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Abstract—Hybrid automatic repeat request (HARQ) is a key
enabler for the extremely strict reliability requirements as im-
posed in future networks. This paper studies power control for
HARQ in order to minimize the expected energy consumption
of wireless transmission given the outage probability constraint
and the maximum average number of retransmissions. The main
difficulty in solving the above power control problem is due
to the fact that the outage probability cannot be expressed
analytically in terms of the power variables. Prior works have
suggested using a classic upper bound on the outage probability
by assuming unbounded transmit powers throughout HARQ,
thus approximating the power control problem in a geometric
programming (GP) form. In contrast, this work proposes a
novel and much tighter upper bound by taking practical power
constraints into account. Numerical examples show that the
GP method with the new upper bound outperforms one with
the classic upper bound significantly. Analytical insights are
also gained into the proposed GP method. Moreover, the paper
extends the above results to the multi-antenna channels in which
antenna diversity is harnessed to further enhance reliability.

I. INTRODUCTION

Ultrareliable communications refer to transmitting data
wirelessly with a target outage probability lower than 10−5, as
compared to the traditional cellular systems typically with the
outage probability 10−2 [1]. The above stringent performance
standard is driven by a multitude of evolving applications of
the Internet of Things (IoT), ranging from self-driving vehicles
to remote surgery [1]–[3]. This paper seeks an energy-efficient
retransmission protocol to accommodate the ultrareliability
requirements in these application scenarios.

More specifically, under the constraints on the outage prob-
ability and the average number of retransmissions, we consider
minimizing the expected energy consumption for the hybrid
automatic repeat request (HARQ) scheme. The corresponding
optimization problem is difficult to tackle directly because
the outage probability cannot be expressed as a closed-form
function of powers. Our approach relies on a new upper
bound of the outage probability to approximate the original
problem in a geometric programming (GP) form. In contrast,
the existing GP methods in [4]–[7] are all based on a classic
upper bound [8] with high-power assumptions and are prone
to overestimation of the outage probability when the transmit
powers are constrained. The paper further extends the pro-
posed upper bound and the GP-based power control method

to the multi-antenna channels with antenna diversity.
In the existing literature, ultrareliable communications are

examined from various perspectives. Short packet coding has
attracted extensive research interests for the joint optimization
of ultrareliability and low latency. Many works [9]–[11] in
this area are empirically based, aimed at determining what
types of codes (e.g., LDPC and polar codes) are most suited
for the short blocklength regime. In order to tame the tail of
the outage distribution with small deviations, [1], [12] propose
using the extreme value theory. To optimize resource allocation
for ultrareliable communications, [13] devises a multiplexing
queueing method and [14] considers the network slicing
approach. Moreover, spatial diversity is exploited in [15] to
improve the ultrareliability of wireless communications. For
the relay broadcast channel, [16] uses rate splitting to facilitate
ultrareliable communications.

This paper is most closely related to a line of works [4]–
[7] about the power control in HARQ by means of GP.
Nevertheless, this work differs from [4]–[7] by developing
a new outage probability bound that is much tighter than
the existing one in [8]. We extend the problem formulation
in [4]–[7] to include a constraint on the average number of
retransmissions. We numerically demonstrate the advantage of
the new upper bound and the GP method for power control as
compared to the benchmark.

II. SYSTEM MODEL

Consider a block fading channel with a sequence of N
fading blocks over which the transmitter wishes to send a t-bit
message toward the receiver. With the pathloss β > 0 fixed
and the Rayleigh fading zn ∼ CN (0, 1) drawn i.i.d. across the
N blocks, the channel hn ∈ C in each block n is given by

hn =
√
βzn, ∀n = 1, . . . , N. (1)

Let pn be the transmit power in block n and let σ2 be the
background noise level. Assuming the normalized spectrum
bandwidth and the normalized block duration without loss of
generality, the achievable rate of the message transmission in
block n is computed as

rn = log2

(
1 +
|hn|2pn
σ2

)
, ∀n = 1, . . . , N. (2)



The pathloss-to-noise ratio is defined by

s =
β

σ2
. (3)

We can then rewrite the achievable rate rn as

rn = log2
(
1 + s|zn|2pn

)
, ∀n = 1, . . . , N. (4)

Moreover, by using incremental redundancy transmission, e.g.,
IR-LDPC codes [17], the mutual information accumulates in
the sense that the overall achievable rate of data transmission
across the first n blocks can be shown to be

