in Fig. 1 on TensorFlow
which is an open source Python-based machine learning
framework [22]. In our implementation, the number of hidden
layers in the DNN is set to N = 8, while the number of
hidden neurones in each layer is set to be 3K. Further, we
employ rectified linear units (ReLUs) as the activation function
of the hidden layers. The size of the memory is considered
to be D = 2048. The number of back-propagation steps for
each batch is considered to be 50 for the first 1,000 iterations
and then it is reduced to 10 for the rest of the iterations. In
the second phase of the proposed algorithm, in which the
DNN parameters need to be updated, we use a variant of
the stochastic gradient descent method, called Adam optimizer
[23] with a learning rate of 10−4.

After the DNN is trained, the network is capable of gener-
ating soft offloading decisions that are ideally close to the
optimal binary offloading decisions. Therefore, in the test
phase, it is sufficient to generate a few binary offloading

decision candidates from the output of the network (the soft
offloading decisions), and to choose the candidate with the
minimum energy consumption as the binary decisions. In our
implementation, the number of candidates in the test phase
is set to 2, and those candidates are generated based on the
order-preserving approach explained in Section IV-A1.

V. NUMERICAL RESULTS

We will now illustrate the performance of the proposed RL-
based algorithm for the binary computation offloading system.
We will compare performance and computational cost of the
proposed algorithm with those of three different algorithms
developed in [7]. Before presenting those results, we first
provide a brief explanation of each of the algorithms in [7].
Relaxation-Rounding: One approach to determining binary

offloading decisions is to relax the binary constraints
on the decisions, solve the resulting partial offloading
problem, and then round the offloading fractions back
to binary decisions.

Relaxation Randomized-Rounding: The relaxation-rounding
technique can naturally be extended to randomized
rounding, in which multiple candidates for the binary
offloading decisions are generated based on independent
Bernoulli distributions with the obtained offloading
fraction in the case of partial offloading, xk ∈ [0, 1],
being considered as the probability of offloading for
user k. The candidate that leads to the minimum energy
consumption is selected as the set of binary offloading
decisions.

Greedy Search: An alternative approach is to view the of-
floading decisions as a decision tree and to employ the
tailored greedy search algorithm introduced in [7]. That
algorithm is initialized by the case in which all the users
are scheduled to complete their tasks locally. In each step,
the user for which offloading results in the maximum
reduction of the total energy consumption of the users,
is added to the set of offloading users. In addition, at
each step the users for which offloading would impose
higher energy consumption to the system than the local
execution are removed from the searching space.

In our numerical experiments, we consider a FullMA-based
offloading system with K = 20 users, each of which seeks to
complete an indivisible computational task with the description
length, Bk, randomly chosen from the set [2, 3, 4]× 106(bits),
within a specific latency constraint, Lk, randomly chosen from
the set [1.2, 2.2, 3.2](sec). We assume that the access point is
equipped with sufficiently large computation resources so that
tDL and texe can be considered constant, and equal, for all
the users. Accordingly, we set Tk = texe + tDL = 0.2(sec)
for all the users. We will also assume that the symbol rate
of the channel is 1/Ts = 106. The channel model in our
numerical experiments is a slow-fading channel with the path-
loss exponent equal to 3.7, and Rayleigh distributed small-
scale fading. The noise variance is set to σ2 = 10−13. We
consider a cell of radius R = 500m over which the users are
uniformly distributed.

2019 16th Canadian Workshop on Information Theory (CWIT)

978-1-7281-0954-1/19/$31.00 ©2019 IEEE

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Energy Consumption

C
D
F

Proposed RL−based Algorithm

Relaxation Rounding

Relaxation Randomized−Rounding

Greedy Search

Fig. 2: The CDF of the energy consumption for different methods.

TABLE I: CPU times (in seconds) required for each algorithm in Fig. 2.

