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Abstract—This paper considers a massive random access
scenario where a small random set of k active users out of a
larger number of n total potential users seek to transmit data to

a base station. Specifically, we examine an approach in which the
base station first determines the set of active users based on an
uplink pilot phase, then broadcasts a common feedback message
to all the active users for the scheduling of their subsequent
data transmissions. Our main question is: What is the minimum
amount of common feedback needed to schedule k users in k slots
while completely avoiding collisions? Instead of a naive scheme
of using k log(n) feedback bits, this paper presents upper and
lower bounds to show that the minimum number of required
common feedback bits scales linearly in k, plus an additive term
that scales only as Θ(log log(n)). The achievability proof is based
on a random coding argument. We further connect the problem
of constructing a minimal length feedback code to that of finding
a minimal set of complete k-partite subgraphs that form an edge
covering of a k-uniform complete hypergraph with n vertices.
Moreover, the problem is also equivalent to that of finding a
minimal perfect hashing family, thus allowing leveraging the
explicit perfect hashing code constructions for achieving collision-
free massive random access.

I. INTRODUCTION

Massive connectivity is vital for future wireless networks.

As the number of connected devices grows, the challenges in

providing connectivity also grow commensurately. The distin-

guishing features of machine-type networks, also known as the

Internet of Things (IoT), include massive numbers of devices

(in the order of 105 ∼ 106 per base-station (BS)) and sporadic

traffic, making both the identification of active devices and the

subsequent scheduling of their data transmissions challenging

tasks [1]–[5].

This paper considers a massive random access model with

n users in a cell, of which a random set of k ≪ n users seek

to send a small payload data to the BS in the uplink [1]. We

propose the following random access scheme involving three

phases with limited feedback. In the first phase, k active users

transmit pre-assigned uniquely identifying pilot sequences

over the multiple access channel to indicate their activities.

The BS uses a multiuser detection algorithm, typically involv-

ing compressed sensing [6]–[9] to determine the active user

set. In the second phase, the BS transmits common feedback

bits to all active users over a noiseless broadcast channel;

these feedback bits specify a schedule for the subsequent data

transmissions of k active users over k orthogonal slots. In the

third and final phase, the users transmit their data over the

scheduled slots based on the feedback.

In this paper, we assume that in the first phase the user activ-

ities are all detected correctly, and focus on the user scheduling

problem in the second phase. A main issue with this scheduled

approach to random access is the potentially large amount of

feedback required to ensure no collision. A trivial feedback

code is for the BS to index each of the n users and list off all

the active user indices in the order which they should transmit.

This requires a feedback of k log (n) bits. When the number

of potential users is large, the log(n) factor can be significant.

The main result of this paper is that it is possible to reduce

the feedback overhead to k log(e) +Θ(log log(n)) bits, while

maintaining zero collision in scheduling the k active users

in k slots. This is a significant reduction from k log(n). The

above scheduled approach to random access can be compared

to the contention based schemes such as slotted ALOHA [10],

which, due to collision and retransmission, has an overhead

of roughly Bk
(

1
η
− 1
)

bits, where B is the payload size

and η is the efficiency of the chosen ALOHA variant, which

varies from η = 1
e

≈ 0.37 for classic slotted ALOHA,

to η ≈ 0.8 in irregular repetition slotted ALOHA [11].

The proposed scheduled approach can also be compared to

unsourced multiple access in which the users are not required

to transmit identification information [5]. But in both schemes,

the user identification generally needs to be embedded in the

payload. When the number of potential users is large (e.g.,

up to n = 106), the cost of identification can be significant

(e.g., up to 20 bits), especially when the payload is small.

This is in contrast to the much smaller log log(n) overhead

of the scheme proposed in this paper. This log log(n) factor

is reminiscent of the identification capacity [12]; but the use

of identification code for scheduling would have required

k ·Θ(log log(n)) bits, while the scheme in this paper is more

efficient in requiring only k log(e) + Θ(log log(n)) bits.

The optimal feedback coding scheme of this paper involves

finding a minimal set of partitions over {1, . . . , n} such that

no matter which user activity pattern occurs, there is always

one partition for which each subset of the partition contains

exactly one active user. This problem turns out to be equivalent

to the hypergraph covering problem [13] and the perfect

hashing family problem [14]. In fact, the main contribution

of this paper can be viewed as the establishment of these



connections, thereby allowing the leveraging of prior results

in combinatorics to obtain upper and lower bounds and to

construct explicit codes for optimal feedback.

