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Why is Machine Learning so Powerful?

@ Universal functional mapping — either by supervised or reinforcement learning
@ Incorporating vast amount of data over poorly defined problems

o Highly parallel implementation architecture
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Mathematical Programming

o Mathematical optimization requires highly structured models over well defined problems.

o Finding solution efficiently relies on specific and often convex optimization landscape.
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@ Traditional approach for communication engineering is to model-then-optimize.

@ Machine learning approach allows us to be data driven thereby skipping models altogether!
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Role of Machine Learning for Communication System Design

@ Traditionally, communication engineers have invested heavily on channel models.

o However, models are inherently only an approximation of the reality;
o Moreover, model parameters need to be estimated — with inherent estimation error.

@ Machine learning approach allows us to skip channel modeling altogether!

o End-to-end communication system design
o Implicitly accounting for channel uncertainty

o This talk will provide two examples in massive MIMO design for mmWave communications

o Multiuser channel estimation and feedback for FDD massive MIMO
o Constellation design for symbol-level precoding in TDD massive MIMO
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Massive MIMO for mmWave Communication

@ Motivation: mmWave massive MIMO for enhanced mobile broadband in the downlink.
o Key problem: How to obtain channel state information (CSI)?

o Time-Division Duplex (TDD) Massive MIMO:

o Channel reciprocity can be assumed.
o Uplink pilot transmission followed by CSI estimation at BS and downlink transmission.

o Frequency-Division Duplex (FDD) Massive MIMO:

o Channel reciprocity does not necessarily hold in different frequencies
o Downlink pilot transmission followed by CSI estimation and feedback at the users.
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Part |

Channel Estimation and Feedback for FDD Massive MIMO
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Channel Estimation, Feedback and Precoding in FDD Massive MIMO

Conventional downlink FDD wireless system design involves:

o Independent channel estimation at each UE based on downlink pilot.
o Independent quantization and feedback of each user’'s channel to the BS.

o Multiuser precoding at the BS based on channel feedback from ALL the users.
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Channel Estimation and Feedback

Key Observation: Single-user channel feedback for multiuser precoding is NOT optimal.

X z
by ! g, [ Feedback @

Scheme User 1 W o | IR
Fi() — : t1 gg '
 Encoder 1 ! e

° Precoding " Encoder | N ' Linear H
Scheme. v Chamnel Recovery for User 1| procoer, ||V

e P() — . eg. 7F

. . and MRT

X | i2 FERIRY]
hil s | Feedback a EM_M iz o €2 L €8] —
— Scheme User K H iz 5E
Fr() E g g 22
. EncoderK. — 9 e J L) _J
. Decoder (BS) . Encoder £ 4 ey e
e o Decoder(BS)
FDD downlink precoding as a DSC problem. The conventional scheme amounts to a separate source coding strategy.

o The FDD feedback/precoding problem is a distributed source coding (DSC) problem.

@ Much more efficient distributed feedback scheme can be designed.
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Distributed Source Coding

@ The information theoretic study of distributed source coding originated in the 1970's.

o Recovering correlated sources with separate encoders and joint decoder:

o [Slepian and Wolf, 1973] shows that optimal lossless DSC of correlated sources can be

much more efficient than independent encoding/decoding.

Example: x1,x2 € Ber(0.5) but differing with probability p in each position.
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o [Wyner and Ziv, 1976] extends the results to lossy compression.

o Computing a function of multiple sources:

o [Korner and Marton, 1979] shows how to compute mod-2 sum of two correlated sequences.

x; = 0110...0

Ry =H(p)

x, =1010..0

ENC

Ry = H(p)

ENC

DEC

Locations where
X1, X7 differ

o [Nazer and Gastpar, 2007] shows DSC has benefit even when the sources are independent.
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Channel Estimation and Feedback as Distributed Source Coding

@ We recognize that the end-to-end design of a downlink FDD precoding system can be
regarded as a DSC problem of computing a function (the downlink precoding matrix) of
independent sources (channels) under finite feedback rate constraints.
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@ The design of the optimal DSC strategy is, however, a difficult problem in general.
o Statistics of the source needs to be known.
o Optimal distributed source coding method needs to be designed.

o This motivates us to propose a deep-learning methodology to jointly design: (i) the pilot;
(ii) a deep neural network (DNN) at each UE for channel feedback, and (iii) a DNN at the
BS for precoding to achieve much better performance without explicitly channel estimation.
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Deep Learning Approach to Distributed Source Coding

Why is deep learning well suited to tackle the DSC design problem?

o Different from the convectional design methodology, deep learning can jointly design all
the components for end-to-end performance optimization.

