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Optimization of Communication Systems

Figure: Cellular base-station with a large-scale antenna array

Key Technology for 5G: mmWave massive MIMO for enhanced mobile broadband.

Conventional Communication systems are always designed in a two-step process:
Channel estimation by sending pilot signals.
System optimization based on estimated channels.

Problem:
Channel estimation for massive MIMO is challenging due to large number of antennas/users

Can we bypass channel estimation and directly optimize the system?
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Optimization of Intelligent Reflecting Surface (IRS) Environment

IRS is a reflective surface comprised of large number of “intelligent” scatterers.

Incoming electromagnetic wave is re-radiated with adjustable phase shifts.

IRS is ideally suited for passive beamforming
Enhancing the wireless propagation environment.

Applications:
Improving network coverage, boosting wireless spectral efficiency;
Reducing power consumption, enhancing security, etc.
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Machine Learning for IRS System Design

Conventional Communication systems are always designed in a two-step process:

Channel estimation by sending orthogonal pilot signals.

System optimization based on estimated channels.

Channel estimation for IRS is challenging:

The IRS cannot perform active signal transmission and reception.

Large number of passive elements: Too many channel coefficients to estimate.

System optimization for IRS is also challenging:

Large number of phase shifts means a high-dimensional nonconvex optimization problem.

This Talk:

Optimize system objective based on received pilots without explicit channel estimation.

Bypass channel estimation by taking a machine learning approach.
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Machine Learning vs. Mathematical Programming

Mathematical optimization requires highly structured models over well defined problems.

Finding solution efficiently relies on specific and often convex optimization landscape.
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Traditional approach for communication engineering is to model-then-optimize.

Machine learning approach allows us to be data driven thereby skipping models altogether!
Universal function mapping – either by supervised or reinforcement learning
No longer need to parameterize the problem for the algorithm
Incorporating vast amount of data over poorly defined problems
Highly parallel implementation architecture
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Machine Learning vs. Mathematical Programming

Mathematical optimization requires highly structured models over well defined problems.

Finding solution efficiently relies on specific and often convex optimization landscape.

Traditional approach for communication engineering is to model-then-optimize.

Machine learning approach allows us to be data driven thereby skipping models altogether!
Universal function mapping – either by supervised or reinforcement learning
No longer need to parameterize the problem for the algorithm
Incorporating vast amount of data over poorly defined problems
Highly parallel implementation architecture

Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu, Nicholas D. Sidiropoulos, “Learning to Optimize: Training Deep Neural Networks for
Wireless Resource Management”, IEEE Transactions on Signal Processing, vol. 66, no. 20, pp. 5438-5453, October 15, 2018. (Figure credit)
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Role of Machine Learning for Communication System Design

Traditionally, communication engineers have invested heavily on channel models.
However, models are inherently only an approximation of the reality;
Moreover, model parameters need to be estimated – with inherent estimation error.

Machine learning approach allows us to skip channel modeling altogether!
End-to-end communication system design

Advantages:
Direct system optimization without the intermediary step of channel estimation;
Implicitly accounting for channel estimation error;
Easy to incorporate additional side information such as location;
Reduce the required pilot length.

Challenges:
Design framework tailored to different system architectures and objectives;
Generalizability to different system parameters;
Interpretability of the obtained solution;
Large amount of training data.

This talk provides an example of high-dimensional optimization for communication systems
Multiuser beamforming and reflective coefficent design for IRS system
Similar approach is also applicable to multiuser channel estimation for massive MIMO systems
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Intelligent Reflecting Surface (IRS)

IRS is a reflective surface comprised of large number of “intelligent” scatterers.

Channel estimation for IRS is challenging:

The IRS cannot perform active signal transmission and reception.

Due to the large number of passive elements, there are many channel coefficients to estimate.

System Optimization for IRS is also challenging:

Large number of phase shifts means a high-dimensional nonconvex optimization problem.
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Channel Model for the IRS System

IRS assisted downlink data transmission:

Data symbol for the user k: sk ∈ C.

Phase shifts at the IRS: v = [e jθ1 , · · · , e jθN ] with θi ∈ [0, 2π).

Beamforming vector for the user k at the BS: wk ∈ CM .
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Channel Model for the IRS System

IRS assisted downlink data transmission:

Received signal at the user k:

rk =
K∑
j=1

(hd
k + G diag(v)hr

k )>w j sj + nk =
K∑
j=1

(hd
k + Akv)>w j sj + nk

where Ak = G diag(hr
k ) ∈ CM×N is the cascaded channel

The achievable rate Rk of user k can be computed as

Rk = log

(
1 +

|(hd
k + Akv)>w k |2∑K

i=1,i 6=k |(h
d
k + Akv)>w i |2 + σ2

0

)

To design beamformers at the BS and reflective coefficients at the IRS:

Traditional approach: First estimate Ak ’s and hd
k ’s, then design wk and v .

Machine Learning: Directly optimize without explicitly channel estimation.