Algorithm CPU time Norm. CPU time

Proposed RL-based Algorithm 5.72 1.00

Relaxation Rounding 512.93 89.59

Relaxation Randomized-Rounding 556.42 97.19

Greedy Search 187.67 32.78

The empirical cumulative distribution function (CDF) of
the energy consumption, obtained from 104 different system
parameters, for the proposed RL-based algorithm and for the
three existing algorithms explained above are illustrated in
Fig. 2. Furthermore, the corresponding CPU time required
by each of those algorithms to obtain the solution of the
energy minimization problem is provided in Table I. The
CDF of the energy consumptions in Fig. 2 and the required
CPU times in Table I indicate that the proposed RL-based
algorithm can achieve a better performance as compared
to relaxation rounding and relaxation randomized-rounding
approaches while it requires much lower CPU time. Moreover,
it can be seen that the proposed RL-based algorithm can
achieve a performance close to that of the greedy search
algorithm while the required CPU time for that algorithm
is about one order of magnitude less that that of the greedy
search approach. Considering these numerical results, it can be
concluded that the proposed RL-based algorithm can achieve
a better trade-off between performance and computational cost
as compared to the existing approaches in the literature.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Aug. 2017.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, Mar. 2017.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Netw. Appl., vol. 18, no. 1, pp.
129–140, Feb. 2013.

[4] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. Signal Inf. Process. Netw., vol. 1, no. 2, pp. 89–103, June
2015.

[5] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp.
4738–4755, Oct. 2015.

[6] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation and
communication cooperation for mobile edge computing,” Oct. 2017.
[Online]. Available: https://arxiv.org/abs/1704.06777v2

[7] M. Salmani and T. N. Davidson, “Uplink resource allocation for
multiple access computational offloading (extended version),” Apr.
2019. [Online]. Available: https://arxiv.org/abs/1809.07453v2

[8] ——, “Multiple access binary computational offloading in the K-user
case,” in Proc. IEEE Asilomar Conf. Signals, Syst., Comput., Pacific
Grove, CA, US, Oct. 2018, pp. 1599–1603.

[9] ——, “Energy-optimal computational offloading for simplified multiple
access schemes,” in Proc. IEEE Asilomar Conf. Signals, Syst., Comput.,
Pacific Grove, CA, US, Oct. 2017, pp. 1847–1851.

[10] ——, “Multiple access computational offloading: Communication
resource allocation in the two-user case (extended version),” Oct. 2018.
[Online]. Available: https://arxiv.org/abs/1805.04981v2

[11] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190, June
2018.

[12] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for MEC,” in IEEE
Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[13] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online offloading in wireless powered mobile-edge computing
networks,” Apr. 2018. [Online]. Available: https://arxiv.org/abs/1808.
01977

[14] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for IoT devices with energy harvesting,”
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930–1941, Feb. 2019.

[15] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, 2016.

[16] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797, 2018.

[17] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, 2017.

[18] D. N. C. Tse and S. V. Hanly, “Multiaccess fading channels—Part
I: Polymatroid structure, optimal resource allocation and throughput
capacities,” IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 2796–2815,
1998.

[19] M. Salmani, M. Nekuii, and T. N. Davidson, “Semidefinite relaxation
approaches to soft MIMO demodulation for higher order QAM signal-
ing,” IEEE Trans. Signal Process., vol. 65, no. 4, pp. 960–972, 2017.

[20] Y. Liu, X. Niu, and M. Zhang, “Multi-threshold bit flipping algorithm
for decoding structured LDPC codes,” IEEE Commun. Lett., vol. 19,
no. 2, pp. 127–130, 2015.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[22] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous distributed systems,” Mar. 2016. [Online]. Available:
https://arxiv.org/abs/1603.04467

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Dec. 2014. [Online]. Available: https://arxiv.org/abs/1412.6980

2019 16th Canadian Workshop on Information Theory (CWIT)

978-1-7281-0954-1/19/$31.00 ©2019 IEEE