The notations used in this papers are as follows. We use [n]
to denote {1, 2, . . . , n} and

(

[n]
k

)

to denote the set of all k-

element subsets of [n]. All other sets are typeset in upper case

boldface. We use log(·) to denote logarithm in base 2, and

ln(·) for natural logarithm in base e. We use 1(·) to denote

the indicator function, which takes a value of 1 whenever the

expression inside is true and 0 otherwise.

II. FEEDBACK FOR COLLISION-FREE SCHEDULING

A. Encoding and Decoding Functions

Assuming successful detection of k active users among n
potential users in the first phase, the problem of designing

a collision-free feedback code for the second and the third

phases is that of constructing an encoding function at the BS

that maps all possible occurrence of k-tuples out of n users

to an index set W of rate R

f :

(

[n]

k

)

→
{

1, 2, . . . , 2R
}

, W (1)

and decoding functions gi at user i that specify each user’s

scheduled slot, i.e.,

gi : W → [k] , i ∈ [n] (2)

such that the subsequent transmissions by the k active users

over the k orthogonal slots can take place in a collision-free

manner. More specifically, define an “activity pattern” to be

some element A ∈
(

[n]
k

)

, which is a set of indices of k
active users. A feedback scheme for collision-free transmission

requires

∀A ∈
(

[n]

k

)

, ∀i, j ∈ A, gi (f (A)) 6= gj (f (A)) (3)

as collision occurs whenever the decoding functions of two

active users within the same activity pattern produce the same

output. Another way to view the collision-free condition is:

∀A ∈
(

[n]

k

)

, ∃w ∈ W s.t. ∀i, j ∈ A gi(w) 6= gj(w) (4)

where w = f(A). An optimal collision-free feedback code is

a code with minimum rate R that satisfies the collision-free

condition above.

Note that in the definition above, we have assumed fixed n
and k, and restricted the range of gi to be [k]. Relaxing the

range of gi to be [b] with b > k can potentially significantly

save feedback rate in the second phase, at a cost of a larger

number of scheduling slots in the third phase. Investigating

this tradeoff is a subject of future work. Further, the broadcast

phase is assumed to be noiseless, so that all active users receive

the same common feedback without error.

The interpretation of the collision-free condition (4) turns

out to be equivalent to the separation condition considered by

Fredman and Komlós [14] in the context of perfect hashing

families and to the hypergraph covering problem considered by

Snir [13], Radhakrishnan [15] and others. These relationships

are investigated later in this paper.

B. Set Partitioning Scheme for Collision-Free Feedback

The goal is to find efficient encoding and decoding rules

such that for any user activity pattern A, we can ensure that

the active users can be scheduled without collision. A simple

way to do this is to assign a unique index to each of n users,

then the feedback code simply consists of listing the k active

users in the order at which they should transmit. Each user

finds its index in the list, waits for its turn, then transmits at

its scheduled slot. Thus, a feedback rate of R = k⌈log(n)⌉ is

achievable for collision-free scheduling.

The main point of this paper is that it is possible to do

significantly better than the O(log(n)) scaling in the feedback

rate above. The key observation is that the above simple

scheme specifies a precise order at which k users should

transmit, but there are k! collision-free schedules over the k
users. It is possible to use the flexibility of only having to

specify one of the k! schedules to significantly reduce the

feedback rate. Further, the above simple scheme reveals the

identities of all the active users and their scheduled slots to

everyone. This is clearly extraneous information, as each user

only needs to know which slot it should transmit and does not

care about the schedules of the other users.

To illustrate how to do significantly better than O(log(n)),
consider an example of k = 2 and n ≫ k, i.e., the task

of scheduling two randomly chosen active users among a

larger number of potential users. Index each of the n users

with ⌈log(n)⌉ bits, using a binary representation of its index.

Since the binary representations of any two distinct non-

negative integers must differ in at least one position, we can

use a feedback scheme that specifies the location where the

indices of the two users differ. Each user would examine

the bit value of its own index at that location. The user

with bit value 0 would transmit first, and the user with bit

value 1 would transmit second, thus avoiding collision. Since

specifying a location in the index of length ⌈log(n)⌉ requires

R = ⌈log⌈log(n)⌉⌉ bits, we achieve O(log(log(n))) scaling

for collision-free feedback! The key to achieving such saving

is in assigning multiple “compatible” activity patterns to the

same feedback output, then defining decoding rules that result

in zero collision for all “compatible” activity patterns.

