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ABSTRACT

This paper proposes an autoencoder-based symbol-level precoding
(SLP) scheme for a massive multiple-input multiple-output (MIMO)
system operating in a limited-scattering environment. By recogniz-
ing that only imperfect channel state information (CSI) is available
in practice, the goal of the proposed approach is to design the down-
link SLP system robust to such imperfect CSI. Toward this goal, this
paper leverages the concept of autoencoder wherein the end-to-end
communications system is modeled by a deep neural network. By
end-to-end training the proposed autoencoder, this paper shows that
the downlink symbol-level precoder as well as the receivers’ deci-
sion rule can be jointly designed in ways that are robust to channel
uncertainty. Moreover, this paper introduces a novel two-step train-
ing procedure to design a robust precoding scheme for conventional
modulations such as quadrature amplitude modulation (QAM) and
phase shift keying (PSK). Numerical results indicate that the pro-
posed autoencoder-based framework, either trained by the end-to-
end approach in which the receive constellation is a design variable
or by the proposed two-step training approach with QAM constella-
tion, can efficiently design a SLP scheme for massive MIMO system
which is robust to channel uncertainty.

1. INTRODUCTION

Massive multiple-input multiple-output (MIMO) [1, 2] is a promis-
ing technology for the next generations of cellular systems. The
massive number of antennas at the base stations (BSs) creates a large
degree of freedom for transmit precoding, which can be used to sig-
nificantly enhance the system performance. While traditional mul-
tiuser precoding focuses on eliminating interference between differ-
ent users, symbol-level precoding (SLP), proposed in [3, 4], seeks
to exploit constructive interference for enhancing received signal
power. In particular, unlike the traditional precoding methods, which
only make use of the channel state information (CSI), SLP also ex-
ploits the knowledge of users’ data symbols to improve the system
performance by manipulating the interfering signals such that they
add up constructively at the receivers [5]. To make sure that the
received symbols for every user lie in the desired constructive re-
gion, the precoding vectors have to be carefully designed which in-
volves formulating and solving non-trivial optimization problems.
Most previous works on SLP focus on phase shift keying (PSK)
modulation schemes as the decision boundaries are easier to char-
acterize, e.g., [6, 7]. Some recent works consider SLP design for
quadrature amplitude modulation (QAM) signaling, which are more
widely used in modern communications systems, by formulating and
solving the precoder design problem in a noise-less scenario [8, 9].
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Despite the gain achieved by adopting SLP, all these schemes
depend on the perfect CSI assumption. However, CSI is never per-
fect in practice due to reasons such as imperfect channel estimation,
limited/delayed feedback, and quantization errors. Therefore, de-
signing symbol-level precoders that are robust to CSI errors is cru-
cial. To this end, a robust precoding scheme has recently been pro-
posed in [10,11] by considering two types of CSI uncertainty model,
namely, spherical bounded model and stochastic Gaussian model.
Those robust SLP approaches in [10, 11] are based on the assump-
tion that CSI uncertainty model is accurate. However, in practice,
models for CSI errors are not accurate or not even available. Moti-
vated by that, this paper proposes a data-driven framework to design
a robust SLP scheme.

In particular, this paper considers a robust SLP design problem
for a massive MIMO system operating in a limited scattering envi-
ronment where only imperfect information about the sparse chan-
nel parameters are available. To address this problem, this paper
models the end-to-end multi-user massive MIMO system as a deep
neural network (DNN) autoencoder. Further, it is shown that a ro-
bust SLP design together with a robust receive constellation design
can be obtained by end-to-end training of the proposed autoencoder.
Such an end-to-end training approach exploits the full capacity of
the neural networks and leads us to a robust receive constellation
design. Further, to address the issue that the constellation designed
by the autoencoder might not be easy to implement in practice, this
paper also proposes a novel two-step training approach for conven-
tional constellations. This paper numerically shows that the pro-
posed autoencoder-based framework, either trained by the end-to-
end training approach or by the proposed two-step training approach
with QAM signaling, can design a SLP scheme for massive MIMO
system that is robust to channel uncertainty.