Rn =

n∑
m=1

rm, ∀n = 1, . . . , N. (5)

The randomness of the Rayleigh fadings (z1, . . . , zn) results
in the following outage probability after n blocks:

Qn = Pr
[
Rn < t

]
, ∀n = 1, . . . , N. (6)

The HARQ scheme handles the outage as follows. After
each block n, the receiver gives a feedback ACK/NACK signal
depending on whether or not the t-bit message has been
successfully received, i.e., whether or not Rn ≥ t, thereby
either terminating HARQ or continuing to the next block n+1.
The HARQ procedure finishes after the final block N , so the
ultimate outage probability is determined by QN .

Since block n is used only if the previous n− 1 blocks are
insufficient, the expected value of the total energy consumption
throughout the N blocks amounts to

E =

N∑
n=1

pn Pr
[
Rn−1 < t

]
(7a)

= p1 +

N∑
n=2

pnQn−1, (7b)

where R0 = 0. Similarly, the average number of retransmis-
sions can be computed as

D =

N−1∑
n=1

Pr
[
Rn < t

]
(8a)

=

N−1∑
n=1

Qn. (8b)

We can now formulate an optimization problem of minimizing
E under the power constraint P , given the target outage
probability ε and the retransmission constraint δ, i.e.,

minimize
p

E (9a)

subject to QN ≤ ε, (9b)
D ≤ δ, (9c)
0 ≤ pn ≤ P, (9d)

where p = (p1, . . . , pN ). The main obstacle posed in (9) is
that none of (QN , E,D) could be written analytically. Because
E and D are comprised of an array of Qn’s, the heart of
the problem is the intractable expression (6) of the outage

probability. This work overcomes the obstacle by using a new
upper bound, which is tighter than the existing one in [8],
to approximate QN and those Qn terms contained in E and
D. The resulting approximation of (9) turns out to be a GP
problem readily solvable by the convex optimization methods.

In addition, it is worth mentioning that the three metrics
(QN , E,D) can be put together in other ways, e.g., we could
have minimized D under the E and QN constraints, and our
approach is amenable to most of these formulations as well.

III. UPPER BOUND ON OUTAGE PROBABILITY

We begin with a single block. If the receiver decodes
the message by using block n alone without incremental
redundancy, the cumulative distribution function (CDF) for the
achievable rate rn is

Fn(r) = Pr
[
rn < r

]
(10a)

= Pr

[
|zn|2 <

2r − 1

spn

]
(10b)

= 1− exp

(
− 2r − 1

spn

)
, (10c)

and the corresponding probability density function (PDF) of
rn is

fn(r) =
d

dr
Fn(r) (11a)

=
2r ln 2

spn
· exp

(
− 2r − 1

spn

)
. (11b)

Recall that the accumulated rate Rn equals to
∑n

m=1 rm, so
the PDF of Rn, denoted by gn(R), can be computed as the
successive convolution of the respective PDFs of rm’s over
the range [0, R), i.e.,

gn(R) =

∫
· · ·
∫

0≤rm≤R, ∀m
r1+···+rn=R

f1(r1) · · · fn(rn)dr1 · · · drn (12a)

= (f1 ∗ f2 ∗ · · · ∗ fn)(R). (12b)

Further, the corresponding CDF of the accumulated rate Rn

is given by

Gn(R) =

∫ R

0

gn(τ)dτ (13a)

=

((∫ r1

0

f1(τ)dτ

)
∗ f2 ∗ · · · ∗ fn

)
(R) (13b)

= (F1 ∗ f2 ∗ · · · ∗ fn)(R), (13c)

in which (13b) follows by the identity (u∗v)′ = u′∗v. Observe
that the outage probability Qn in (6) equals to the CDF of the
accumulated rate Rn when Rn = t, so it can be rewritten as

Qn = Gn(t). (14)

In order to make the optimization of p tractable, we wish to
isolate p from the successive convolution in (13c). Toward this



An(t) = P

(
ln 2

s

)n−1

·

([
1− exp

(
− 2r1 − 1

sP

)]
∗
[
2r2exp

(
− 2r2 − 1

sP

)]
∗ · · · ∗

[
2rnexp

(
− 2rn − 1

sP

)]
︸ ︷︷ ︸

(n−1) terms

)
(t) (18)

end, we first relax fn(t) in (11) as

fn(r) ≤ f̂n(r) (15a)