In either case, we rely on a pilot transmission phase.
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Pilot Transmission Phase

Uplink pilots training assuming channel reciprocity:

Pilot symbol of user k: xk (`), ` = 1, · · · , L.

The received signal y(`) at the BS can be expressed as

y(`) =
K∑

k=1

(hd
k + Akv(`))xk (`) + n(`), ` = 1, · · · , L.

v(`) is the phase shifts of IRS at time slot `.
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Overall Problem Formulation

Goal: Design the optimal beamformers W and the reflecting phase shifts v based on the
received pilots Y to maximize a network utility U(·).

maximize
(W ,v)=g(Y )

E [U(R1(v ,W ), . . . ,RK (v ,W ))]

subject to
∑
k

‖wk‖2 ≤ Pd ,

|vi | = 1, i = 1, 2, · · · ,N,

where
Beamforming matrix at the BS: W = [w1, · · · ,w k ].
Reflective coefficients at the IRS: v .
Received pilots in L symbol durations: Y = [y(1), y(2), · · · , y(L)].

Conventional Approach: First estimate the channels, then optimize v and W .

Machine Learning Approach: Parameterizing the mapping function g(·) by a deep neural
network and learning the parameters from data.
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Conventional Channel Estimation Based Solution

Conventional Model-then-Optimize Approach:

Use the received pilots to estimate the channels.

Optimize the network utility based on the estimated channels.

Uplink Pilot Transmission for Channel Estimation:

Pilots and uplink phase shifts
Total training slots L is divided into τ sub-frames: L = τL0.
In each sub-frame, use orthogonal pilot sequence xk ∈ CL0 .
IRS uses different random phase shifts in different sub-frames.

In the sub-frame t, the overall received pilots:

Ȳ (t) =
K∑

k=1

(hd
k + Ak v̄(t))xH

k + N̄(t), t = 1, · · · , τ.

Beamformer and Reflective Coefficent Design:

Use optimization techniques, e.g., block coordinate descent (BCD) for sum rate
maximization [Guo, et al. ’20], minimum rate maximization [Alwazani, et al. ’20].
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Channel Estimation Strategy

By the orthogonality of the pilots, the contribution from user k:

ȳk (t) =
1

L0
Ȳ (t)xk = hd

k + Ak v̄(t) + n̄(t)

, F kq(t) + n̄(t),

Combined channel matrix F k := [hd
k ,Ak ].

Combined phase shifts q(t) := [1, v̄(t)>]>.

Denote Ỹk = [ȳk (1), · · · , ȳk (τ)] as the received pilots of the overall τ sub-frames and
Q = [q(1), · · · , q(τ)], we have

Ỹ k = F kQ + Ñ,

Channel estimation for the user k:

minimize
F̂ k=f (Ỹ k )

E
[
‖f (Ỹ k )− F k‖2

F

]
.

Linear minimum mean-squared error (LMMSE) estimator:

F̂ k = (Ỹ k − E[Ỹ k ])
(
E[(Ỹ k − E[Ỹ k ])H(Ỹ k − E[Ỹ k ])]

)−1

E[(Ỹ k − E[Ỹ k ])H(F k − E[F k ])] + E[F k ].
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Proposed Deep Learning Framework

We propose to bypass channel estimation and to directly maximize the network utility function
based on the received pilots Ỹ k .

…

……

(a) (b)

Use a neural network to represent the mapping (v ,W ) = g(Y ).

Adjust the neural network weights to maximize the network utility function.

Wei Yu (University of Toronto) Learning to Beamform and to Reflect June 2021 15 / 34



16/34

Graph Neural Network Architecture

Use graph neural network (GNN) to model the interactions between users and IRS.

The neural network should be permutation invariant/equivariant with respect to the users.

Design GNN based on graph representation of beamformers and phase shifts.
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GNN Architecture
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Permutation invariance and equivariance property:

When the indices of the users permute, the resulting beamformers also permute.

The DNNs for the users are permutation equivariant with respect to each other.

The DNN for the IRS is permutation invariant with respect to the users.
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Aggregation and Combination
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Figure: The IRS node.
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Figure: The k-th user node.

The aggregation and combination operations are also permutation invariant/equivariant.

The DNN parameters are tied across the users to make the GNN generalizable to scenarios
with different number of users.
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Simulation Settings

Setting: M = 8 antennas at BS, N = 100 elements at IRS, K = 3 users.

Direct link channel hd
k follows Rayleigh fading.

BS-IRS and IRS-users channels follow Rician fading:

hr
k = β1,k

(√
ε

1 + ε
hr,LOS
k +

√
1

1 + ε
hr,NLOS
k

)
,

G = β2

(√
ε

1 + ε
GLOS +

√
1

1 + ε
GNLOS

)
.
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Simulation Settings

Training configuration

GNN parameters:

Name Size Activation Function

f 0
w 2Mτ × 1024× 512 relu

f 0
v 512× 1024× 512 relu

f 1
0 , f

1
1 , f

1
2 , f

1
3 , f

1
4 512× 512× 512 relu

f 2
0 , f

2
1 , f

2
2 , f

2
3 , f

2
4 512× 512× 512 relu

At each epoch, iterate 100 times to update the GNN parameters.