It is noteworthy that the use of DNNs in designing precod-
ing schemes and/or designing the receive constellations has been
adopted in some recent works, e.g. [12–14]. However, to the best
of our knowledge, this paper is the first to focus on robustness in an
end-to-end autoencoder-based SLP systems.

2. SYSTEM MODEL

Consider the downlink of a unicast massive MIMO system in which
a BS with M transmit antennas serves K single-antenna users by
communicating a message mk of B bits to user k in each channel
use, i.e.,mk ∈ {1, . . . , 2B}. For such a system, if the perfect instan-
taneous CSI is available at the BS, the transmitted signal x can be
written as a function of instantaneous CSI and the intended messages
m = [m1, . . . ,mK ]:

x = P̃ (H,m) , (1)
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Fig. 1. A DNN autoencoder representing a K-user symbol-level precoding massive MIMO system.

where P̃ is the precoding function, H , [h1, . . . ,hK ]T , and hk ∈
CM is the vector of channel gains between the BS and user k. How-
ever, in practice, the BS has only access to imperfect/partial CSI. In
this paper, we aim to design a SLP scheme which is robust to channel
uncertainty in a propagating environment with sparse channels be-
tween user terminals and the BS. In such an environment, the chan-
nel of the kth user can be modeled with L propagation paths [15]:

hk = 1√
L

∑L
`=1α`,kat (θ`,k) , (2)

where α`,k is the complex gain of the `th path between the BS and
user k, θ`,k is the corresponding AoD, and at (·) is the transmit array
response vector. For a uniform linear array with half-wavelength an-
tenna spacing, we have at (θ) =

[
1, ejπ sin(θ), . . . , ejπ(M−1) sin(θ)

]
.

In this paper, we assume that the available CSI at the BS is in the
form of imperfect estimation of the sparse channel parameters as:

α̂`,k = α`,k + ∆α`,k, (3a)

θ̂`,k = θ`,k + ∆θ`,k, (3b)

where ∆α`,k and ∆θ`,k are the estimation errors in channel gains
and AoDs, respectively. As an example, such a CSI model is valid
for frequency-division duplex systems in which the parameters of
the sparse channels are first estimated by the users through downlink
training phase and then fed back to the BS. In such a scenario, the
estimation error in channel gains is typically modeled by a Gaussian
distributed random variable, i.e., ∆α`,k ∼ CN

(
0, σ2

∆α

)
, while the

estimation error in AoDs is characterized by a uniform distributed
random variable, i.e., ∆θ`,k ∼ U (−∆θmax,∆θmax) [16, 17].

Under such a system model, the transmitted signal should now
be designed as a function of the estimated channel parameters and
the intended messages as:

x = P
(
α̂, θ̂,m

)
, (4)

where P is the SLP function, α̂ , [α̂1,1, . . . , α̂L,K ], and θ̂ ,
[θ̂1,1, . . . , θ̂L,K ]. The received signal at user k can then be modeled
as:

yk = hTk x + zk, (5)
where zk ∼ CN (0, 2σ2) is the additive white Gaussian noise. Fi-
nally, user k seeks to recover the intended message based on a set of
predefined decision rules which are functions of the received signal,
yk, and the available CSI at user k, {α̂`,k, θ̂`,k}L`=1.

The ultimate goal of this paper is to design the transmitter’s SLP
function satisfying a per-transmission power constraint, i.e., ‖x‖2 ≤
P , as well as the receivers’ decision rules such that they are robust to
the channel estimation error in (3). In the next section, we propose a
DNN autoencoder framework to tackle this problem.

3. END-TO-END SYMBOL-LEVEL PRECODING SYSTEM
DESIGN USING AUTOENCODER

In this section, we show how to represent an end-to-end unicast mas-
sive MIMO system explained in Section 2 as an autoencoder and ex-
plain how to train this autoencoder to find the SLP mapping as well
as the receivers’ decision rules.