@ Deep learning implicitly learns the channel distributions in a data-driven fashion without
requiring tractable mathematical channel models.

o Computation using trained DNN can be highly parallelized, so that the computational
burden of DNN is manageable.

Some recent work on the use of DNNs for FDD system design:
@ Single-user scenario with no interference:
o [Wen, Shih, and Jin, 2018] and [Jang, Lee, Hwang, Ren, and Lee, 2020].
@ Channel reconstruction at the BS under perfect CSI assumption:
o [Lu, Xu, Shen, Zhu, and Wang, 2019] and [Guo, Yang, Wen, Jin, and Li, 2020].

This work:
o Considers the multiuser case and take the channel estimation process into account.

o Provides end-to-end training, including pilot design, channel estimation process and precoder
design, to directly maximize the system throughput.
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System Model
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o K-user FDD downlink precoding system involves two phases:
© Downlink training and Uplink feedback phase:

Yk = th)~( +Zx, » BS broadcasts L downlink pilots.
ax = Fx k), » Each user feedbacks B bits.

@ Downlink precoding for data transmission:
vV = P (q1, e, qK) s » BS maps KB bits to precoder on M antennas.

@ Goal: Designing training pilots, feedback scheme at the users, and precoding scheme at
the BS to maximize throughput.
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Problem Formulation
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o Problem of Interest: Sum rate maximization problem under power constraint P:
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Proposed DNN Architecture

Downlink Pilot Transmission Uplink Feedback Downlink Precoding Design
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Downlink Pilot Transmission: Modelled by a linear neural layer followed by additive noise.
Uplink Feedback: Modelled by an R-layer DNN with B binary activation neurons at the last
layer: qi = oy (- or (WO, + b)) 4 b

ayer: qx =sgn (Wg'or_1 o1 (W; ¥k + by +br’ ).

o Downlink Precoding Design: Modelled by a T-layer DNN with normalization activation
function at the last layer: v =57 (\TVTGT,I ( .51 (V~V1q +Bl) +- ) +BT) .

@ Sum rate maximization can be cast as the following learning problem:

x E ~[Z log (1 hy v ]? )} )
H, 2 Hy. ’
?,{eg‘)},eT 1% >alhivil? + o2
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Training for Discrete Feedback

@ DNN training is performed using stochastic gradient descent (SGD) via back-propagation.

Challenge: The gradient of the binary hidden layer is always zeros.

Solution: Approximate sgn(u) in back-propagation phase with a differentiable function, f(u).
o Straight-through (ST) [Hinton's Lectures|:

f(u) =u.
@ Sigmoid-adjusted ST [Bengio, Léonard, and Courville, 2013]:
f(u) = 2sigm(u) — 1.
o Annealed Sigmoid-adjusted ST [Chung, Ahn, and Bengio, 2016]:
f(u) = 2sigm(alDu) — 1, where a() > oli—1).
o In this work, we adopt sigmoid-adjusted ST with the annealing trick.
3
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Generalizability

Robustness:

The DNNs are trained under varying different channel models to ensure robustness.

Enhancing generalizability for arbitrary K:

All different users adopt a common set of DNN parameters.

The DNN parameters and the pilot sequences are designed by end-to-end training of a
single-user system.

The BS-side DNN are obtained by training a K-user system with the user-side DNNs fixed.

Enhancing generalizability for arbitrary B:

Goal: Design a common user-side DNN to operate over a wide range of feedback rates.

Modify user-side DNN to output soft information (which can be quantized later at different
values of B) by using a tanh() function at the output layer.

Train the modified user-side DNN to obtain its parameter and the pilot sequences.

Apply different quantization resolutions to the user-side DNN, then conduct another round
of training to design the BS-side DNN
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Simulation Settings: Channel Model and DNN Parameters

Channel Model:

o We consider a limited-scattering propagating environment, e.g., mmWave channels:
1 L
hy = Trzlilaz,kar (Be,x) 5
P

@ Ly is the number of propagation paths,

agk ~ CN(0,1) is the complex gain of the ¢ path,

¢,k ~ U(—30°,430°) is the AoD of the ¢t path,

ar () is the array response vector, e.g., a; (6) = [1, efmsin(0) . efm(M=1) Si"(e)].

