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ABSTRACT

This work proposes a novel and scalable reinforcement learning
approach for routing in ad-hoc wireless networks. In most previous
reinforcement learning based routing methods, the links in the net-
work are assumed to be fixed, and a different agent is trained for
each transmission node — this limits scalability and generalizabil-
ity. In this paper, we account for the inherent signal-to-interference-
plus-noise ratio (SINR) in the physical layer and propose a more
scalable approach in which a single agent is associated with each
flow and is trained using a novel reward definition and according to
the physical-layer characteristics of the environment. This allows a
highly effective routing strategy based on the geographic locations of
the nodes in the ad-hoc network. The proposed deep reinforcement
learning strategy is capable of accounting for the mutual interfer-
ence between the links and is capable of producing highly effective
routing solutions over the entire network in a scalable manner.

Index Terms— Routing, reinforcement learning, ad-hoc wire-
less network, physical layer, distributed optimization

1. INTRODUCTION

Routing in wireless ad-hoc networks is a complex problem involv-
ing sequential decisions in each hop in order to build up a route that
optimizes certain network utilities. Due to the lack of centralized
control, routing in wireless ad-hoc networks needs to be performed
in a distributed manner. Starting from the source node, the selec-
tion of next node in each hop requires considerations of multiple
often-conflicting factors. Most existing routing algorithms assume
that the network has a fixed set of links and aim at network-layer ob-
jectives such as congestion control, minimizing transmission delay,
or maximizing successful transmission probability. However, these
works often overlook physical-layer considerations such as the flex-
ibility for each node to connect to different neighboring nodes in a
wireless medium, the mutual interference between the transmission
links, and the abilities for each link to do rate adaptation. Recogniz-
ing this gap, this paper advocates a routing protocol at the physical
layer, taking into account the channel strengths and the interference
levels. Assuming a path-loss model for the wireless channels, these
factors are largely determined by the geographical locations of the
mobile nodes. The motivates us to consider a new approach to rout-
ing based on the locations of each node and its neighbours and the
physical-layer characteristics of the surrounding wireless channels.

As routing amounts to successive selections of nodes in each
hop, the number of all possible routes is combinatorial in nature,
therefore finding the globally optimal route by exhaustive search is
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computationally prohibitive in large networks. Decentralized dis-
crete optimization algorithms previously proposed for routing [1, 2,
3, 4, 5, 6] are mostly heuristic in nature. From a different perspective,
routing involves sequential decision making, in which each decision
is a function of the current state of the network. Thus, routing can
be readily modeled as a Markov decision process [7] and naturally
fits into the realm of reinforcement learning. In this direction, many
previous works [8, 9, 10, 11, 12, 13, 14, 15, 16] have employed the
classical Q-learning [17] algorithm to train agents to find the opti-
mal route. In these works, a distinct agent is associated with each
transmission node. Each agent maintains a list of reachable neigh-
bors and a Q-value table of “fitness scores” for these neighbors as
the potential next hop (e.g. time or number of hops to reach the
destination). After training, the route is determined by the agents
who select the neighbor with the highest fitness scores as the next
hop. Further, [18] proposes the use of a specific Q-function estima-
tor [19] for the agent, allowing the same agent to be applied to dif-
ferent nodes. Moreover, [20] explores the use of deep reinforcement
learning [21] as a complement to a proposed heuristic routing ap-
proach. Finally, [22] focuses on stochastic routing, where each node
is characterized by a forwarding probability depending on its selfish-
ness and remaining energy. Reinforcement learning is used on each
node to come up with the forwarding probability. Note that none of
these works perform routing based on physical-layer attributes.

Collectively, the approaches in those works in using reinforce-
ment learning on routing for ad-hoc wireless networks are restricted
by all or at least some of the following modeling and design choices:

C.1 The ad-hoc network model assumes a fixed set of connections
where two nodes are either reachable from each other or not.

C.2 A distinct agent is associated with every node in the network
and is trained specifically for this node.

C.3 The same network must be used for both training and testing.

