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Abstract—Scheduling is an important task for interference
avoidance and for quality-of-service provisioning in dense wireless
networks. While most existing works frame the scheduling task
as an optimization problem, due to the non-convex structure of
the problem, the existing solutions can reach local optima only
and tend to have high computational complexity. This paper
explores an alternative perspective to scheduling. Recognizing the
importance of interference management, we experiment with the
use of various clustering techniques for the scheduling task in a
wireless device-to-device (D2D) network. Specifically, we construct
a representation of interference in the wireless network, form
clusters of highly interfering D2D links, then schedule only one
link in each cluster. We compare different clustering strategies and
show the promising potential of very low complexity scheduling
algorithms based on this clustering approach to the wireless link
scheduling problem.

I. INTRODUCTION

Scheduling over wireless networks with densely deployed
device-to-device (D2D) links has long been a well-studied
but challenging task. There are a large number of works
exploring various different scheduling strategies, such as greedy
heuristic search [1], iterative computations with local conver-
gence guarantee [2], [3], methods based on information theory
considerations [4], [5], or methods for achieving the global
optimum but with exponential complexity such as polyblock-
based optimization [6] or nonlinear column generation [7].
These traditional mathematical optimization algorithms always
require complete channel state information (CSI) and tend to
have high algorithmic complexities. For maximizing long-term
network utility (such as proportional fairness), where repeated
optimization is needed over the time slots, the optimization
approach would incur a large computation time overhead.

There are also a parallel set of works addressing the resources
allocation problem through modeling and resolving conflicts
between neighbouring links. In [8]–[11], conflict graphs are
constructed for hypergraph coloring in time slots or frequency
bands allocations, where conflicts are modeled as edges in
graphs. Further in [12], clusters of non-interfering mobile
stations are identified through the max-K-Cut algorithm for
the problem of subchannel allocation. In addition, [13] focuses
on subchannels allocations for the uplink in femtocells via
forming clusters of interfering mobile users, with orthogonal
subchannels assigned within each cluster.

This paper explores opportunities for developing scheduling
algorithms for wireless D2D networks through graph cluster-
ing. Our main idea is to recognize that the clustering strategy
is a good fit for the wireless scheduling problem, because

by forming clusters consisting D2D links with strong mutual
interferences and by scheduling only one link from each cluster
at the time, interference can be naturally avoided.

In this respect, our approach is related to that of [14],
which applies the graph spectral clustering technique to the link
scheduling and channel assignment problem. In [14], by con-
sidering tuples of link-and-channel combinations, clusters that
consist of compatible combinations are formed, and scheduling
is done by searching for the best cluster. It is worth emphasiz-
ing that the approach of [14] is actually the exact opposite
of the proposed technique of this paper. Instead of putting
compatible links into clusters as in [14], this paper proposes
to put incompatible (i.e., mutually interfering) links into the
same cluster, then to schedule one link from each cluster.
The main advantage of the proposed approach as compared
to [14] is that our approach allows a natural extension to
optimizing network utilities with long-term fairness. Further,
this paper considers various different clustering techniques,
while [14] only explores graph spectral clustering. As shown in
this work, there are different clustering techniques that provide
comparable performances yet with much reduced complexities.

Specifically, for a given wireless network, this paper pro-
poses to construct a graph with the proximity measures (either
channel state information (CSI) or geographical location infor-
mation) reflecting the interference strength between the D2D
links. We then explore the following clustering techniques:
(i) Spectral Clustering, (ii) Hierarchical Clustering, (iii) K-
Means Clustering; then proceed with two simple scheduling
heuristics: scheduling the link closest to the cluster center
for the sum-rate maximization; and scheduling all links in
a within-cluster round-robin fashion for proportional fairness
optimization. Despite the simplicity of these heuristics, the
simulation results are competitive to the state-of-art optimiza-
tion algorithms, while having advantageous time complexities
especially for optimizing the long-term network utility.