=
2r ln 2

spn
· exp

(
− 2r − 1

sP

)
, (15b)

which further yields an upper bound on Fn(r):

Fn(r) ≤ F̂n(r) (16a)

=

∫ r

0

f̂n(τ)dτ (16b)

=
P

pn

(
1− exp

(
− 2r − 1

sP

))
. (16c)

With fn(r) and Fn(r) respectively bounded by f̂n(r) and
F̂n(r) in (13c), we construct an upper bound on Qn as

Q̂n = (F̂1 ∗ f̂2 ∗ · · · ∗ f̂n)(t) (17a)

= An(t)

(
n∏

m=1

pm

)−1
, (17b)

where An(t) is independent of pn as shown in (18). The
following proposition summarizes the above result.

Proposition 1 (Upper Bound on Outage Probability): For
a block fading channel over N i.i.d. Rayleigh fading blocks
in which a t-bit message is transmitted with incremental
redundancy, when the pathloss-to-noise ratio s and the power
constraint P are fixed, we have the following upper bound on
the outage probability Qn after n transmissions:

Qn ≤ Q̂n, ∀n = 1, . . . , N, (19)

where Q̂n is given by (17) and (18).
Further, the upper bound in [8] is a special case of the

proposed bound Q̂n, as shown in the subsequent proposition.
Proposition 2 (Connection to Classic Upper Bound): As

P →∞, the parameter An(t) in (18) tends to

An,∞(t) =
(ln 2)n−1

sn
·
(
(2r1 − 1) ∗ 2r2 ∗ · · · ∗ 2rn︸ ︷︷ ︸

(n−1) terms

)
(t) (20)

and accordingly Q̂n tends to

ˆ̂
Qn = An,∞(t)

(
n∏

m=1

pm

)−1
, (21)

which is the upper bound proposed in [8]. Moreover, given
any t > 0, we have

Qn ≤ Q̂n ≤ ˆ̂
Qn, ∀n = 1, . . . , N, (22)

where the two inequalities are tight simultaneously as s→∞.
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Fig. 1. Actual outage probability vs. classic upper bound vs. proposed upper
bound when N = 5, s = 2, P = 1, and pn/P = 0.8 for any n.

Proof: Observe that each f̂n(r) in (15b) is monotonically
increasing with P when r is fixed; observe also that Q̂n in (17)
equals to

∫ t

0
(f̂1 ∗ f̂2 ∗ · · · ∗ f̂n)(τ)dτ , so Q̂n is monotonically

increasing with P and thus Q̂n ≤ ˆ̂
Qn. Regarding the equal-

ities, it can be seen that fn(r) = f̂n(r) and Fn(r) = F̂n(r)
when s→∞, so Qn = Q̂n also holds. This argument works
for ˆ̂

Qn as well.
The initial derivation of ˆ̂

Qn in [8] builds upon a piecewise
squeezing argument, whereas we have obtained the same result
by specializing the proposed bounding technique in (15)–(18).
Furthermore, given moderate s and P , i.e., when the signal-
to-noise ratio is not sufficiently high, the gap between the two
upper bounds can be quite large especially for a large t, as
illustrated in Fig. 1.

IV. POWER CONTROL BY GEOMETRIC PROGRAMMING

Using the new upper bound Q̂n to approximate the outage
probability Qn in (9) leads us to the following GP problem:

minimize
p

p1 +

N∑
n=2

An−1(t)pn

(
n−1∏
m=1

pm

)−1
(23a)

subject to AN (t)

(
N∏

m=1

pm

)−1
≤ ε, (23b)

N−1∑
n=1

An(t)

(
n∏

m=1

pm

)−1
≤ δ, (23c)

0 ≤ pn ≤ P, (23d)



which can be efficiently solved by the standard numerical
methods. We further provide insights into this GP method.

Remark 1: Using the upper bound rather than the lower
bound here guarantees that (E,D) can only be overestimated,
so the outage probability and the retransmission constraints
in the original problem (9) can be guaranteed in spite of the
approximation.

Remark 2: The proposed method basically approximates
QN as a monomial, E as a posynomial, and D as another
posynomial. Many other problems involving (QN , E,D) can
also be converted into a GP form using this approximation.