In each iteration, use 1024 training samples to compute the gradients.

Benchmarks:

Perfect CSI with BCD.

LMMSE channel estimation with BCD.

Deep learning based channel estimation with BCD.
Use the same GNN architecture for utility maximization, but with a different loss function
1
K

∑
k E[‖F̂ k − F k‖2

F ] to estimate channels.
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Downlink Sum Rate vs. Uplink Pilot Length
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Figure: M = 8, N = 100, K = 3, Pd = 20dBm, and Pu = 15dBm.
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Testing Sum Rate vs. Training epochs.
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Figure: 100× 1024 training samples at each epoch.
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Generalizability in Transmit Power
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Figure: Generalizability in downlink transmit power
with Pu = 15dBm, M = 8, N = 100 and L = 75.
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Figure: Generalizability in pilot transmit power with
Pd = 20dBm, M = 8, N = 100 and L = 75.
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Generalizability in Number of Users
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Figure: M = 8, N = 100, L = 25K , Pu = 15dBm and Pd = 25dBm. GNN is trained for K = 6.
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Maximizing Minimum Rate
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Figure: M = 4, N = 20, K = 3, L = 75, Pd = 20dBm, and Pu = 15dBm.
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Generalizability in Number of Users

Table: Minimum rate (bps/Hz) at M = 4, N = 20, Pd = 20dBm, Pu = 15dBm.

L K Deep learning LMMSE+BCD Perfect CSI+BCD

L = 5K
2 0.587 0.529 0.786
3 0.386 0.335 0.496
4 0.274 0.240 0.351

L = 25K
2 0.726 0.620 0.786
3 0.466 0.395 0.496
4 0.315 0.284 0.351
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Interpretation of Solutions from GNN

We train the proposed GNN for a single user case, then use array response to interpret the
resulting beamforming pattern from GNN.

Array response at the M-antenna BS is:

fb(φ1, θ1) = |aBS(φ1, θ1)Hw |,

where

aBS(φ1, θ1) = [1, · · · , e j
2π(M−1)dBS

λc
cos(φ1) cos(θ1)

].

Array response of an L× L IRS on yz-plane is:

fi (φ2, θ2, φ3, θ3) = |aIRS(φ2, θ2)H diag(v)aIRS(φ3, θ3)|,

where for i1(n) = mod(n − 1, L), i2(n) = b(n − 1)/Lc

[aIRS(φk , θk )]n = e
j 2πdIRS

λc
{i1(n) sin(φk ) cos(θk )+i2(n) sin(θk )}

.

φ1/θ1: the azimuth/elevation angle of arrival from the IRS to the BS.

φ2/θ2: the azimuth/elevation angle of departure from the IRS to the BS.

φ3/θ3: the azimuth/elevation angle of arrival from the user to the IRS.
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Simulation Settings

φ∗1 θ∗1 φ∗2 θ∗2 φ∗3 θ∗3

Scenario 1 2.356 0 −0.785 0 0.588 −0.506

Scenario 2 2.356 0 −0.785 0 −0.588 −0.506
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Beamforming Pattern for N = 10 × 10,M = 8
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Figure: IRS, φ∗3 = 0.588, θ∗3 = −0.506.
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Figure: BS, φ∗1 = 2.356.
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Figure: IRS, φ∗3 = −0.588, θ∗3 = −0.506.
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Figure: BS, φ∗1 = 2.356.
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Impact of the Number of Elements N of IRS

Large IRS array leads to more focused reflective pattern.
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(a) N = 3× 10.
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(b) N = 5× 10.
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(c) N = 10× 10.

Figure: Array response of the IRS with φ∗3 = 0.588, θ∗3 = −0.506.
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Multiuser Beamforming and Reflecting Patterns for Maximizing Min Rate
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Figure: BS, φ∗1 = 2.356.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5
0

10

20

30

40

50

60

Figure: IRS, φ∗3 = −1.176, 0, 1.176,
θ∗3 = −0.994,−0.980,−0.994.
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Summary

We show that it is possible to bypass explicit channel estimation for optimizing the
beamforming and reflective patterns in an IRS assisted communication system.

This is accomplished by a graph neural network that maps the received pilots directly to the
desired IRS configuration and beamforming matrix at the BS.

The GNN is permutation invariant and equivariant with respect to the users.

The user locations can be incorporated to further enhance the performance.

The GNN can learn to solve both sum-rate and min-rate maximization problems.

The resulting beamforming and reflective patterns are interpretable.

The proposed approach is much more efficient in term of required pilot length.
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Concluding Remarks

Traditional paradigm for communication system design is to model-then-optimize.

Machine learning allows a data-driven approach that
Perform multiuser beamforming and reflective coefficient design with implicit channel estimation;
Perform channel estimation, feedback and precoding without explicit channel model.

Key advantages are to account for model uncertainty and channel estimation error.

Key issues are: generalizability, interpretability, neural network architecture.

How far can we push machine learning? Many open questions...

Thank you!
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