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Abstract—This paper investigates the information theoretical
limit of a reconfigurable intelligent surface (RIS) aided communi-
cation scenario in which the RIS and the transmitter jointly send
information to the receiver. The RIS is an emerging technology
that uses a large number of passive reflective elements with
adjustable phases to intelligently reflect the transmit signal to the
intended receiver. While most previous studies of the RIS focus on
its ability to beamform and to boost the received signal-to-noise
ratio (SNR), this paper shows that if the information data stream
is available both at the transmitter and the RIS and the phases at
the RIS can be used to modulate data, then the multiplexing gain
of the overall channel can potentially be significantly enhanced.
Specifically, we show that in a multiple-input multiple-output
(MIMO) channel with M transmit antennas and K receive
antennas, a RIS with N reflective elements can improve the
multiplexing gain from min(M,K) to min(M + N

2
− 1

2
, N,K).

This result is obtained by establishing a connection between
the RIS system and the MIMO channel with phase noises and
using results for characterizing the information dimension under
projection.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS), also known as
the intelligent reflective surface (IRS), is a promising new
technology that utilizes a large number of reflective elements
with adjustable phase shifts to enhance the spectral and energy
efficiencies of wireless communication systems [1]–[4]. In
most current literature, the RIS is envisioned to be used as a
passive beamformer with its reflective coefficients optimized
for maximizing the received signal-to-noise ratio (SNR) of the
overall channel. Passive beamforming, however, does not fully
harvest the potentials of the RIS. The goal of this paper is to
show that if the information data stream is available at both the
transmitter and the RIS, then the RIS can cooperate with the
transmitter to potentially improve the multiplexing gain of the
overall channel. In effect, the adjustable reflective coefficients
can be used not only to enhance the channel, but also to carry
information.

RIS can be thought of as an array of a large number of
reflective elements, each of which can induce a phase shift
between the incident signal and the reflecting signal. By ad-
justing the phase shifts, the RIS can enhance the transmission
quality of the overall channel by adaptively beamforming the
incident signal to an intended reflecting direction [5]. As
compared to traditional relaying techniques [6], [7], the RIS
reflects the incident signal passively, so it has much lower
energy consumption. Further, by utilizing a large number of

analog reflective elements and by adjusting their phases in
real time, the RIS can achieve a high beamforming gain at
relatively low hardware cost.

The existing literatures on the RIS-aided wireless commu-
nication system mostly focus on the optimization of the phase
shifts at the RIS to achieve various system-level objectives
[8]–[15]. These existing studies, however, utilize the RIS only
as a passive analog beamformer that can adjust the phases of
the reflection to achieve a beamforming gain. Passive analog
beamforming works by adjusting the phase shifts of scattered
wavefronts at different reflective elements so that they can add
constructively at the receiver, thereby enhancing the receive
SNR. For these systems, the phase shifts at the RIS are
functions of the instantaneous channel realizations only.

The main focus of this paper is to explore the possibility
that if, in addition to the channel state information (CSI),
the RIS also has access to the user data stream, then the
RIS can modulate the information stream in the phase shifts
to significantly further enhance the capacity of the overall
communication channel. This idea has already been explored
in [16], where the achievable rate for the joint information
transmission scheme is studied for a system with fixed finite
modulation, and in [17] and [18], which address the design of
decoding algorithms when extra information bits are encoded
in the RIS, but the information theoretical limit of modulating
through RIS is not yet known. Toward this end, this paper
partially fills this gap by studying the degree of freedom (DoF),
also known as pre-log factor or multiplexing gain, of a joint
transmission scenario, in which the information bits are carried
both in the transmit radio frequency (RF) signal and the phase
shifts at the RIS for an intended MIMO receiver.

The multiplexing gain is an important metric which captures
the high SNR asymptotic behavior of channel capacity for
channels with additive Gaussian noises. The difficulty in the
analysis for the RIS channel lies in the multiplicative nature
of the channel model in which the received signal is the
product of two different information-carrying signals. We
tackle this challenge by connecting the achievable rate of the
RIS channel to the capacity of the MIMO channel with phase
noises. Tools for studying the information dimension and the
point-wise dimension under projection are used. We show
that for a system with M transmit antennas and K receive
antennas, the use of an RIS with N reflective elements can
improve the multiplexing gain of the overall channel from



min(M,K) to min(M + N
2 − 1

2 , N,K). Thus, when there are
more receive antennas than transmit antennas, a cooperative
RIS can significantly improve the overall channel capacity by
modulating additional data streams through its phase shifts.