This idea of defining “compatible” activity pattern can

be generalized to arbitrary (n, k) and made rigorous using

the following definition of an encoder and decoders. Define

a k-partition of a set [n] to be a tuple of subsets X̄ =

(X1, . . . ,Xk) such that Xi

⋂

Xj = ∅, ∀i, j, and
k
⋃

i=1

Xi = [n].

Next define the following set of size-k subsets of [n] as:

C
(

X̄
)

= {{x1, . . . , xk} | xi ∈ Xi, i = 1, . . . , k} . (5)

Intuitively, these size-k subsets of [n] correspond to the activity

patterns for which each active user belongs to a distinct subset

in the partition. The idea is that by specifying a k-partition

X̄, for all activity patterns in C
(

X̄
)

, each active user can

simply look at which subset it belongs to in the partition, then

schedule itself in the slot corresponding to the index of the

subset in a collision-free manner.



To make sure that all activity patterns are covered, we

construct T partitions X̄
(1), . . . , X̄(T ) such that

T
⋃

t=1

C

(

X̄
(t)
)

=

(

[n]

k

)

. (6)

Then, whenever an activity pattern occurs, the BS only needs

to specify a partition in which the activity pattern is covered.

More formally, define the encoding function as a mapping

from the activity pattern to [T ] and the decoding functions as

mappings from [T ] to the scheduling slots such that

f(A) = t s.t. A ∈ C

(

X̄
(t)
)

(7)

gi (t) = j if i ∈ X
(t)
j (8)

where X̄
(t) = (X

(t)
1 , ...,X

(t)
k ). By (6), for any arbitrary activ-

ity pattern A, one can always find t to satisfy the condition in

(7). If more than one such t exists, an arbitrary choice is made.

Since exactly one user is in each subset of X̄(t), (8) guarantees

that the schedule is collision-free. We define the rate of this

set-partition based feedback scheme as R , log(T ).
The above set-partition view of scheduling with limited

feedback is completely general in the sense that any choice of

deterministic decoders g′i(t) that achieve no collision for every

activity pattern at a feedback rate R can be written in this set-

partition framework with 2R partitions. Given the decoding

functions g′i :
[

2R
]

→ [k], we can define 2R partitions

X̄
(t) =

(

X
(t)
1 , . . . ,X

(t)
k

)

, t ∈
[

2R
]

, where

X
(t)
j = {i | g′i (t) = j, i ∈ [n]} . (9)

Using this construction, partition t covers precisely the ac-

tivity patterns for which the feedback symbol t results in

no collision. Since the set of functions g′i needs to result

in no collision for every activity pattern A, this means that

(6) must be satisfied. Thus, we can now restrict attention to

this set-partition strategy without loss of generality for finding

the minimum feedback rate for scheduling k out of n users

in a collision-free manner. In other words, the problem now

reduces to finding the minimum T needed to satisfy (6).

III. MINIMUM FEEDBACK RATE

Let the minimum common feedback rate required for

collision-free scheduling of k out of n users be denoted as

R∗(k, n). This section first describes a random coding based

argument that shows the existence of partitions of suitable size

that satisfy (6), thereby giving an upper bound on R∗(k, n)
for arbitrary n and k. We also present two lower bounds.

Together, we show that R∗(k, n) has a linear scaling in k,

plus an additive term which is only double logarithmic in n.

A. Achievable Rate via Random Coding

The main challenge is the explicit construction of a family

of partitions that cover all activity patterns. In this section,

we use a random coding argument to show the existence of a

family of partitions with rate R that scales linearly in k plus

an additive O(log log(n)) term.

Theorem 1. Let T ∗ be the smallest integer such that there

exist partitions X̄
(1), . . . , X̄(T∗) that satisfy condition (6). Let

R∗(k, n) , log(T ∗). Assuming k|n, we have

R∗(k, n) ≤ k log(e) + log
(

ln
(n

k

)

+ 1
)

+
1

2
log

(

k

2π

)

.

(10)

Thus, for a massive random access network, there exists a

feedback strategy for scheduling k out of n users with no

collision at the above rate, which scales linearly in k plus an

O(log(log(n))) additive term.