Each of these modeling and design choices imposes limitations and
has drawbacks. C.1 abstracts away pivotal physical-layer character-
istics of the network, and cannot account for objectives such as SINR
based QoS. C.2 requires a number of agents to match to the network
size, therefore limiting scalability and generalization capability. C.3
further limits agents’ abilities to adapt to network changes. Attempt-
ing to address the limitation from C.3, [10] let agents explore all
new neighbors opportunistically, which is essentially retraining. As
the layout of an ad-hoc network can frequently change, any solution
designed under C.3 is inherently insufficient.

In this paper, we introduce a novel and scalable deep reinforce-
ment learning approach to routing for ad-hoc wireless networks
based on physical-layer inputs, constraints and objectives. As a
main novelty, we associate one agent to each data flow from the



source node to the destination node, thus allowing significant re-
duction in the number of agents needed. More importantly, the
agent executes sequential node selection tasks along the route, thus
following a Markov decision process unlike the previous methods.
The fact that the agent takes physical-layer information as input is
crucial — this allows the same agent to be used for all nodes along
the route. Furthermore, we show that the same model parameters of
the agent can also be shared across all distinct data flows, or even
generalized across different ad-hoc networks, while achieving some
high-quality global objective. Finally, the agent can also be designed
to adapt to network characteristics such as the density of neighbors.

2. ROUTING FOR AD-HOC WIRELESS NETWORK WITH
PHYSICAL-LAYER MODEL

Consider a wireless ad-hoc network with N mobile nodes, and M
data flows, each with a source and a destination at fixed locations.
Each node in the network is equipped with a single antenna for trans-
mitting and receiving purposes. For simplicity, we neglect the self-
interference and adopt an idealized full-duplex assumption so that
simultaneous transmitting and receiving is possible in each node1.
Each data flow consists (potentially) multiple hops from the source
to the destination, with a number of intermediate mobile nodes act-
ing as relays. Each mobile node can relay only for a maximum of
one data flow. We use F to denote the set of data flows; S and T to
denote the set of sources and destination terminals; andN to denote
the set of mobile nodes. The task of routing is to select the ordered
list of mobile nodes as relay stations for each f ∈ F .

To utilize reinforcement learning methods, the environment
around each node, comprised of the neighboring mobile nodes,
needs to be assumed to follow a stationary distribution. To this end,
we propose to characterize the ad-hoc network layouts through a
node density distribution function. Specifically, we assume a den-
sity profile across the network and assume that the mobile nodes are
distributed locally uniformly within each sub-region.

At the physical layer, the maximum transmission rate between
a pair of nodes is characterized by the capacity of the underlying
wireless channel, which is a function of the signal-to-noise-and-
interference (SINR) at the receiver. In details, consider a link with
the transmitting node i ∈ S ∪N and the receiving node j ∈ T ∪N ,
with pi as the transmit power of node i, σ2 as the background noise
power, and hij ∈ C as the channel strength, under full frequency
reuse over bandwidth W , the maximum transmission rate of this
link is characterized as:

R(i,j) =W log

1 +
|hij |2pixi∑

k 6=i,j
k∈T ∪N

|hkj |2pkxk + σ2

 (1)

The binary variable xi (i ∈ S ∪ N ), indicating whether the node
ni is transmitting or idle, is determined by the routing solution (i.e.
if node ni is used by any route or not). Throughout this paper, the
transmit power pi is assumed to be fixed. Further, we assume that the
entire frequency band is reused by all the nodes, hence the spectral
efficiency is low due to the interference from nearby links.

A data flow consists of a sequence of links, starting at the source,
ending at the destination, in which the receiving node of the previous
link is the transmitting node of the next link. Since the data is con-
tinuously transmitted along the route, the overall data rate for each

1To deal with the self-interference in more practical settings, it is possible
to extend the current work to the setting with multiple frequency bands.

data flow is determined by its bottleneck link capacity (i.e. the mini-
mum data rate among all its links). Specifically, consider a data flow
f ∈ F taking the route n1 → . . . ni → . . . nr , where n1 ∈ S and
nr ∈ T are the source and the destination terminals. The overall
data rate of the flow f is

Rf = min
i=1,2,...,r−1

R(ni,ni+1) (2)

The objective of the routing algorithm is to select the intermediate
nodes for each data flow to optimize some global objective.