II. SYSTEM MODEL

Consider an RIS-aided communication scenario as shown in
Fig. 1, where an RIS with N reflective elements is deployed to
enhance the signal transmission from an M -antenna transmit-
ter to a K-antenna receiver. Let G, H be the channel response
matrices from the transmitter to the RIS and from the RIS to
the receiver, respectively, which are assumed to be fixed and
known to both the transmitter and the receiver. We assume that
each element of the RIS combines all the transmitted signals
at a single point and reflects it from this point to the receiver
with an adjustable phase shift. We assume that there is no
direct path from the transmitter to the receiver. In this case, the
discrete-time channel model for the communication scenario
is given by

Y =
√
PHΘGX︸ ︷︷ ︸

W

+Z, (1)

where Y ∈ CK is the received signal vector, X ∈ CM is the
transmit signal vector with power constraint E[∥X∥22] ≤ 1, and
Z ∼ CN (0, σ2IK) is the additive Gaussian noise vector at the
receiver. Here, Θ = diag([ejθ1 , ejθ2 , · · · , ejθN ]) is the N ×N
reflecting coefficient matrix induced by the RIS, where θm is
the phase-shifting coefficient of the m-th reflective element
on the RIS and diag(·) denotes a diagonal matrix whose
diagonal elements are given by the corresponding entries of
the argument. For convenience, we define W , ΘGX as
shown in (1) so that the output of the RIS is

√
PW.

When the RIS is used as a passive beamformer, we design
a fixed Θ as a function of H and G in order to maximize
the over channel capacity from X to Y. Mathematically, this
maximization operation can be written as

max
Θ

max
p(x)

I (X;Y|Θ) . (2)

In this case, the reflecting coefficients do not carry any
information. The main function of the RIS is to enhance the
beamforming gain from X to Y.

In this paper, we explore the potential of using the RIS to
encode information in the reflective coefficients themselves. In
this case, the channel is defined to be from (X,Θ) to Y. The
capacity of such a channel, as a function of the transmitted
power P , can be written as

C(P ) = max
p(x,θ)

I(X,Θ;Y). (3)

Computing I(X,Θ;Y) is not an easy task as it involves
a multi-dimensional integration over the probability density
functions (pdf) of X and Θ and can only be done numerically.
To obtain some insights into the problem, in this paper, we
characterize the multiplexing gain m of this channel model,
which is defined as the pre-log factor of the rate as P → ∞,
i.e.

m , lim
P→∞

C(P )

logP
. (4)

Fig. 1. Channel model for an RIS assisted point-to-point MIMO communi-
cation system.

The multiplexing gain, also known as degree-of-freedom,
characterizes the number of independent data streams that can
be transmitted from the transmitter to the receiver. Under-
standing this high SNR behavior guides the design of practical
communication systems.

For a point-to-point MIMO channel with M transmit an-
tennas and K receive antennas, the maximum multiplexing
gain is simply min(M,K). The main goal of this paper is to
characterize the improvement in the multiplexing gain when
an N -element RIS is deployed between the transmitter and the
receiver.

III. MULTIPLEXING GAIN

In this section, we compute the multiplexing gain of
I(X,Θ;Y) based on an equivalence between the multiplex-
ing gain of an additive noise channel and the information
dimension of the input. Toward this end, we first compute the
information dimension of the output W at the RIS. This is
accompolished by building a connection between the channel
model with RIS and the MIMO channel with phase noise. We
then compute the information dimension of HW by studying
the behavior of information dimension under projection.

A. Information Dimension and Multiplexing Gain

First, we introduce the concept of information dimension
and the connection between the information dimension and
the multiplexing gain of a channel with additive noise.

Definition 1: For a random vector X ∈ RN with distribution
µ, we define the information dimension of X as

D(X) = lim
ε→0

E [logµ (B(X; ε))]

log ε
(5)

assuming that the limit exists, where B(X; ε) ⊆ RN denotes
the ball with center X and radius ε with respect to an arbitrary
norm on RN .

The following lemma connects the information dimension
and the multiplexing gain of a general vector additive noise
channel.