DNN Implementation:

o Implementation platform: TensorFlow and Keras.
o Optimization method: Adam optimizer with an adaptive learning rate initialized to 0.001.
o # hidden layers: T =4 and R = 4.

o # hidden neurons/layer: [1024,512,256, B] for the user-side DNNs,
[1024,512,512,2KM] for the BS-side DNN.

o Activation function of the hidden layers: Rectified linear units (ReLUs).
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Numerical Results: Performance Comparison
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Numerical Results: Generalizability in L,

=
E
S oy
E
4 [ 28 = Proposed DAN (waned for e 26 |4 — 4 =d====g Z [~ B = Proposed DN (rained for —‘g_‘___‘!*
= Proposed DNN trained for Lp=2) P g | == Proposed DNN (trained for
2 [ m— MRT w/ Full CSIT 1 e MRT w/ Full CSIT
4 MRT w/ FullGSIR & Lirited Feedback 3K MRT w/ FullGSIR & Linitd Foedback
= MR w/ OMP-CE & o Feecback —'= = RT w/ OMP-GE 8 o Foedback
0| = 4 — MRT w/ OMP-CE & Limited Feedback 1 4 | (MR w/ OMP-CE & Limited Feedback
e 7F w/ Full CSIT ZF w/ Full CSIT
—©— ZF w/ Full CSIR & Limited Feedback =—©— ZF i Full CSIR & Limited Feedback
= = ZF w/ OMP-CE & oc Feedback 2 |= = =2zF w/ OMP-CE & o Feedback
=< 2F wOMP-CE & Linied Feedback_| | | = < = 2F w/ OP.GE & Uit Feedback_| | |
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Number of Paths (L,) Number of Paths (L,)
Figure: Sum rate achieved by different methods in a Figure: Sum rate achieved by different methods in a

2-user FDD system with M = 64, L = 8, B = 30, and  2-user FDD system with M = 64, L = 64, B = 30, and
SNR = 10dB. SNR = 10dB.

Wei Yu iversi Machine Learning for Massive MIMO



Numerical Results: Generalizability in B
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Figure: Sum rate achieved by different methods in a
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Figure: The empirical PDF of the soft output layer in
the modified user-side DNN, trained for M = 64,

K =2, and L = 8. This figure also indicates the
quantization regions and the corresponding
representation points for the optimal 3-bit quantizer.
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Numerical Results: Generalizability in K
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Figure: Sum rate achieved by different methods in a K-user FDD system with M = 64, L =8, B =30, L, = 2,
and SNR = 10dB.

o As the input dimension of the decoding DNN is KB, for larger values of K we need to
increase the capacity of the BS'’s DNN in order to fully process the input signals.

o In this simulations, we employ a 4-layer DNN at the BS with [2048,1024,512, 2MK] number
of neurons per layer.
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Summary of Part |

@ This work shows that the design of a downlink FDD massive MIMO system with limited
feedback can be formulated as a DSC problem.

o To solve such a challenging DSC problem, we propose a novel deep learning framework.

@ In particular, we represent an end-to-end FDD downlink precoding system, including
the downlink training phase, the uplink feedback phase, and the downlink precoding phase,
using a user-side DNN and a BS-side DNN.

@ We propose a machine learning framework to jointly design:

o The pilots in the downlink training phase,
e The channel estimation and feedback strategy adopted at the users,
e The precoding scheme at the BS.

@ We also investigate how to make the proposed DNN architecture more generalizable to
different system parameters.

o Numerical results show that the proposed DSC strategy for FDD precoding, which bypasses
explicit channel estimation, can achieve an outstanding performance.
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Part 11

Symbol-Level Precoding for TDD Massive MIMO
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In TDD systems, CSI can be estimated in the uplink for downlink beamforming due to reciprocity.

o Fully Digital Beamforming

o Requires one high-resolution RF chain per antenna element.
o Has high power consumption and hardware complexity.

o Lower-Complexity Architectures:
Analog Beamforming
Antenna Switching

Hybrid Beamforming
One-Bit Precoding v/

Beamforming design is a challenging problem. Further, how to take CSI uncertainty into account?
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One-Bit Precoding Architecture
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@ One RF chain is dedicated to each antenna but with only 1-bit resolution per dimension.
1

ﬂ(iliz)}.