Proof. Fix some A ∈
(

[n]
k

)

. Define a “balanced” k-partition of

[n] to be a partition X̄ for which |Xj | = n
k
, ∀j. If we choose a

balanced partition at random, the probability that A is covered

by C
(

X̄
)

can be written as:

Pr
(

A ∈ C
(

X̄
))

=
(n
k
)k

(

n

k

) =

(

k!

kk

)

γ(n, k) (11)

where we have defined γ(n, k) , nk

n(n−1)...(n−k+1) . If T
random balanced k-partitions are generated independently, the

probability that none of the T partitions cover a given activity

pattern is

Pr

(

A /∈
T
⋃

t=1

C

(

X̄
(t)
)

)

=

(

1− k!

kk
γ(n, k)

)T

. (12)

We aim to use the above expression to establish that if T
satisfies (10) then there must exist at least one family of T

partitions X̄
(1), · · · , X̄(T ) such that

T
⋃

t=1
C
(

X̄
(t)
)

=
(

[n]
k

)

. To

do this, we consider the difference between the number of

elements in
(

[n]
k

)

and the number of elements in
T
⋃

t=1
C
(

X̄
(t)
)

,

i.e., the total number of activity patterns which have not been

covered by any of the T partitions. But computing this directly

is difficult. Instead, we compute the expected value of this

difference, where the expectation is taken over randomly and

independently generated T balanced k-partitions, i.e.,

E

[

(

n

k

)

−
∣

∣

∣

∣

∣

T
⋃

t=1

C

(

X̄
(t)
)

∣

∣

∣

∣

∣

]

, D. (13)

Note that both quantities in the difference are integers. Thus,

if this expectation drops strictly below 1, then we can be

assured that there is at least one family of T k-partitions that

completely cover
(

[n]
k

)

. This is because if every such partitions

has a positive gap from
(

n

k

)

, then the expected value of the

difference would have to be greater than or equal to 1.

Next, we re-write the expectation as

D = E







(nk)
∑

l=1

1

(

Al /∈
T
⋃

t=1

C

(

X̄
(t)
)

)






, (14)

where Al, l = 1, · · · ,
(

n
k

)

is an exhaustive list of all possible

activity patterns of k out of n users. This holds because for

each fixed partition, we now simply count how many activity

patterns are not covered by the partition, then take expectation.



By linearity of the expectation, this is equivalent to:

D =

(nk)
∑

l=1

E

[

1

(

Al /∈
T
⋃

t=1

C

(

X̄
(t)
)

)]

(15)

=

(

n

k

)

E

[

1

(

A /∈
T
⋃

t=1

C

(

X̄
(t)
)

)]

(16)

=

(

n

k

)(

1− k!

kk
γ(n, k)

)T

(17)

where in the second last equality we utilize the fact that the

quantity inside the summation (15) does not change if we re-

label the entries Al, so each term in the summation must be

equal, and in the last equality, we use (12).

As mentioned before, if D < 1, then there must exist at

least one family of partitions that cover
(

[n]
k

)

. Using the fact

that (1 − x) < e−x ∀x > 0, this gives us the following

sufficient condition on T that ensures (6):
(

n

k

)

exp

(

− k!

kk
γ(n, k)T

)

≤ 1. (18)

Taking logarithm of both sides and simplifying yield

T ≥ ln

(

n

k

)(

kk

k!γ(n, k)

)

. (19)

Now, let R = log (T ) be the number of feedback bits required

to avoid collision. The above calculation ensures that if

R ≥ k log(k)− log(k!) + log





ln nk

γ(n,k)k!

γ(n, k)



 , (20)

then there must exist a collision-free feedback code for

scheduling k out of n users.

Noting that γ(n, k) > 1, we have




ln nk

γ(n,k)k!

γ(n, k)



 < k ln (n)− ln (k!) . (21)

Using the fact that k! >
√
2πkk+

1
2 e−ke

1
12k+1 , we arrive at

the following sufficient condition on R for the existence of a

collision-free feedback code:

R ≥ k log (e) + log
(

ln
(n

k

)

+ 1
)

+
1

2
log

(

k

2π

)

. (22)

The achievability at rate R means that the minimum rate

R∗(k, n) must be upper bounded by R, i.e.,

R∗(k, n) ≤ k log(e) + log
(

ln
(n

k

)

+ 1
)

+
1

2
log

(

k

2π

)

.