II. WIRELESS LINK SCHEDULING

Consider a wireless network consists of N independent D2D
links with full frequency reuse over the bandwidth W . We use
pi to denote the transmit power level at the transmitter of the ith
link, gij ∈ R to denote the channel gain from the transmitter of
the jth link to the receiver of the ith link, and σ2 to denote the
background noise power level. A set of scheduling decisions
is to select a subset of links to be activated, using a set of
binary optimization variables {xi}i∈[1,N ], denoting whether the
ith transmitter will transmit at its full power pi (xi = 1); or



get turned off (xi = 0). Correspondingly, the achievable rate
for link i is:

Ri = W log

(
1 +

giipixi
Γ(
∑

j 6=i gijpjxj + σ2)

)
, (1)

where Γ denotes the SNR gap to the information theoretical
channel capacity, introduced by practical coding and modula-
tion for the linear Gaussian channel [15].

A. Sum-Rate Maximization

The sum-rate maximization scheduling problem is as follows:

maximize
x

N∑
i=1

Ri (2a)

subject to xi ∈ {0, 1}, ∀i. (2b)

This optimization is challenging due to the highly non-linear
interaction between variables {xi} in the signal-to-interference-
and-noise (SINR) expressions. One state-of-the-art scheduling
algorithm that can provide locally optimal solutions is FPLinQ
[2], which uses the fractional programming optimization tech-
nique, requiring accurate {gij} as inputs. We use this method as
a benchmark to test the competitiveness of the new approaches.

B. Proportional Fairness Scheduling

While Problem (2) has been extensively studied, it does not
incorporate the fairness among all links. To provide fairness, we
can maximize the proportional fairness utility over the multiple
time slots. The overall network utility is defined as the sum of
certain utility function of each link’s long-term average rate.
The long-term average rate up to some time t, denoted by R̄t,
is computed iteratively in an exponentially weighted fashion:

R̄t
i = (1− α)R̄t−1

i + αRt
i t ≤ T (3)

where Rt
i is the ith link’s instantaneous rate at time-slot t

(computed by (1)). The proportional fairness utility uses the
logarithm function as the utility function. In this case, the
network utility becomes:

N∑
i=1

log(R̄i) (4)

To maximize (4), traditional optimization algorithms (e.g.
FPLinQ) perform incremental optimization [16], [17], in which
the utility optimization problem is equivalently solved by
maximizing a weighted sum-rate problem in each time-slot as
follows:

N∑
i=1

wiR
t
i (5)

with the weights being computed as:

wi =
∂U(R̄t

i)

∂R

∣∣∣∣
R̄t

i
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∂ log(R̄t

i)

∂R
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R̄t

i

=
1

R̄t
i

. (6)

III. REPRESENTING INTERFERENCE

This paper proposes to partition the links into clusters with
heavily interfering links, then avoid multiple links being simul-
taneously scheduled within each cluster in order to effectively
enforce interference avoidance. The first step is to represent the
structure of interference either as a graph or in the geographic
spatial domain.

A. Graph Representation of Interference

The structure of interference in a wireless network can be
represented by a weighted graph. We consider undirected graph
in this paper, and construct the graph representation for the
wireless D2D network as follows. Each node represents a D2D
link, while each edge represents the maximum interference level
between the two D2D links it connects. Specifically, we
• Step 1: Assign one node for each D2D link;
• Step 2: Draw an undirected edge between every pair of

nodes to form a fully-connected graph;
• Step 3: Set the edge weight connecting the ith and the jth

links, eij , to be:

weight(eij)
.
= max(gij , gji) (7)

The rationale for using the maximum interference level is
that as long as one of the two cross-link channels creates
strong interference, the corresponding two links should not be
scheduled at the same time. Naturally, a cluster of tightly-
connected nodes represents a set of heavily-interfering D2D
links that should be avoided being scheduled simultaneously.
We perform clustering on graphs with spectral clustering and
hierarchical clustering (and its equal cluster size variant), then
schedule only one link per cluster to avoid interference.