Proposition 3: When P →∞, the solution of (23) satisfies

pnQ̂n−1 = 2pn+1Q̂n + λQ̂n, ∀n = 1, . . . , N − 1, (24)

for some λ ≥ 0.
Proof: First, incorporate the retransmission constraint

(23c) into the objective function in (23a) by using a Lagrange
multiplier λ ≥ 0. Next, it can be shown that the outage
probability constraint (23b) must be tight at the optimum;
otherwise the objective function can be further reduced by de-
creasing pN properly; this tightness allows pN to be expressed
in (p1, . . . , pN−1). Further, introduce a set of new variables
yn ∈ R and substitute pn = eyn in the GP problem; note that
the constraint pn ≥ 0 is now satisfied automatically. We then
arrive at an unconstrained convex problem of (y1, . . . , yN−1).
Solving the first-order condition gives

e2ynAn−1(t) = (2eyn+1 + λ)An(t), ∀n = 1, . . . , N, (25)

which recovers (24) when yn = ln pn is substituted in.
Remark 3: We might be tempted to remove the power

constraint (9d) by postulating that the minimization of the
expected energy consumption E would suppress each pn
already. However, this is not true. For ease of discussion, we
relax the retransmission constraint (23c) by setting λ = 0, then
obtain from (24) that

pN =
p1

2N−1Q̂N−1
. (26)

It turns out that the denominator 2N−1Q̂N−1 could be quite
close to zero in practice. For a typical ultrareliable communica-
tion system, the approximated outage probability Q̂N−1 lies in
the interval [10−9, 10−5] while 2N−1 is around 100 at most. As
a consequence, there is an impractical 70 dB gap between p1
and pN . The intuition is that minimizing E can only suppress
the expected value pnQn−1, but the actual transmit power pn
may still spike as Qn−1 becomes arbitrarily small.

V. MULTI-ANTENNA CHANNELS

This section generalizes the proposed upper bound Q̂n(t)
and the GP-based power control method to a multiple-input
single-output (MISO) channel. In statistics terms, the general-
ized upper bound is an extension from 2 degrees of freedom
to higher degrees of freedom for the chi-square distribution;
in wireless communication terms, the generalized upper bound
takes antenna diversity into consideration.

A. Antenna Diversity

Assume that the transmitter is now deployed with L > 1
antennas. The channel hn ∈ CL in block n is

hn =
(
h1n, h2n, . . . , hLn

)
, (27)

wherein each entry hjn is modeled as

hjn =
√
βzjn (28)

with β > 0 fixed and zjn drawn i.i.d. from CN (0, 1) for
each (j, n) pair. By space-time coding, the following rate is
achievable in block n:

rn = log2

1 +

L∑
j=1

|hjn|2pn
σ2

 (29a)

= log2

(
1 + spn

L∑
i=1

|zjn|2
)

(29b)

= log2

(
1 +

1

2
spnνn

)
, (29c)

where the chi-square random variable

νn ∼ χ2
(
d
)

with d = 2L (30)

has d degrees of freedom. The rest of setting follows that
in Section II. Please note that the above model works for a
single-input multiple-output (SIMO) channel as well. In this
case, the receiver has L antennas and achieves the data rate
rn in (29) via maximum ratio combining (MRC). Furthermore,
these results can be extended to the Nakagami fading channels.

B. Generalized Upper Bound on Qn

The Rayleigh distribution in Section III can be recognized
as a special case of the chi-square distribution with 2 degrees
of freedom. We seek a generalization of the upper bound Q̂n

that works for an arbitrary number of degrees of freedom.
Following the steps in Section III, we first compute the CDF

of the rate rn in (29) as

Fn(r) = Pr

[
νn <

2(2r − 1)

spn

]
(31a)

=
1

(d− 1)!
· γ
(
d,

2r − 1

spn

)
, (31b)

where γ(·, ·) refers to the lower incomplete gamma function

γ(a, b) =

∫ b

0

xa−1exp(−x)dx. (32)

The corresponding PDF of rn is

fn(r) =
(2r − 1)d−1

sd(d− 1)!
· exp

(
−2r − 1

spn

)
· 2

r ln 2

pdn
. (33)

Following (15b), we make use of the power constraint P to
construct an upper bound on fn(r) as

f̂n(r) =
(2r − 1)d−1

sd(d− 1)!
· exp

(
−2r − 1

sP

)
· 2

r ln 2

pdn
, (34)



Ãn(t) =

(
P d(ln 2)n−1γ

(
d, 2

r1−1
sP

)
sd(n−1)

(
(d− 1)!