Lemma 1 ( [19], [20]): Let X and Z be independent
random vectors in Rn such that Z has an absolutely continuous
distribution with h(Z) > −∞ and H(⌊Z⌋) < ∞. Then

lim sup
P→∞

I(X;
√
PX+ Z)

1
2 logP

= D(X). (6)

By Lemma 1, we see that computing the multiplexing gain
of the RIS channel (1) can be equivalently cast as computing
the information dimension D(HΘGX). However, Lemma 1
deals with real channels. To work with a complex channel
model, we can stack the real and imaginary parts of the
complex vectors, and stack the real and imaginary parts of
complex matrices, such as H, as[

Re{H} Im{H}
Im{H} Re{H}

]
, (7)

then apply Lemma 1 to the resulting equivalent model in R2K .
Note that two real dimensions in R2K is equivalent to one
complex dimension in CK .

B. Information Dimension of W

Next, we compute the information dimension of the output
of the RIS W by looking at the following channel model (with
general arbitrary dimensions):

Ỹ =
√
P Θ̃G̃X̃+ Z̃, (8)

where Ỹ ∈ CÑ , X̃ ∈ CM̃ , Θ̃ = diag([ejθ1 , ejθ2 , · · · , ejθÑ ]).
A crucial observation is that this channel model resembles the
MIMO channel with phase noise. We leverage the following
result from the phase noise literature to provide a key insight.

Lemma 2 ( [21]): Let Φ̃ = [ejθ1 , . . . , ejθÑ ]T be such that
h(Φ̃) > −∞ and

Ȳ =
√
P Φ̃ ◦

(
G̃X̃

)
+ Z̃, (9)

where Z̃ ∼ CN (0, IÑ ). For X̃ ∼ CN (0, IM̃ ), we have that

h(Ȳ) ≥ min

(
M̃ +

Ñ

2
− 1

2
, Ñ

)
log+ P + c1. (10)

Further, for any distribution of X, we have

I(Ȳ; X̃) ≤ min

(
M̃ − 1

2
,
Ñ

2

)
log+ P + c2 (11)

Here c1 and c2 are constants that do not depend on P .
The intuition behind (10) is the following. The information

dimension of the entropy term h(Ȳ) is clearly lower bounded
by the dimension of Ȳ which is Ñ , but it is also lower bounded
by the transmit dimension, which is the sum of M̃ and Ñ

2

but subtracting 1
2 . Here, M̃ is the information dimension of

X̃; Ñ
2 is the information dimension of the phases Φ̃; but

because there is a common phase between them as the two are
multiplied, we need to subtract the dimension of their overlap,
which is 1

2 .
We are now ready to characterize the information dimension

of W in (1). The result below is for arbitrary dimensions Ñ
and M̃ .

Theorem 1: For Ỹ ∈ CÑ , X̃ ∈ CM̃ , Θ̃ =
diag([ejθ1 , ejθ2 , · · · , ejθÑ ]) and the channel model

Ỹ =
√
PW̃ + Z̃ =

√
P Θ̃G̃X̃+ Z̃, (12)

where Z̃ ∼ CN (0, IÑ ). For almost all matrices G̃ ∈ CÑ×M̃ ,
the multiplexing gain of I(X̃, Θ̃; Ỹ) is given by min(M̃ +
Ñ
2 − 1

2 , Ñ). This multiplexing gain can be achieved with X̃ ∼
CN (0, IM̃ ) and Θ̃ such that θi ∼ U [−π, π]. With this choice
of distributions, the information dimension of W̃ is

D(W̃) = min

(
M̃ +

Ñ

2
− 1

2
, Ñ

)
. (13)

Proof: We show the achievability by making use of
Lemma 2. Observe that with Φ̃ = [ejθ1 , . . . , ejθÑ ]T , we have

Ỹ =
√
P Θ̃G̃X̃+ Z̃ (14)

=
√
P Φ̃ ◦ (G̃X̃) + Z̃. (15)

Therefore, the RIS channel model in (12) can be viewed as a
channel with phase shifts Φ̃ applied at the receiver. Choosing
X̃ ∼ CN (0, IM̃ ) and Φ̃ as θi ∼ U [−π, π], we have that
h(Φ̃) > −∞, therefore we can apply (10) in Lemma 2 to get
h(Ỹ) ≥ min(M̃ + Ñ

2 − 1
2 , Ñ) log+ P + c1.