B. Geographic Spatial Representation of Interference

The above-mentioned graph construction requires full CSI in-
formation, which are not always readily available. Alternatively,
for wireless D2D networks, the O(N) geographic information
(i.e., the locations of the transmitters and receivers) provides
a much more concise representation of approximate channel
conditions. In this paper, we further explore the option of
clustering on 2-D Euclidean space. Specifically, we represent
each link by a 2-D point with its coordinates determined by the
mid-point location between its transmitter and receiver. The
distance of any two points, corresponding to the Euclidean
distance between the mid-points of two links, provides a close
approximation to the interference level between these two links.
We then perform clustering on the 2-D Euclidean space with
K-Means and its equal cluster size variant to avoid interference.
Although using mid-point location for the 2-D representation of
a link is a heuristic, simulations suggest that such representation
provides close-to-optimal scheduling performances, even for
wireless networks with long D2D links.

IV. CLUSTERING TECHNIQUES

This paper explores three clustering techniques: spectral
clustering and hierarchical clustering and its equal cluster size



variant on graphs; also K-Means clustering and its equal cluster
size variant in the geographic spatial domain.

A. Spectral Clustering

Spectral clustering is a classic algorithm operating on graphs
with edge weights representing the affinities or adjacencies
between any two nodes [18]. By finding the eigenvalues and
eigenvectors from the Laplacian matrix of the graph (con-
structed from the adjacency matrix), the spectral clustering
technique performs dimension reduction on the original graph,
followed by basic clustering techniques (e.g. k-means [19]) on
the obtained low dimensional representations. For our explo-
ration, we use the version of the spectral clustering algorithm
from [20] for obtaining multiple clusters on input graphs.

B. Hierarchical Clustering and its Equal Cluster Size Variant

Hierarchical clustering also operate on graphs with pairwise
adjacency measures between the nodes. Compared with spec-
tral clustering, it enjoys better time complexity, while having
several shortcomings: the lack of theoretical justification, the
need for ambiguous inter-cluster adjacency measure, and the
lack of regularization on cluster sizes. In this paper, the last
shortcoming is resolved via its equal cluster size variant.

The algorithm runs as follows: starting with each node
being its own cluster, the hierarchical clustering proceeds by a
recursive merging the neighbouring clusters: it finds the closest
pair of clusters (corresponding to the edge with the largest
weight) and merges the two clusters into one. The process
stops until the desired number of clusters are formed. For the
adjacency measure between two clusters with more than one
node, we use the average of the pairwise distances among all
connections between these clusters.

The equal cluster size variant operates on the same graphs,
with a small change within its recursive merging process: once
a cluster reaches (or potentially exceeding) the desired size,
the entire cluster is fixed and removed from the graph, then the
process continues for the remaining clusters.

C. K-Means Clustering and its Equal Cluster Size Variant

We also experiment with K-means clustering [19] based on
geographic location inputs. The wireless links are represented
by 2-D data-points in the Euclidean space. Clustering using
geographic input is attractive because it only requires O(N)
inputs, as opposed to O(N2) CSI inputs.

The classic K-Means algorithm is well known. We skip the
algorithm description and elaborate on its equal cluster size
variant used in this paper, shown in Algorithm 1, which is a
simplification of the modification proposed in [21].

D. Optimal Number of Clusters

One intrinsic difficulty in clustering is to determine the
optimal number of clusters. As this paper mainly focuses on the
potential of clustering-based scheduling methods, we adopt the
link activation ratios from classic optimization: we compute
the single time slot activation ratio from FPLinQ in sum-
rate optimization and the average activation ratio over multiple

Algorithm 1: K-Means Variant with Equal Cluster Size

1 INPUT: data-points, number of clusters; while Not All
Points are Assigned do

2 for each unassigned data-point i do
3 Compute di as the difference between its

distance to the furthest centroid and the closest
centroid;

4 end
5 Rank di in the descending order into the ordered

list l;
6 while None of the clusters reach their desired sizes

do
7 Take one data-point from the top of l and assign

it to the cluster of its closest centroid;
8 end
9 One cluster with the desired size formed as Cj ;

10 Remove the centroid and its data-points in Cj ;
11 end
12 OUTPUT: A set of equal-sized clusters {Cj}.

time slots from FPLinQ in proportional fairness optimization
to determine the number of clusters to form on each wireless
network. In practice, this ratio can be estimated in advance.