@ The transmitted signal of each antenna is chosen from: X = {

o Power saving due to low-resolution digital-to-analog converter.
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How to Perform One-Bit Precoding?

o Quantized-ZF one-bit precoding: [Saxena, Fijalkow, and Swindlehurst, 2016].
o Performance at moderate-to-high SNRs is limited by quantization noise.

@ One-bit beamforming at both transmitter and receivers: [Usman, Jedda, Mezghani, and Nossek, 2016].
o Restricted to the QPSK constellation.

@ One-bit precoding for higher order modulations:

° Examples: POKEMON [Castafieda, Goldstein, and Studer, 2017], SQU|D [Jacobsson, Durisi, Coldrey,
Goldstein, and Studer, 2016], and Greedy-exhaustive one-bit precoding [Sohrabi, Liu, and Yu, 2018].
o Restricted to the conventional QAM and PSK constellations.

@ We can actually jointly design the receive constellation and one-bit precoder.
o Machine learning, specifically the concept of autoencoder, allows us to do this efficiently.
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One-Bit Symbol-Level Precoding
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@ Target constellation point s is taken from a constellation conventionally QAM or PSK.

M
o Symbol-by-symbol precoding: x = P(s, H), where x € xM = {% (£1+ z)}

o Received signal at the k™" user: y, = U%h:’x + z.

@ Signal recovery at the receiver: § = Q(yk).

o Goal: Design the receive constellation and precoder P(s, H) to minimize average SER.
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Symbol-Level Precoding

@ The one-bit precoding architecture is an example of symbol-level precoding.
o Traditional Multiuser Precoding:

o Focuses on eliminating interference between different users.
o Designs precoders only based on channel state information (CSI).

o Symbol-Level Precoding (SLP):

o Exploits constructive interference for enhancing received signal power.
o Designs precoders by exploiting the knowledge of users’ data symbol, in addition to CSI.
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Symbol-Level Precoding: Ideas and Related Works

o Symbol-level Precoding Main ldea:
o Design precoders such that received symbols for all users lie in the constructive regions.
o Such a precoding design involves formulating/solving non-trivial optimization problems.
o The idea of SLP is pioneered in [Alodeh, Chatzinotas, Ottersten, 2015] and [Masouros, G. Zheng, 2015].

e o e o
(] [
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[ ] ]

e o e o

Constructive regions Constructive regions
for 8-PSK for 16-0AM

@ Most previous works on SLP focus on PSK modulations.

o This is because the decision boundaries in PSK are easier to characterize.
o Examples: [Li and Masouros, 2018] and [Law and Masouros, 2018].

@ Some recent works consider SLP design for QAM modulations.

o Examples: [Kalantari et al., 2018] and [Li, Masouros, Li, Vucetic, and Swindlehurst, 2018].
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Constellation Design: Single-User MISO Case

o Precoder design problem given the constellation point s':

X7 = argmin ’\/ ﬁth,- —s

xj€xM

: ®3)

@ Observation: For a fixed channel, the possible realizations of hHx when x € XM are
distributed densely close to the origin, e.g.,

. n«(‘}]‘“x) 2
2

@ [Sohrabi, Liu, Yu '08]: Set the range to be 1/ —, or 80% of the infinite resolution case
T

o Can we use a neural network to “discover” the optimal constellation and precoder?
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@ The real-valued received signal model:
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@ The precoder is modeled by a DNN with T dense layers followed by a binary layer:
X = sgn (Wrory (---Wao1 (Wilm + b1) + -+ -br1) + br),

o me {1,...,|C|} denotes the index of the intended symbol.
o1y, € RIC! denotes the one-hot representation of m.
o oy is the activation function for the tt" layer.
@ Binary layer ensures that the one-bit constraints on the elements of X are met.
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Neural Network Representation: Receiver Side

Model

Qyk)
e ol 2

Receiver &k Receiver k

@ The receivers’' operations are modeled by another DNN with R dense layers.

@ Softmax activation function in the last layer:
o To generate py € (0, 1)|C‘, where its i element indicates the probability that the index
of the intended symbol is i.
@ Receiver k declares g, which corresponds to the index of largest pg.

o We consider one common DNN to represent the decoding procedure of different users.
o Reduces dimensions of the receivers’ trainable parameters.
— Faster training procedure.

o The BS needs to broadcast the common constellation parameters to all the users.
= Reduction in amount of required feedback.
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oftmax argmax

Layer
___________________ l
Receiver 1
"""""" pp—
K| K
Softmax
Transmitter N ;
Receiver K
@ As proof of concept, consider the case that a common symbol is sent to multiple users.
o Input: Index of the intended symbol.
@ Outputs: Index of the intended symbol decoded at the receivers.
o After the network being trained for a fixed {ﬁk}le, we obtain:

o The precoding procedure at the transmitter.
o The constellation design and decision boundaries at the receivers.