Further, the mutual information can be lower bounded as:

I(X̃, Θ̃; Ỹ) = h(Ỹ)− h(Ỹ|X̃, Θ̃) (16)

≥ min

(
M̃ +

Ñ

2
− 1

2
, Ñ

)
log+ P + c1, (17)

where the inequality comes from the fact that h(Ỹ|X̃, Θ̃) is
the entropy of the noise term which does not depend on P .

Next, we prove the converse by giving an upper bound on
I(X̃, Θ̃; Ỹ). First, for Θ̃ such that h(Θ̃) > −∞

I
(
X̃, Θ̃; Ỹ

)
= I(X̃; Ỹ) + I(Θ̃; Ỹ|X̃) (18)

≤ min

(
M̃ − 1

2
,
Ñ

2

)
log+ P + I

(
Θ̃; Ỹ|X̃

)
+ c2, (19)

where the inequality follows from applying (11) in Lemma 2.
To upper bound I

(
Θ̃; Ỹ|X̃

)
, note that when X̃ is known,

Ỹ =
√
P Θ̃G̃X̃+ Z̃ (20)

=
√
Pdiag(G̃X̃)Φ̃+ Z, (21)

where Φ̃ = [ejθ1 , . . . , ejθÑ ]T . Thus, (20) is equivalent to a
MIMO channel with continuous phase inputs on each of the
transmit antennas, so

I
(
Θ̃; Ỹ|X̃

)
= I(Φ̃; diag(G̃X̃)Φ̃+ Z̃|X̃) (22)

=
Ñ∑
i=1

I
(
θi;

√
P (G̃X̃)ie

jθi + Z̃i|X̃
)

(23)

≤ Ñ

2
log+ P + c. (24)



where the last equality follows from applying capacity results
for phase-only transmission in single-antenna channels [22]
and c is a constant that does not depend P . Now we have

I
(
X̃, Θ̃; Ỹ

)
≤ min

(
M̃ − 1

2
,
Ñ

2

)
log+ P

+
Ñ

2
log+ P + c (25)

= min

(
M̃ +

Ñ

2
− 1

2
, Ñ

)
log+ P + c. (26)

It is not hard to see that the above still holds even when
h(Θ̃) = −∞. This is because even if some θi is discrete, the
min(M̃− 1

2 ,
Ñ
2 ) term in (25) due to the information dimension

of X̃ would increase by at most 1
2 , while the Ñ

2 term due to
the information dimension of Θ̃ would decrease by at least 1

2 .
Combining (17) and (26), we see that the multiplexing gain

of the channel model (12) is given by min(M̃ + Ñ
2 − 1

2 , Ñ).
The information dimension of W̃ = Θ̃G̃X̃ is therefore given
by D(W̃) = min(M̃ + Ñ

2 − 1
2 , Ñ) in view of Lemma 1.

The above result is established with the choice of X̃ ∼
CN (0, IM̃ ) and Θ̃ such that θi ∼ U [−π, π]. But the final
multiplexing gain expression in Theorem 1 indicates that there
is 1

2 dimension overlap between Θ̃ and X̃ giving rise to the
− 1

2 term. This suggests that removing one of the phase angle
from either X̃ or Θ̃ would give the same multiplexing gain.
This is formally stated in the following Proposition.

Proposition 1: For the channel model in Theorem 1, the
same multiplexing gain of min(M̃ + Ñ

2 − 1
2 , Ñ) and thus the

same information dimension D(W̃) = min(M̃ + Ñ
2 − 1

2 , Ñ)
can be achieved using the following choice of distributions
for X̃′ and Θ̃′. The distribution of X̃′ is chosen such that
the first M̃ − 1 elements are i.i.d. complex Gaussian, i.e.,
X̃′

M̃−1
∼ CN (0, IM̃−1), and X̃ ′

M̃
is chosen to be real with

a chi-squared distribution with 2 degrees of freedom, and Θ̃′

remains as θ̃′i ∼ U [−π, π].
Proof: We start from the X̃ ∼ CN (0, IM̃ ) and Θ̃ with

θ̃i ∼ U [−π, π] as in Theorem 1 for achieving the multiplexing
gain for W̃ = Θ̃G̃X̃ of min(M̃ + Ñ