A network may consist of multiple flows. The global objective
across the network is typically a function of the data rates of all the
flows. For example, we may optimize the sum data rate, or the min-
imum data rate across all the flows in the network, i.e.,

Sum-Rate
∑
f∈F

Rf or Min-Rate min
f∈F

Rf (3)

Note that the data rates across the different flows have strong inter-
dependencies. Specifically, since each intermediate node can only
be used in one flow, the utilization of a node for one flow precludes
its use for any other flow. Furthermore, the transmitted signal of one
link would appear as interference for all other links. Thus, there is
strong trade-off among the data rates of all flows in the network.

Optimizing just a single flow is already challenging: it is a dis-
crete optimization problem and is non-convex due to the interference
among the links within the route as in (1). Optimizing multiple flows
is even more challenging due to the interactions between them. The
approach taken in this paper is to let a single agent optimize a flow
one hop at a time along a route using reinforcement learning, then
doing so successively over all flows for optimizing their routes, in
effect competing with each other. As shown later in the paper, this
would already lead to highly effective solutions to problems such as
(3).

3. FLOW BASED ROUTING WITH DEEP
REINFORCEMENT LEARNING

The ad-hoc network routing problem can be modeled as a Markov
decision process, but because the distributed agents can only observe
local information, the multiple-flow routing problem belongs to the
class of multi-player partially observable Markov decision process
(MP-POMDP). To tackle this difficult problem, we propose an rein-
forcement learning approach with several novel design aspects.

3.1. Agent-to-Flow Association

A key innovation of this paper as compared to prior work is to as-
sociate an agent to each data flow. As the route is established hop-
by-hop, the agent moves along with the frontier node of the partially
established route and decides the best next hop for the frontier node.
This agent-to-flow association significantly reduces the number of
parameters involved as compared to most prior approaches that train
a different agent for each node. It also significantly improves scal-
ability and generalization ability of the overall approach. Further-
more, this approach can be generalized across multiple data flows
and even across distinct ad-hoc networks, as shown in Section 4.

When optimizing multiple flows, we adopt a sequential ordering
for establishing routes: i.e., we let one flow establish its entire route
before the next flow, and do so over multiple rounds to allow the
interference pattern to be fully established and observed by the agent.
Note that for each agent, all the other agents’ actions form a part of
the environment. Thus, such sequential ordering allows each agent
to observe the consequences of other agents’ actions.



3.2. Actions, States, and Reward

The action space for the agent as it moves along the frontier node is
the set of next-hop candidates. As this paper adopts a physical-layer
network model in which the connections are not predetermined, we
consider a fixed number c available neighbors with strongest chan-
nels (which have not been used by other routes) as candidates. In
addition, to ensure sufficient exploration capability, we also add one
reprobe action, which means that if the agent decides none of the c
strongest neighbors is a suitable next hop, it will proceed to probe the
next c strongest neighbors, until a suitable next hop is found. Thus,
the agent’s action space A consists of c + 1 actions: one action for
each of the c strongest neighbors, and one action for reprobing.

The agent’s state space S is meant to summarize crucial factors
about each of the c strongest neighbors. In our problem, routing is
performed based on the distances to the neighbors and the physical
orientation to the final destination. To this end, the agent gathers the
following information from each neighbor:

S.1 The distance between the neighbor and the frontier node.
S.2 The angle difference between the directions from the frontier

node to the neighbor and to the destination.
S.3 The total interference the neighbor is exposed to.

Here, S.1 and S.2 indicate the amount of progress toward the desti-
nation node that can be made if the neighbor is chosen as the next
hop, while S.1 and S.3 together allow an estimation of the SINR to
the neighbor (assuming a path-loss model for channel strength).

The agent’s rewards should reflect the objective function. There-
fore, the most intuitive reward definition is to set rewards to be all
zero along the route until the last hop, which takes a reward value
of (2), i.e., the minimum rate across the links in the route. However,
this definition has the drawback that such rewards and the resulting
Q-values could well be determined by an earlier link, making them
independent of the agent’s choice of actions. Consequently, it makes
it impossible for the agent to interpret the rewards during training.