(23)

This minimum rate scales linearly in k, plus an additive term

that scales as O (log log (n)).

As will be explained later in the paper, the minimum rate

of the collision-free feedback code is closely related to the

study of perfect hash families. The above argument is similar

to the arguments used for proving bounds in the perfect hash

function literature [14].

B. Lower Bounds on the Minimum Feedback Rate

We now present two converse results showing that the

minimum feedback rate must have at least a linear scaling

in k and double-log scaling in n. The first result is a simple

volume bound; it is known in, e.g., [14].

Theorem 2. The minimum number of partitions

X̄
(1), . . . , X̄(T∗) that satisfy condition (6) must have its

rate R∗(k, n) , log(T ∗) bounded below by

R∗(k, n) ≥ k log (e)− log

(

nk

n(n− 1)...(n− k + 1)

)

− 1

2
log (2πk)− log (e)

12k
. (24)

Thus, scheduling k out of a total of n users for massive random

access with no collision requires a feedback rate that scales

at least linearly in k when k ≪ n.

Proof. The number of activity patterns covered by a partition

is maximized when the sizes of the sub-partitions take integer

values surrounding n
k

. In particular, we can show that

∣

∣

∣C

(

X̄
(t)
)∣

∣

∣ ≤
⌈n

k

⌉n mod k ⌊n

k

⌋k−n mod k

≤
(n

k

)k

. (25)

Thus, in order to cover all the activity patterns, i.e., to satisfy

condition (6), we must have T ∗ ≥ (nk)
(n

k )
k .

This bound is not necessarily tight, because the covering sets

C
(

X̄
(t)
)

are not necessarily disjoint. But it already provides

the desired linear scaling bound. If we use the upper bound

k! <
√
2πkk+

1
2 e−ke

1
12k , we get (24).

The second term in (24) is close to zero in the regime of

interest (i.e., n ≫ k). Thus, the minimum feedback rate must

scale at least linearly in k in this regime.

Theorem 3. The minimum number of partitions

X̄
(1), . . . , X̄(T∗) that satisfy condition (6) must have its

rate R∗(k, n) , log(T ∗) bounded below by

R∗(k, n) ≥ log log

(

n

k − 1

)

+ log(k). (26)

Thus, scheduling k out of a total of n users for massive random

access with no collision requires a feedback rate that scales

at least double logarithmically in n.

Proof. Consider the first partition. We seek to bound the

number of activity patterns that this first partition cannot cover

by noting that

C

(

X̄
(1)
)

∩
(

[n]−X
(1)
j

k

)

= ∅, j = 1, . . . , k, (27)

i.e, X̄
(1) cannot cover an activity pattern which has all its

elements drawn from [n] − X
(1)
j . Since the partition must

have at least one subset of size at most
⌊

n
k

⌋

, it must be that

X̄
(1) cannot have covered any activity patterns whose elements

are exclusively drawn from a set of indices of size m1 (n, k),
where

m1(n, k) ≥ n−
⌊n

k

⌋

≥ n

(

1− 1

k

)

. (28)



Now take the second partition, and consider how many of

the above activity patterns are still not covered by the second

partition. By the same logic, since the second partition cannot

cover any activity patterns drawn from an index set with

indices from one of the subsets of the partition removed, and

when restricted to the set of indices of size m1(n, k), there

is at least one subset which overlaps with at most
(

1− 1
k

)

portion of m1(n, k) indices, we conclude that all the activity

patterns whose elements are drawn from an index set of size

m2(n, k), where

m2(n, k) ≥ n

(

1− 1

k

)2

, (29)

cannot possibly be covered by either the first partition or the

second partition. Continuing for T partitions, the only way

that the remaining indices cannot support any activity patterns

is for mT (n, k) ≤ k−1. This gives us the following necessary

condition on T :

n

(

1− 1

k

)T

≤ k − 1. (30)

Since T ∗ must be greater than or equal to any T that satisfies

the above, by taking the logarithm of the above, we have

T ∗ ≥ log(n)− log(k − 1)

log(k)− log(k − 1)
. (31)

In terms of rate, by taking the logarithm again and by noting

that − log
(

1− 1
k

)

< 1
k

for k > 1, we get our desired result,

R∗(k, n) ≥ log log

(

n

k − 1

)

+ log(k). (26)

Thus for fixed k, the minimum feedback rate for zero collision

must scale at least double logarithmically in n.