)n ∗
[
2r2(2r2 − 1)d−1exp

(
−2r2 − 1

sP

)]
∗ · · · ∗

[
2rn(2rn − 1)d−1exp

(
−2rn − 1

sP

)]
︸ ︷︷ ︸

(n−1) terms

)
(t)

(37)

which in return gives an upper bound on Fn(r) according to
(16):

F̂n(r) =

(
P

pn

)d

· 1

(d− 1)!
· γ
(
d,

2r − 1

sP

)
. (35)

Substituting f̂n(r) and F̂n(r) into (17a) further leads us to an
upper bound on Qn:

Q̂n = Ãn(t)

(
n∏

m=1

pm

)−d
, (36)

where Ãn(t) is given by (37). In particular, as P → ∞, the
proposed upper bound Q̂n reduces to

ˆ̂
Qn = Ãn,∞(t)

(
n∏

m=1

pm

)−d
(38)

along with

Ãn,∞(t) =

(
ln 2

sd(d− 1)!

)n
d

ln 2
·(

(2r1 − 1)d ∗ [2r2
(
2r2 − 1)d−1] ∗ · · · ∗ [2rn(2rn − 1)d−1]

)
(t),

(39)

which is an extension of the classic bound [8] as proposed in
[7]. Moreover, the optimality analysis in Proposition 2 carries
over to the multi-antenna channels, i.e., given any t > 0, we
have

Qn ≤ Q̂n ≤ ˆ̂
Qn, ∀n = 1, . . . , N, (40)

where the two inequalities are tight simultaneously as s→∞.
Most importantly, each Q̂n remains a monomial in the

multi-antenna channels, so (E,D) can still be approximated
as polynomials and hence the GP method readily extends.

VI. NUMERICAL EXAMPLES

This section shows numerically that the new upper bound
Q̂n is superior to the classic upper bound ˆ̂

Qn for solving
the power control problem (9). We set the number of blocks
N = 5, the message size t = 4 bits, and the outage probability
constraint ε = 10−5. For ease of illustration, the power
variables pn are normalized by the max power P .

Fig. 2 compares GP with the classic upper bound ˆ̂
Qn

and GP with the new upper bound Q̂n. As opposed to the
maximum power scheme with pn = P , the GP methods
reduce the expected energy consumption E significantly, e.g.,
E is reduced by nearly 50% when s = 30. The two GP
methods have close performance when s is sufficiently large.
Nonetheless, when the number of transmit antennas raises
to 3, as shown in Fig. 3, GP with new upper bound has

a considerable advantage since it works in a much wider
range of the pathloss-to-noise ratio s. In contrast, GP with
classic upper bound fails to give valid solution because of its
overestimation of the outage probability. Observe also that the
GP methods can save more energy when L increases.

Fig. 4 takes a closer look at the two GP methods when
the transmitter has L = 3 antennas and at most δ = 2
retransmissions are allowed on average. As it turns out, GP
with new bound can save more energy because it sets a much
lower (25% less) power level in the first block when s = 6,
even though it requires higher power than GP with classic
bound in the last block. The figure also shows that the two
GP methods give similar power solutions when s = 20. This
result agrees with our analysis in Section V that the two
upper bounds both converge to the actual outage probability as
s→∞; the result also agrees with what we have observed in
Fig. 3, i.e., GP with new bound has much better performance
when s is small.

Finally, we present the E-δ tradeoffs for the two GP
methods in Fig. 5. Observe that the GP methods flatten out in
E when δ is sufficiently large; that is the case where power
control can be carried out as if the average latency constraint
does not exist. Along the E-axis, it can be seen that GP with
new bound can cut the energy consumption by over 20% as
compared to GP with classic bound at the same δ. Besides,
along the δ-axis, the figure shows that GP with new bound
can accommodate much stricter average latency constraints.

VII. CONCLUSION

This work aims to enhance energy efficiency for ultra-
reliable communications by optimizing transmit powers with
HARQ. The main contribution is a new upper bound on
the outage probability, which can be used to approximate
the originally intractable power optimization problem much
more closely than the classic upper bound. We formulate the
problem as a GP and show how to adaptively optimize the
power allocation to achieve ultrareliability while satisfying a
delay constraint. Further, the proposed upper bound along with
the GP method for power control is extended to the multi-
antenna channels in order to reap the antenna diversity gain.
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