To address this problem, we propose the following novel reward
definition: during training, each state-action pair for a node is as-
signed a reward value of the bottleneck link rate from that node
onwards in the route. Specifically, consider the data flow f ∈ F
taking the route n1 → . . . ni → . . . nh. At any node nk in f ,
(0 ≤ k < h), the agent observing state sk and taking the action ak
(leading to nk+1) is assigned a reward, denoted as Q̃, of

Q̃(sk, ak) = min
i=k...h−1

R(ni,ni+1) (4)

Note that we denote the reward as Q̃, because it also plays the role
of Q values for Q-learning that incorporates the future information
(and no past information) and being the metric for determining opti-
mal actions. This definition of Q̃ allows its value to be learned and
interpreted by the agent based on the observed state-action pairs dur-
ing training. During training, we use the novel Q̃ signals in place of
the Q values in conventional reinforcement learning.

In the works on classical Q-learning [17] and DQN [21, 23, 24],
the target for Q(st, at) is computed based on the Bellman equation
[25], in which Q(st+1, at+1) is also needed and is computed based
on the estimation of the model. Such an procedure is commonly
referred to as bootstrapping, which can cause biases. Instead, our
Q̃ signals are directly computed by (4). Therefore, as we train our
model with Q̃ values, there is no bias within targets caused by boot-
strapping. We do note that our target computation resembles the
single-trajectory Monte-Carlo approximation, therefore can lead to
more variance in our targets, which is a price for eliminating bias.

3.3. Deep Q-Learning based Routing with Novel Rewards

Since the states are continuous variables, the agent needs to be able
to generalize over unseen portions of the state space S. To this end,
we utilize deep reinforcement learning, specifically deep Q-learning
[21], in which a neural network, namely DQN, is trained to predict
Q values (in our case, the Q̃ values) given the state-action inputs.

We format each state input as a vector of length 3c (three fea-
tures for each of the c strongest neighbors). These input vectors are
processed with fully connected layers with non-linearities. We adopt
the state-of-the-art dueling-DQN network architecture [23] for our
agent, which is trained following the experience-replay technique as
in [21], with uniform sampling in the replay buffer. The agent fol-
lows the ε-greedy [26] policy for gathering experiences. With prob-
ability 1− ε, the agent acts greedily according to the agent’s current
estimation; the action with the highest Q̃ value is selected to gener-
ate the next step. With probability ε, the agent randomly selects a
node as the next hop. Given this randomly selected node, we then
produce a series of agent transactions (actions along with old and
new states) to be stored in the agent’s replay buffer. In either case, if
the selected node is not within the c strongest neighbors to the agent,
we store a reprobing transaction and search for the next c strongest
neighbors. This allows us to obtain enough reprobe transactions.

To showcase the generalization ability of our method, we only
train the agent on one specific data flow during experience gathering.
Specifically, we first use a simple closest-to-destination among the
strongest neighbors heuristic to produce routes of all but one data
flow. We then assign the agent to the last flow to gather experiences
and conduct training. As we shall see in Section 4, such lightweight
training strategy is already sufficient to produce an agent that gen-
eralizes well across all data-flows as well as across different ad-hoc
networks. In testing, the trained agent simply selects the next hop (or
reprobe) based on Q̃ values. It does not need to be re-trained when
the network topology changes, unlike in methods such as in [10].

3.4. Agent Policy Enhancements

In addition to Q̃ values based routing, from domain knowledge, we
propose two enhancements to the agent’s policy:

• If the agent chooses a neighbor that does not have the
strongest channel to the frontier node, then all neighbors
with stronger channels to the frontier node are excluded for
future consideration for the next hop.

• If the destination node appears within the agent’s exploration
scope (i.e. one of the c strongest neighbors), then the agent
would not choose any neighbor which has a weaker channel
to the frontier node than the destination node.

Both enhancements effectively prevent agents from taking non-
essential back-and-forth hops.

3.5. Multi-Agent Distributed Optimization

The agent learns and acts according to Q̃ in (4) in order to optimize
the data rate of its own flow. If instead we optimize with respect to
a global reward signal, we can encounter the credit mis-assignment
problem [27]. We observe, however, that in a wireless ad-hoc net-
work, where the major performance limiting factor is the mutual in-
terference, route optimization in a flow tends to lead to interference
avoidance which benefits other data flows as well. Therefore in our
problem, designing the agent to act selfishly in multiple rounds ac-
tually allows every agent to adjust according to each other’s routes,
thus achieving implicit cooperation.