@ How to train this network?

o SGD-based training via back-propagation.
o The binary layer is approximated by annealed sigmoid-adjusted straight-through.

Wei Yu (University of Toronto) Machine Learning for Massive MIMO July 2020 33/48



Implementation Details

Implementation platform: TensorFlow.
Optimization method: Adam optimizer with an adaptive learning rate initialized to 0.001. .
# hidden layers: Tx = 12 and Rx = 5.
# hidden neurons/layer: 6M for the transmitter and 2M for the receiver.
Activation function of the hidden layers: Exponential linear units (ELUs).
Loss Function: Cross entropy between 1., and the probability vectors, py:
1 K €|
L:CE = _Etraining samples | 77~/ Z Z IOg Pk,m| - (4)
KiC| -
k=1 m=1
Annealing parameter update rule:
o) = 1,002~ (5)

with a(®) = 1 such that 1.0022000 ~; 55,

In the training stage, the noise variance is randomly generated so that:

SNR £ 10logyy(525) € [4dB, 16dB]. (6)

202
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Numerical Results:

Autoencoder-Based Constellation

ation Points

Sy}

R{yi}

Figure: The receive constellation points and their corresponding decision boundaries obtained from a trained
autoencoder in a system with M = 128, K = 4, and |C| = 64.

@ The furthest constellation points are located at the following distance from the origin:

2P .
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Numerical Results with Varying Channels

o Constellation range needs to adapt to the channel:
o Consider the constellation designed for one particular H.
o Rescale that constellation for other H so that the constellation range becomes d*.

Average SER

= = = ]-Bit Precoding, PSK constellation
1-Bit Precoding, QAM constellation
- s 1-Bit Precoding, AE constellation
10 n T n

4 6 8 10 12 14 16
SNR (dB)

Figure: Average SER versus SNR in a system with M = 128, K = 4, and |C| = 64 using the greedy plus
exhaustic search based one-bit precoding algorithm of [Sohrabi, Liu, and Yu, 2018].
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Robust Symbol-Level Precoding

@ CSl is never perfect in practice due to several reasons such as:
o Imperfect channel estimation,
o Limited/delayed feedback in FDD systems,
o Mismatch in channel reciprocity in TDD systems.

—> Robust symbol-level precoding design is crucial.

AH

H

@ A robust SLP scheme has recently been proposed in [Hagigatnejad, Kayhan, and Ottersten, 2019]

o Restricted to spherical bounded model and stochastic Gaussian model.
o Based on the assumption that CSI uncertainty model is accurate.

@ In contrast, a data-driven robust SLP design can implicitly account for channel uncertainty.
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Symbol-Level Precoding with CSI Uncertainty
Wil CSIR, R
o)

| Receivers’ Decision Rules? |

CSIRk
e H My
Transmitter’s| hy Ok (i, CSIR)
SLP Scheme? Yk
o Target message my of B-bits for each user is uniformly taken from {1,...,28}.

o Symbol-by-symbol precoding: x = P(m, CSIT), satisfying ||x||? < P.
o Received signal at the k™ user: y, = hi'x + z.
o Message recovery at the kt user: iy = Qx(yk, CSIRy).

@ Goal: Design the precoder function P(-) and the receivers’ decision rules Q(-), Vk, to
minimize average SER.
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CSI Model

@ We consider a propagating environment with sparse channels, e.g., mmWave channels:

he = ﬁZLlae,kat IR

o L is the number of propagation paths,
o oy k is the complex gain of the £ path,
o 0k is the AoD of the £ path,
o at (*) is the array response vector, e.g., a: (0) = [1,&/™ sin(€) ..., ef‘"(M_l)Si”(e)}.
o We assume that the available CSl is in the form of imperfect estimation of the sparse
channel parameters as:
ok = gk + Day g,
O = Opuc + DOk,

where Aay x ~ CN (0,03%,,) and Ab; x ~ U (—AOmax, Abmax).

o Summary of the CSI model: CSIT = {d. . A 4 }vei = {6, 6}
CSIRk = {&uk, 00,k }ve
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Neural Network Representation: Transmitter Side