3.1. Autoencoder Representation

In order to use existing deep learning libraries which only support
real-value operations, we first transform the complex signal model
in (5) into its equivalent real representation as:[
<{yk}
={yk}

]
︸ ︷︷ ︸

ỹk

=

[
<{hTk } −={hTk }
={hTk } <{hTk }

]
︸ ︷︷ ︸

H̃k

[
<{x}
={x}

]
︸ ︷︷ ︸

x̃

+

[
<{zk}
={zk}

]
︸ ︷︷ ︸

z̃k

.

According to (4), the transmitted signal needs to be designed as
a function of the estimated channel parameters, α̂ and θ̂, and the
intended messages m. In this work, we develop such a function by
employing a T -layer neural network in which the real-valued trans-
mitted signal can be written as:

x̃ = σT (WTσT−1 (· · ·W2σ1 (W1v + b1) + · · · ) + bT ) ,

where σt, Wt, and bt are the activation function, the weights, and
the biases in the tth layer, respectively, and v , [α̂, θ̂,m] is the
input vector to the neural network which contains the information
about the available CSI and the intended messages. In order to en-
sure that the per-transmission total power constraint, i.e., ‖x‖2 ≤ P ,
is satisfied, a normalization layer with activation function σT (x) =

min(
√
P , ‖x‖) x

‖x‖ is used at the last layer of the transmit neural
network.

Each receiver is also implemented by a feedforward neural net-
work with R dense layers, where the input to the kth user’s DNN
is the received signal, yk, together with the available CSI at user k,
{α̂`,k, θ̂`,k}L`=1. The last layer of the receive neural networks em-
ploys softmax activation function in order to output the probability
vector, pk ∈ (0, 1)|2

B |, where its ith element indicates the probabil-
ity of the intended message for user k being i. The decoded message
at user k, denoted by m̂k, corresponds then to the index of the ele-
ment of pk with the highest probability.

The block diagram of the proposed autoencoder that models a
unicast massive MIMO system is shown in Fig. 1. The procedure
of learning the symbol-level precoding function and the receivers’
decision rules using the concept of autoencoder is discussed next.



3.2. Autoencoder Training

We propose two different training approaches to designing the trans-
mit and receive operations in the DNN autoencoder in Fig. 1. In
the first approach presented in Section 3.2.1, we seek to jointly de-
sign the transmit precoding scheme and the receive constellations by
end-to-end training the autoencoder in Fig.1. In order to enable the
proposed autoencoder to work with the conventional constellations
such as QAM and PSK constellations, we propose a second approach
based on a two-step training process in Section 3.2.2.

3.2.1. End-to-End Training

The ultimate goal of the considered communications network, which
is modeled as an autoencoder in Fig. 1, is to successfully recover the
intended messages at the users. This communication task can be
treated as a classification problem for which the categorical cross-
entropy is a common choice of loss function [18]. Following this
observation, the proposed autoencoder can be trained end-to-end by
employing stochastic gradient descent (SGD) algorithms in order to
minimize the average cross-entropy between the one-hot representa-
tion of the intended messages and the probability vectors generated
by the users, which can be written as:

LCE = −Eu

 1

K2B

K∑
k=1

2B∑
m=1

log pk,m

 , (6)

where pk,m is the mth element of the probability vector pk, and the
expectation is over all the stochastic parameters in the system, i.e.,
u , [z̃,α, α̂,θ, θ̂,m].

Such an end-to-end training enables us to jointly design the
transmit precoding scheme as well as the decision rules at each user.
However, the final designed decision rules in this approach (as we
will see in Section 4) can be quite different from the conventional
decision rules. As such, they might not be easy to implement in prac-
tice. To address this issue, we next consider training the proposed
autoencoder for conventional constellations.