Note that in the context of hypergraph coverings, which is

described next, (31) can be interpreted as Snir’s bound [13].

IV. HYPERGRAPHS AND PERFECT HASHING FAMILIES

The minimum set-partition problem turns out to be closely

connected to the problem of finding an edge covering of a

complete k-uniform hypergraph with a set of complete k-

partite subgraphs, and also the problem of finding a family of

perfect minimal hashing functions. These connections allow us

to leverage existing results in combinatorics for even tighter

bounds and for possible explicit feedback code constructions.

Consider a k-uniform complete hypergraph A = (V,E)
with V = [n] and E =

(

[n]
k

)

. We can interpret the partition

defined in Section III-A as a k-partite complete subgraph

of this hypergraph with edge set C
(

X̄
)

. Then, the question

of whether every edge of a hypergraph A is covered by a

set of T complete k-partite subgraphs can be interpreted as

precisely the condition (6). Thus, finding a set of complete

k-partite subgraphs of A which cover A is equivalent to the

minimum set-partition problem described earlier. The concept

of graph entropy has been used to establish lower bounds on

the minimum T ∗ required for edge covering [15].

The perfect hashing family problem is introduced by Fred-

man and Komlós [14]. An (n, b, k)-family of perfect hash

functions is a family of functions from [n] → [b] for n ≥ b ≥ k
such that for every A ⊂ [n], |A| = k, there exists a function in

the family that is injective on A. An (n, k)-family of minimal

perfect hash functions is an (n, b, k)-family of perfect hash

functions where b = k. We can view the decoding functions

(2) as a family of T = |W| functions from [n] → [k], if we

swap the argument and the subscript. With this interpretation,

we can see that our decoding functions are nothing more than

an (n, k)-family of minimal perfect hash functions.

Theorem 4 (Fredman and Komlós [14], Körner and Mar-

ton [16] [17]). The minimal number of functions T ∗ in an

(n, b, k)-family of perfect hash functions is given by:

log n

min1≤s≤k−1 g(b, s) log
b−s+1
k−s

. T ∗ .
(k − 1) logn

log 1
1−g(b,k)

(32)

where g(b, k) =
∏k−1

j=0

(

1− j
b

)

.

The notation P (n) . Q(n) means P (n) ≤ (1+o(1))Q(n),
where the o(1) term tends to zero as n tends to infinity for

fixed b, k. The upper bound in Theorem 4 is derived using

a similar argument as in Theorem 1. The proof of the lower

bound draws heavily from the theory of the entropy of graphs

introduced by Körner in earlier works. For the case of b = k >
3, we can simplify the lower bound by setting s = k − 1 in

the minimization, (which corresponds to the bound in Fredman

and Komlós [14]). The simplified lower bound can be shown to

have an Ω (log log (n)) scaling term as well as a linear term in

k when expressed in term of rate, thus it essentially combines

the more elementary results on R∗(k, n) from Theorems 2

and 3 into a single bound. For fixed k, n, the upper bound

in Theorem 4 is a strictly decreasing function in b. In the

massive access problem, b can be interpreted as the number of

orthogonal slots available for transmission in the third phase.

Intuitively, it takes less information to schedule users with no

collision if more slots are available. As a final remark, note

that perfect hashing families are also connected to a related,

albeit different, random-access problem [18]–[20].

V. CONCLUDING REMARKS

This paper considers the problem of finding the minimum-

rate feedback strategy for scheduling k out of n users in a

massive random access scenario. Our main contributions are

the formulation of this problem as a set-partition problem, and

in showing the connection of this problem to the hypergraph

covering problem and the minimum perfect hash function

problem. In doing so, we provide elementary proofs that the

optimal feedback strategy must have a rate that scales linearly

in k but double logarithmically in n, i.e., Θ(log log(n)).
This is a significant feedback reduction as compared to the

naive feedback strategy that uses k log(n) bits for scheduling

or contention based strategies that implicitly require log(n)
identification bits per user.

The connections to hypergraph covering and perfect hash

function open the possibilities for leveraging results in com-

binatorics (e.g., [21]–[24]) for the explicit construction of

practical feedback codes; this will be subject of future studies.
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