Table 1. Design Parameters for the DDQN Agent
Parameters Number of Neurons

Initial Main-Branch
fully-connected layers

1st 120
2nd 120

State-Value Function
fully-connected layers

1st 75
2nd 1 (1 state value)

Action-Advantage Function
fully-connected layers

1st 75
2nd 7 (7 actions)

Table 2. Average Sum-Rate and Min-Rate Performances (kbps)
Methods Sum Rate Min Rate

DDQN Agent 450.6 60.86
Closest-to-destination among
strongest neighbors 149.7 18.65

Best-direction among
strongest neighbors 156.1 16.22

Largest-data-rate
among strongest neighbors 67.4 1.32

Strongest neighbor 56.1 0.63
Lowest-interference among
strongest neighbors 32.4 2.72

4. SIMULATION RESULTS

We consider wireless ad-hoc networks in a 500×500m2 region with
M = 3 data flows. The node density profile is specified over nine
equally divided sub-regions, with (5, 10, 7, 6, 7, 4, 8, 3, 6) nodes
located randomly within each sub-region. We consider the short-
range outdoor model ITU-1411 with a distance-dependent path-loss
to model all wireless channels, over 5MHz bandwidth at 2.4GHz
carrier frequency. All antennas are with 1.5m height. We assume the
transmit power level at 30dBm for all nodes; the background noise
level at -150dBm/Hz. We randomly generate 520K ad-hoc network
layouts for training. Among these, 20K layouts are used for random
exploration to generate the agent’s initial experience. The remaining
500K layouts are used for the ε-greedy policy based training. For
testing, we randomly generate 500 new ad-hoc network layouts.

We use c = 6 as the number of the strongest neighbors the agent
explores each time. Correspondingly, the inputs to the dueling-DQN
are 18-component vectors. The state inputs are processed by sequen-
tial fully-connected layers, organized into a state-value prediction
branch and an action-advantage prediction branch, as in [23]. The
specification for our neural network is summarized in Table 1.

We present the sum-rate and min-rate testing results for our
agent (named DDQN) as compared to a comprehensive list of
benchmarks. These benchmarks are greedy in nature, since to our
knowledge there currently does not exist efficient non-greedy algo-
rithm for ad-hoc network routing at the physical layer. We follow
the multi-round sequential routing for all methods. In simulations,
two rounds appear to be sufficient already. As shown in Table 2,
our proposed method achieves significantly better performance than
all benchmarks in both sum-rate and min-rate performances. We
emphasize that this performance is achieved by re-using a single
agent across all three data flows, over all testing network layouts.

To better understand how our method excels, we provide a visu-
alization of routes formed by our agent together with selected bench-
marks over a random ad-hoc network layout in Fig. 1. As shown, our
agent intelligently spreads out all data flows to mitigate mutual in-
terference, while still maintaining strong and properly directed links

0 100 200 300 400 500

0

100

200

300

400

500

DDQN

0 100 200 300 400 500

0

100

200

300

400

500

Closest  to Dest inat ion

0 100 200 300 400 500

0

100

200

300

400

500

Largest  Data Rate

0 100 200 300 400 500

0

100

200

300

400

500

Best  Direct ion

Fig. 1. Routes achieved on three data flows.
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Fig. 2. Cumulative distribution function of sum rate over 10 flows in
500 large-scale networks.

to the destination to form the routes.
To test the generalizability of our method, we directly take the

agent trained under the original setting and reuse it for a much
larger ad-hoc network of 10 data flows in a 1500×1500m2 re-
gion. We place an arbitrarily selected and much larger number of
(36, 34, 42, 38, 46, 40, 54, 45, 42) nodes over nine evenly divided
sub-regions. The sum-rate results are shown in Fig. 2. Our approach
still significantly outperforms the benchmarks. This illustrates that
the proposed method generalizes well for larger networks with more
data flows in sum-rate optimization.

5. CONCLUSION

This paper proposes a physical-layer based reinforcement learning
approach to the wireless ad-hoc network routing problem. By train-
ing a universal agent along the flow that takes the physical envi-
ronment as the input, along with a novel reward function definition,
we have arrived at a highly scalable routing algorithm which can be
adapted to the varying network layout characteristics and general-
ized to large-scale networks.
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