3.2.2. Two-Step Training for Conventional Constellations

In this section, we propose a two-step training approach to learn the
parameters of the autoencoder in Fig.1 for a scenario in which the
general shape of the receive constellation is given. In this case, the
receive neural networks are first trained to characterize the decision
boundaries of the constellation of interest, then the network in Fig. 1
is trained to learn the parameters of the transmit DNN while the re-
ceivers’ parameters are fixed. Note that for the fixed conventional
constellation, we could have used a conventional receiver with the
posterior probabilities computed based on the traditional decision
boundaries and the noise statistics. However, it is not easy to incor-
porate such a receiver in the Tensorflow environment for the train-
ing of the robust precoder. For this reason, we prefer to replace the
conventional receiver by a neural network trained in the first step,
followed by the training of the precoder in the second step.

To illustrate the first step, let us assume that the intended
message m for a user1 is modulated using one of the conven-
tional modulations, e.g., QAM or PSK, and the real-value repre-
sentation of the corresponding modulation symbol is denoted by

1In this part, we drop the user index k for the ease of notation.
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sm ∈ {s1, . . . , s2B}. Further, for correct demodulation, we con-
sider that the received signal ỹ is scaled as:

ȳ , βỹ = βH̃x̃ + βz̃ = sm + n, (7)

where β is the scaling factor and n is the effective noise. The ob-
jective of the receive DNN is to generate a probability vector p con-
taining the probability for each of the possible modulation symbols
given the observation ȳ. To develop such a DNN, we first collect
a large set of labeled data consisting of ȳ ∈ R2 as the input and
p̄ , [p̄1, . . . , p̄2B ] as the output, where p̄i = Pr(sm = si|ỹ) is
computed for n ∈ CN (0, σ2

nI). This labeled data set is then used
to train the receive DNN by applying SGD methods to minimize the
average MSE, i.e., LMSE = E

[
‖p̄− p‖2

]
.

After the receive DNNs are designed, we can apply the training
approach in Section 3.2.1 to further obtain the transmit precoding
scheme P̃ as well as the scaling factor β.

4. NUMERICAL RESULTS

In this section, we illustrate the performance of the proposed ro-
bust autoencoder-based SLP and compare that with the performance
of the non-robust SLP scheme for QAM signaling in [9]. The rea-
son that we only compare our proposed method with the non-robust
SLP scheme is that, to the best of our knowledge, there is no work
on robust SLP for limited-scattering environments. In our numer-
ical experiments, we consider a unicast massive MIMO system in
which a BS with M = 128 antennas transmits independent 4-bit
messages to K = 3 users in a single path environment, i.e., Lk =
1, ∀k. Further, we assume that the channel parameters are modeled
as αk ∼ CN (0.5 + 0.5ı, 1) and θk ∼ U(φk − 5◦, φk + 5◦), ∀k,
with {φ1, φ2, φ3} = {−30◦, 0◦,+30◦}.2

We implement the proposed network in Fig. 1 on Tensor-
Flow [19] by employing Adam optimizer [20] with a learning
rate progressively decreasing from 10−3 to 10−5. We consider
4-layer neural networks at the transmitter and receivers, while the
number of transmit and receive hidden neurons at different layers
are [1024, 512, 512, 256] and [256, 128, 64, 16], respectively. Fur-
ther, we adopt the rectified linear unit (ReLU) activation function

2In this section, we drop the index ` since single-path channel model is
considered.



Fig. 3. The decision boundaries (in grey scale) designed by the autoencoder together with the noiseless received signal (as circles) for a robust
SLP with K = 3 users.

at the hidden layers. In the training stage, it is assumed that the
noise variance, σ2, is randomly generated so that the signal-to-noise
ratio, SNR , 10 log10( P

σ2 ), is uniformly distributed in a reasonable
range, i.e., SNR ∼ U(5, 30)dB. This strategy enables the trained
network to operate on a wide range of SNRs. Finally, in order to
produce a robust precoder and/or robust constellation, 105 channel
realizations are used in the training phase; the parameters of CSI
uncertainty are σ∆α = 0.001 and ∆θmax = 1◦.