2 − 1
2 , Ñ). Denote the

phase of the last element of X̃ as ejϕ. Now, we chose X̃′

as e−jϕX̃ and Θ̃′ = ejϕΘ̃. We have that the distribution
of Θ̃′G̃X̃′ is the same as the distribution of Θ̃G̃X̃, so the
same multiplexing gain can be achieved for W̃′ = Θ̃′G̃X̃′

and also the same information dimension. For this choice of
distributions, X̃′ is such that the first M̃−1 elements are i.i.d.
complex Gaussian, i.e. X̃′

M̃−1
∼ CN (0, IM̃−1), the real part

of X ′
M̃

is a chi-squared distribution with 2 degrees of freedom,
and the imaginary part of X ′

M̃
is 0, and Θ̃′ as θ̃′i ∼ U [−π, π].

C. Information Dimension of HW

We now characterize the multiplexing gain of the original
channel model (1) by investigating the information dimension
of HW. Observe that D(HW) is the information dimension

of W under a linear projection from CN → CK , so one would
expect that

D(HW) = min(D(W),K). (27)

The above relationship is, however, not true for any arbitrary
distribution; see [19] for a counterexample. The issue is that
the projection may have different effects for different points if
the distribution is not absolutely continuous. For the particular
W studied in the context of this paper, the relationship (27)
turns out to be true. To establish this rigorously, we utilize
results about the information dimension under projection, but
first we need to define the concept of point-wise dimension.

Definition 2: For every point x and a probability distribution
µ, we define the point-wise dimension at x as

d(x) = lim
ε→0

logµ (B(x; ε))

log ε
(28)

assuming that the limit exists.
From the literature of fractal geometry, we have the fol-

lowing result ensuring that the point-wise dimension does not
increase under projection.

Lemma 3 ( [23]): Let µ be a probability measure in RE , for
any smooth function f : RE → RD. If d(x) exists for almost
every x, then d(f(x)) exists and

d(f(x)) ≤ min(d(x), D), (29)

for almost every x.
A similar result also holds for the information dimension.

Moreover, when the point-wise dimension is upper bounded
by the dimension of the range space of the projection, the
information dimension is perserved under projection.

Lemma 4 ( [23]): Given a matrix A ∈ RD×E and X ∈ RE

following a distribution µ, we have

D(AX) ≤ min(D(X), D). (30)

Additionally, if the point-wise dimension of µ exists for almost
every x and d(x) ≤ D, then for almost all A the information
dimension of AX exists and

D(AX) = D(X). (31)

Now we are ready to state our main theorem for the
information dimension of HW:

Theorem 2: For almost all matrices G ∈ CN×M and H ∈
CK×N , the multiplexing gain of the channel model (1), i.e.,

Y =
√
PHW + Z =

√
PHΘGX+ Z, (32)

with (X,Θ) as the input, and equivalently the information
dimension of HW at the optimal input distribution, are

m = D(HW) = min

(
M +

N

2
− 1

2
, N,K

)
. (33)

Proof: First, we establish that (33) is an upper bound
for D(HW). From Theorem 1 and Lemma 1 we have that
D(W) ≤ min(M + N

2 − 1
2 , N) for any distribution of Θ

and X. Therefore, by (30) in Lemma 4, we have D(HW) ≤
min(M + N

2 − 1
2 , N,K).



To establish the lower bound, i.e., D(HW) ≥ min(M +
N
2 − 1

2 , N,K), we divide into two cases and first treat the
case when K ≥ min(M + N

2 − 1
2 , N,K). The key idea is to

recognize that because X and Θ have 1
2 dimension overlap, we

should choose the distributions for (X,Θ) as that of (X̃′, Θ̃′)
in Proposition 1 with M̃ = M and Ñ = N in order to
explicitly account for the overlap. In this case, (X,Θ) has an
absolutely continuous distribution of dimension M + N

2 − 1
2 ,

so it has a point-wise dimension d(X,Θ) = M + N
2 − 1

2
for every point. Now, denote the mapping from (X,Θ) to W
as f , which is smooth. Then from Lemma 3, we have the
following upper bound on the point-wise dimension

d(W) = d(f(X,Θ)) (34)

≤ min(d(X,Θ), N) = min

(
M +

N

2
− 1

2
, N

)
.