@ NN NN RN Ny,

( =

Model | - g 1
: Transmit S %
i m 85 X
H M ‘ R §+ DN—N = § IL

@ Layers §
- s 1
pe \---------—I
Transmitter

@ The real-valued received signal model:

|:§R{Yk}:| _ [ﬁﬁ{h’ﬂ} —3{h’i}] rﬁ{x}] N [%{Zk}]_

S| Sy R | [S{x) S{zc}
—_——
Yk He X Zk

@ The precoder is modeled by a DNN with T dense layers followed by a normalization layer:
X = o1 (Wyor1(---Wao1 (Wiv+b1) +---) +bT),

o ot, Wy, and b are the activation function, the weights, and the biases in the tth layer.
o v =[&,0,m] is the input vector to the DNN.

o Normalization layer, o7 (x) = min(v/P, ||><||)H§—|| ensures that the power constraint is met.
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Neural Network Representation: Receiver Side
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CSIR Model
k . — Softmax
My e argmax
Qi ¥k, CSIRy) - DNN Layer
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Receiver &

@ The receivers’ operations are modeled by another DNN with R dense layers.

o Softmax activation function in the last layer:

o To generate py € (0, 1)|C‘, where its it element indicates the probability that the index
of the intended symbol is i.

@ Receiver k declares my, which corresponds to the index of largest py.
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End-to-End Autoencoder Representation

Z
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Transmit E i
DNN =
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Receiver K

The BS aims to send independent messages to multiple users.

@ Inputs: Intended messages and estimated channel parameters.

Outputs: Intended messages recovered at the users.

After the network is trained for a fixed {ﬁk}le, we obtain:

o The precoding procedure at the transmitter.
o The decision boundaries at the receivers.

@ End-to-End SGD-based training with cross-entropy loss.
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Implementation Details

o Implementation platform: TensorFlow.
o Optimization method: Adam optimizer with an adaptive learning rate initialized to 0.001.
o 7 hidden layers: T =4 and R = 4.

o # hidden neurons/layer: [1024,512,512,2M] for the transmitter,
[256, 128, 64, 28] for the receivers.

@ Activation function of the hidden layers: Rectified linear units (ReLUs).

o In the training stage, the noise variance is generated so that:
SNR £ 10logyo( L) € U(5,30)dB.

e We use 10° channel realizations for training and set the CS| parameters as:
o Linear array with M = 128.
o Single-path, i.e., Ly = 1,Vk.
o ay ~CN(0.5+ 0.5, 1),
o Ok ~U(px — 5°, ¢k + 5°),Vk, with {¢1, 2, #3} = {—30°,0°,+30°},
o opaq = 0.001 and Afmax = 1°.
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Numerical Results: SER Performance vs SNR

Average SER

Proposed AE w/ End-to-End training
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Figure: Avg. SER versus SNR in a system with M = 128, K = 3, B = 4bits, AOmax = 1° and oa, = 0.001.
“Non-robust SLP” corresponds to the SLP algorithm in [Li, Masouros, Li, Vucetic, and Swindlehurst, 2018].
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Constellation Design by Autoencoder with End-to-End Training

Figure: The decision boundaries (in grey scale) designed by the autoencoder together with the noiseless received
signal (as circles) for a robust SLP with K = 3 users.

CSI Uncertainty is Explicitly Accounted for in Constellation Design!
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Numerical Results: SER Performance vs CSI Uncertainty

Average SER
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Figure: Avg. SER versus A6,y in a system with M = 128, K = 3, B = 4bits, SNR = 30dB and oa, = 0.001.
“Non-robust SLP” corresponds to the SLP algorithm in [Li, Masouros, Li, Vucetic, and Swindlehurst, 2018].
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Conclusion and Summary

Summary of Part Il

@ We propose an end-to-end design for one-bit precoding and for symbol-level precoding.
@ We use an DNN autoencoder to jointly design the transciever and the constellation.

@ The design account for channel estimation and leads to a more robust receive constellation
in a limited scattering environment.

Concluding Remarks:
@ Traditional paradigm for communication system design is to model-then-optimize.
@ Machine learning allows a data-driven approach that

o Perform channel estimation, feedback and precoding without explicit channel model;
o Perform robust precoding and detection without explicit channel uncertainty model.

o Key future issues are: generalizability, training and computational complexity
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