V. CLUSTERING BASED SCHEDULING

A. Sum-Rate Maximization

If the objective is to maximize the sum rate, we can avoid
interference by preventing scheduling links near cluster edges
and to schedule only one single link per cluster close to the
cluster center. For spectral clustering and hierarchical cluster-
ing, we propose to schedule the link with the highest sum of
adjacency values to all other nodes within the same cluster.
For K-means clustering, we schedule the link closest in the
Euclidean distance to the centroid of its cluster.

B. Proportional Fairness Scheduling

For scheduling with a fairness objective, we adopt the round-
robin approach to schedule links within each cluster, which
ensures equal opportunity of being scheduled for all links in
each cluster. This fairness further extends to the entire wireless
network when the cluster sizes are equal. (This is the reason for
exploring the equal size variants of the clustering algorithms.)
We note that the equal cluster size constraint cannot be enforced
by spectral clustering. Nonetheless, as spectral clustering mini-
mizes the notion of normalized cut among formed clusters, the
output cluster sizes are implicitly restricted to not differ greatly.

C. Time Complexity Analysis

One of the main advantages of the proposed clustering
approach to scheduling is its low complexity, especially for
proportional fairness scheduling. Table I shows the complexity
of various algorithms. With the proposed round-robin schedul-
ing scheme, we only need to compute the clusters once at the
beginning (assuming no drastic changes in channel conditions



TABLE I: Time Complexity Analysis

Method Sum-Rate Proportional Fairness
Spectral Clustering O(N3) O(N3) + TO(N)

Hierarchical Clustering O(N2) O(N2) + TO(N)
K-Means O(N2) O(N2) + TO(N)
FPLinQ O(N2) TO(N2)

(Weighted) Greedy O(N2) TO(N2)

within the time slots), then the scheduling decisions reduce to
switching among links in each cluster. With typical settings of
N < 100 and T surpassing hundreds or even thousands, the
complexity saving of clustering based approach is significant.
We emphasize the crucial benefits of such time complexity
saving, since most practical wireless applications require the
scheduling operation to be repeated in each time-slot.

VI. EXPERIMENTAL VALIDATION

A. Wireless Network Settings

We consider wireless networks over square regions with
various sizes. Equal-length wireless D2D links are uniformly
deployed within the region. We restrict a minimum of 5-
meter distance between any transmitter and receiver within the
network. For channel modeling, we consider only the path-loss
component1, under the short-range outdoor model ITU-1411,
with 5MHz bandwidth at the carrier frequency of 2.4GHz.
All antennas are with 2.5dBi antenna gain and 1.5 meters in
height. The transmit power is 40dBm for every link. We assume
−169dBm/Hz background noise level, and 6dB SNR gap. For
all simulations, we test over 500 randomly generated wireless
networks, over various settings on the number of D2D links,
the region size, and the direct-channel distance of each link.

B. Visualization of Clusters

With each clustering method, we randomly sample a wireless
network and visualize the resulting clusters of D2D links, as
shown in Fig. 1. For the most parts, the clustering results are
satisfying, as groups of crowded links are identified. However,
there are pitfalls in the equal-size variants of the clustering
algorithms: After one cluster is formed, all its data-points are
removed from the pool of data-points, which would occasion-
ally lead to far-away data-points being clustered together in
later stage, as shown in the examples in Fig. 1(d) and Fig. 1(e).
This problem with equal cluster size variants can be a limiting
factor to their performances as shown in Section VI-D.