(35)

For the case of K ≥ min(M + N
2 − 1

2 , N), we can now apply
the second part of Lemma 4 to obtain

D(HW) = D(W) = min

(
M +

N

2
− 1

2
, N

)
. (36)

For the case of K < min(M + N
2 − 1

2 , N), the idea is to
choose M̃ ≤ M and Ñ ≤ N such that K = min(M̃ + Ñ

2 −
1
2 , Ñ) and use such (M̃, Ñ) in Theorem 1. In effect, we are
choosing a distribution for (X,Θ) by turning off some of the
transmit antennas and reflecting elements. Next, we apply the
same argument as in the case of K ≥ min(M + N

2 − 1
2 , N),

which gives

d(W) = d(f(X,Θ)) (37)

≤ min(d(X,Θ), Ñ) = min

(
M̃ +

Ñ

2
− 1

2
, Ñ

)
.

(38)

Then, the proof follows by applying Lemma 4 to obtain that
D(HW) = D(W) = min(M̃+ Ñ

2 −
1
2 , Ñ) = K is achievable.

Combining the two cases gives us the achievability. Together
with the converse and by making use of Lemma 1, we obtain
that the multiplexing gain of (1) is given by

m = D(HW) = min

(
M +

N

2
− 1

2
, N,K

)
. (39)

IV. INTERPRETATIONS AND PRACTICAL IMPLICATIONS

We now give an interpretation of the main multiplexing gain
result (33). The channel model has two inputs: X of dimension
M , and Θ of dimension N . But because Θ has phase control
only, its information dimension is only N

2 . Further, because X
and Θ have 1

2 dimension overlap, the total input dimension is
therefore M + N

2 − 1
2 . Moreover, the channel has output Y of

dimension K, and the RIS acts as a relay with a bottleneck W
of dimension N . The overall multiplexing gain must be the
minimum of the input dimension, the relay dimension, and

the output dimension. This is why the multiplexing gain is
min(M + N

2 − 1
2 , N,K).

As compared to a MIMO channel with M antennas at the in-
put and K antennas at the output achieving a multiplexing gain
of min(M,K), an RIS system can improve the multiplexing
gain for the case of K > M . In essence, the phase shifts at the
RIS can act as part of the input to effectively increase the total
input dimensions. Thus, by making the input data available to
the RIS, we are enabling the RIS to modulate additional data
stream via phase shifts. Assuming that N is much larger than
M and K as in typical deployment scenarios, the maximum
additional number of data streams that the RIS can provide is
N
2 − 1

2 . Note that if the RIS is used merely as a beamformer or
as a reflector, it cannot improve the multiplexing gain. Thus,
modulating data through phase shifts has significant advantage.

The result of this paper continues to hold even in the
extreme case where the transmitter sends only a constant
signal (which carries no information, thus M = 0) and all the
information is carried in the phases of the RIS [24], [25]. In
this case I (X,Θ;Y) = I (Θ;Y|X). The multiplexing gain
that can be achieved is min(N2 ,K). Therefore, to achieve full
multiplexing gain of K, we need at least N = 2K.

Another practical case is when the transmitter has a single
radio-frequency (RF) chain. This is akin to using the RIS
to emulate a MIMO transmitter, i.e., a single-antenna active
transmitter together with an RIS can be jointly configured to
act as a MIMO array [26]. Such a system can be considered
as a low-cost alternative to a fully digital MIMO system. In
this case, we have M = 1 and the signal model is given by

Y = HΘgX +W, (40)

Assuming a large N , the main result of this paper implies
that the overall multiplexing gain is K. One possible way for
achieving this multiplexing gain is to use the amplitude of X
to modulate 1

2 DoF and to use a RIS of size N = 2K − 1 to
modulate the remaining (K − 1

2 ) DoF.

V. CONCLUSION

This paper studies the information theoretic limits of joint
information transmission using both the RF input and phase
modulation at an RIS reflector. In particular, the multiplexing
gain of the communication schemes where information is
conveyed through both the RF transmitted symbols and the
reflective coefficients of the RIS is characterized. This is in
contrast to most conventional use of the RIS as a passive
beamformer for boosting the channel strength. The multi-
plexing gain is computed by recognizing a connection to the
MIMO channels with phase noises. Tools for studying the
information dimension and the point-wise dimension under
projection are used to obtain the final result. We show that for
a system with M transmit antennas and K receive antennas,
the use of an RIS with N reflective elements can improve the
multiplexing gain of the overall channel from min(M,K) to
min(M + N

2 − 1
2 , N,K).
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