As the first experiment, we plot the average symbol error rate
(SER) against SNR in Fig. 2 for a scenario with channel uncer-
tainty parameters σ∆α = 0.001 and ∆θmax = 1◦. It can be seen
from Fig. 2 that the proposed autoencoder-based framework, either
with trainable receive constellations or with fixed 16-QAM constel-
lations, achieves a reasonable SER by designing a robust symbol-
level precoder while the non-robust SLP approach in [9] fails to
do so. Moreover, Fig. 2 indicates that the autoencoder-based SLP,
in which the receive constellation is designed via end-to-end train-
ing, achieves a better performance as compared to the autoencoder
which is trained for QAM signaling. This suggests that the end-to-
end training of the proposed autoencoder can help us design a more
robust receive constellation.

To show that the final design of the receive constellation is in-
deed robust to the CSI error, Fig. 3 plots the final decision boundaries
designed by the autoencoder together with the noiseless received sig-
nal in this case for allK = 3 users. Note that the noiseless points are
not fixed due to the channel uncertainty and due to the fact that they
depend on the data symbols of the other users. From Fig. 3, it can be
seen that the receive constellation boundaries are non-uniform where
the decision boundary of inner constellations are smaller than that of
outer constellations. This can be justified by considering the fact that
the outer constellation regions are more sensitive to the phase error
in AoDs which is the main source of CSI error in the considered
setup.

Next, in Fig. 4, we plot the average SER against the maximum
range of estimation error in AoDs, ∆θmax, in a high SNR regime, i.e.,
SNR = 30dB, while we set σ∆α = 0.001. It can be seen from Fig. 4
that there is a sharp phase transition around ∆θmax = 0.008 in the
performance of the non-robust SLP algorithm in [9], indicating that
although such a SLP approach can achieve a very good performance
when perfect CSI is available, it completely fails to work when there
is a small error in AoD estimations. This means that non-robust SLP
schemes such as the one in [9] can be extremely sensitive to the CSI
uncertainty. Fig. 4 also illustrates that the proposed autoencoder-
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based framework achieves a decent constant SER of 10−3 over the
range of ∆θmax ∈ [0, 1], which is exactly the range considered in
the training stage. This indicates that the proposed SLP scheme can
indeed provide a robust design to the channel uncertainty. Finally,
Fig. 4 shows that a relatively good performance can still be obtained
by the proposed autoencoder framework even if the actual estimation
error in AoDs is larger than that in the training phase.

5. CONCLUSION

In this work, we propose a DNN autoencoder framework for symbol-
level precoding which is robust to channel uncertainty. Two different
approaches for training the proposed autoencoder are presented. In
the first approach, we train the proposed autoencoder end-to-end to
jointly design the transmitter’s precoding scheme and the receivers’
decision rules. The second training approach which involves two-
steps, namely, receiver training followed by transmitter training, is
also presented to enable the proposed autoencoder to operate with
conventional modulation techniques. By injecting random samples
of channel variations into the training process, the proposed DNN
architecture is able to design an autoencoder-based SLP scheme for
massive MIMO system which is robust to channel uncertainty.



6. REFERENCES

[1] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta,
O. Edfors, and F. Tufvesson, “Scaling up MIMO: Opportuni-
ties and challenges with very large arrays,” IEEE Signal Pro-
cess. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta,
“Massive MIMO for next generation wireless systems,” IEEE
Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.

[3] M. Alodeh, S. Chatzinotas, and B. Ottersten, “Constructive
multiuser interference in symbol level precoding for the MISO
downlink channel,” IEEE Trans. Signal Process., vol. 63, no. 9,
pp. 2239–2252, May 2015.

[4] C. Masouros and G. Zheng, “Exploiting known interference as
green signal power for downlink beamforming optimization,”
IEEE Trans. Signal Process., vol. 63, no. 14, pp. 3628–3640,
July 2015.