C. Sum Rate Maximization

We perform sum-rate maximization with the clustering based
scheduling approaches, along with following benchmarks:
• Greedy: Following descending order of direct-link chan-

nel strength, schedule a link only if it increases sum-rate.
• All Active: Schedule all links.

1Experiments suggest clustering-based scheduling methods are less compet-
itive when shadowing and fast-fading are included. With random channel fluc-
tuations added to each channel, the clustering structures of wireless networks
are blurred, rendering clusters being less representative.
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Fig. 1: Spectral Clustering Results Visualization

TABLE II: Average Sum Rate Performance

Sum Rate
(% of

FPLinQ)

50 Links
length: 30m
500× 500

(m2)

30 Links
length: 70m
1000× 1000

(m2)

70 Links
length: 20m
1000× 1000

(m2)
Spectral

Clustering 86.3 90.6 95.0

Hierarchical
Clustering 84.8 90.9 95.1

K-Means
Clustering 81.8 89.4 94.0

All Active 43.7 58.4 76.6
Greedy 83.2 96.0 97.3
FPLinQ 100 100 100

• FPLinQ: We run the state-of-the-art scheduling algorithm
FPLinQ [2] with 100 iterations for outputs.

The sum-rate results are presented in Table II, where each
entry is the average, over all testing networks, of the percent-
ages compared with the sum-rate results achieved by FPLinQ.

D. Proportional Fairness Optimization Results

We further evaluate the clustering-based scheduling methods
under the proportional fairness objective. Modifications on the
benchmarks are as following:
• Weighted Greedy: Following descending order of the

weight (by (6)) times the link’s rate without interference,
schedule a link only if it increases weighted sum-rate.

• FPLinQ: We run FPLinQ with 100 iterations, on weighted
sum-rate optimization for sequential scheduling outputs.

Over the 500 wireless networks, we schedule for 500 time-
slots. Instead of computing the exponentially weighted average
rate as in (3), we compute the arithmetic average rate, which
is conceptually similar yet faster to compute. We present
the results as computed by (4) in Table III. We include the
cumulative distribution curves of the average rates of all D2D



TABLE III: Average Log Utility Performance

Log Utility
(Mbps)

50 Links
length: 30m
500× 500

(m2)

30 Links
length: 70m
1000× 1000

(m2)

70 Links
length: 20m
1000× 1000

(m2)
Spectral

Clustering 53.4 59.2 158.2

Hierarchical
Clustering 55.9 59.8 159.2

K-Means
Clustering 57.6 60.1 159.1

Hierarchical
Clustering
Equal-Size

55.5 56.0 155.3

K-Means
Clustering
Equal-Size

50.5 53.0 153.8

Weighted
Greedy 47.8 58.1 152.0

FPLinQ 2 63.0 61.8 159.4
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Fig. 2: CDF for mean-rates by D2D links over 500 wireless networks.

links, aggregated over all wireless networks at one test setting
in Fig. 2.

E. Analysis

For both sum-rate and proportional fairness optimization, our
clustering-based scheduling methods with simple scheduling
heuristics produce consistently competitive performances as
compared to FPLinQ over various network settings. Compar-
ing among the five clustering techniques, the three original
versions of clustering methods enjoy the best performance.
For K-Means, it performs surprisingly well despite the crude
geographic representation of each D2D link (by taking the
mid-point location), even for long link length of 70 meters.
In contrast, the equal-size versions of the clustering algorithms
do not perform as well, as explained in Section VI-B.

Overall, these results are surprisingly good given the simplic-
ity and heuristic nature of the proposed methods. Our results
point to the potential role of learning-based algorithms for
performing network-level scheduling and resource allocation
tasks. Instead of modeling the problem in an optimization

2FPLinQ Scheduling is occasionally stuck at all links being scheduled off.
To get these results, we schedule the link with the highest proportional fairness
weight (computed as (6)) when this happens.

formulation, exploiting the intrinsic underlying structure and
performing pattern matching may already suffice to achieve
excellent performance at very low computational complexity.
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