[5] A. Li, D. Spano, J. Krivochiza, S. Domouchtsidis, C. G.
Tsinos, C. Masouros, S. Chatzinotas, Y. Li, B. Vucetic,
and B. Ottersten, “Interference exploitation via symbol-level
precoding: Overview, state-of-the-art and future directions,”
July 2019. [Online]. Available: https://arxiv.org/pdf/1907.
05530.pdf

[6] A. Li and C. Masouros, “Interference exploitation precoding
made practical: Optimal closed-form solutions for PSK mod-
ulations,” IEEE Trans. Wireless Commun., vol. 17, no. 11, pp.
7661–7676, Sept. 2018.

[7] K. L. Law and C. Masouros, “Symbol error rate minimization
precoding for interference exploitation,” IEEE Trans. Com-
mun., vol. 66, no. 11, pp. 5718–5731, Nov. 2018.

[8] A. Kalantari, C. G. Tsinos, M. Soltanalian, S. Chatzinotas,
W. Ma, E. G. Larsson, and B. Ottersten, “M-QAM precoder
design for MIMO directional modulation transceivers,” Nov.
2018. [Online]. Available: https://arxiv.org/abs/1702.06878

[9] A. Li, C. Masouros, Y. Li, B. Vucetic, and A. L.
Swindlehurst, “Interference exploitation precoding for multi-
level modulations: Closed-form solutions,” Nov. 2018.
[Online]. Available: https://arxiv.org/abs/1811.03289

[10] A. Haqiqatnejad, F. Kayhan, and B. Ottersten, “Robust design
of power minimizing symbol-level precoder under channel un-
certainty,” in IEEE Global Commun. Conf. (GLOBECOM),
Abu Dhabi, UAE, Dec. 2018, pp. 1–6.

[11] A. Haqiqatnejad, F. Kayhan, and B. Ottersten, “Robust SINR-
constrained symbol-level multiuser precoding with imperfect
channel knowledges,” Mar. 2019. [Online]. Available: https:
//arxiv.org/abs/1903.03371

[12] H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, “Deep-
learning-based millimeter-wave massive MIMO for hybrid
precoding,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp.
3027–3032, Mar. 2019.

[13] F. Sohrabi and W. Yu, “One-bit precoding constellation design
via autoencoder-based deep learning,” in IEEE Asilomar Conf.
Signals, Syst., Comput., Pacific Grove, CA, Nov. 2019.

[14] X. Li and A. Alkhateeb, “Deep learning for direct hybrid
precoding in millimeter wave massive MIMO systems,” May
2019. [Online]. Available: https://arxiv.org/abs/1905.13212

[15] F. Sohrabi and W. Yu, “Hybrid digital and analog beamform-
ing design for large-scale antenna arrays,” IEEE J. Sel. Topics
Signal Process., vol. 10, no. 3, pp. 501–513, Apr. 2016.

[16] L. Sun, Y. Qin, Z. Zhuang, R. Chen, Y. Zhang, J. Lu, F. Shu,
and J. Wang, “A robust secure hybrid analog and digital re-
ceive beamforming scheme for efficient interference reduc-
tion,” IEEE Access, vol. 7, pp. 22 227–22 234, Feb. 2019.

[17] C. Pradhan, A. Li, L. Zhuo, Y. Li, and B. Vucetic, “Beam mis-
alignment aware hybrid transceiver design in mmWave MIMO
systems,” IEEE Trans. Veh. Technol., vol. 68, no. 10, pp.
10 306–10 310, Oct. 2019.

[18] T. O’Shea and J. Hoydis, “An introduction to deep learning for
the physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3,
no. 4, pp. 563–575, Dec. 2017.

[19] M. Abadi et al., “TensorFlow: Large-scale machine learning
on heterogeneous distributed systems,” Mar. 2016. [Online].
Available: https://arxiv.org/abs/1603.04467

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” Dec. 2014. [Online]. Available: https://arxiv.
org/abs/1412.6980


