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Massive Random Access for Internet-of-Things (IoT)

Active Users

Inactive Users

A large number of devices with sporadic activity
Low latency random access scheme for massive users is required
Non-orthogonal signature sequences need to be used
User activity detection (user identification) performed at base station (BS)

This talk: User activity detection problem for a multi-cell system.
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System Model

BS equipped with M antennas
N single-antenna devices, K of which are active at a time
Each device is associated with a length-L unique signature sequence sn

Channel hn of user n includes both (i.i.d.) Rayleigh and large-scale fading
For single-cell system, received signal Y ∈ CL×M at the BS is

Y =
N∑

n=1
αnsnhT

n + Z = SX + Z, (1)

where
αn ∈ {1, 0} activity indicator; Z ∈ CL×M Gaussian noise with variance σ2

S , [s1, . . . , sN ] ∈ CL×N ; X , [α1h1, · · · , αNhN ]T ∈ CN×M
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Joint Sparse Activity Detection and Channel Estimation

Aim to identify the K non-zero rows of X from Y = SX + Z.
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Multiple measurement vector (MMV) problem in compressed sensing
Columns of X share the same sparsity pattern, i.e., row sparsity

Efficiently solved by the approximate message passing (AMP) algorithm
Detecting KM variables based on LM observations.
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Joint Activity Detection and Large-Scale Fading Estimation
Key Assumption: We only need activity αn and do not need hn.

Reformulate sparse activity detection as a large-scale-fading estimation problem:

Y =
N∑

n=1
αnsnhT

n + Z , SΓ 1
2 H̃ + Z (2)

= +

M

L

N

N

N

M

M

L...
.
..

S , [s1, s2, · · · , sN ] ∈ CL×N , signature matrix
Γ , diag{α1β1, α2β2, · · · , αNβN} ∈ RN×N , where βn is large-scale fading
H̃ ,

[
h1/
√
β1,h2/

√
β2, · · · ,hN/

√
βN
]T ∈ CN×M , normalized channel matrix
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Maximum Likelihood Estimate of Activities and LS Fading

The maximum likelihood estimation of Γ can be expressed as

min
Γ≥0
− log p(Y|Γ) ∝ min

Γ≥0
− 1

M

M∑
m=1

(
log 1
|πΣ| exp

(
−yH

mΣ−1ym
))

(3)

= min
Γ≥0

log |Σ|+ tr
(

Σ−1Σ̂
)

+ const.

= min
Γ≥0

log |SΓSH + σ2I|+ tr
(

(SΓSH + σ2I)−1Σ̂
)

+ const. (4)

Sample covariance matrix over the antennas is a sufficient statistics:

Σ̂ ,
1
M

M∑
m=1

ymyH
m = 1

M YYH . (5)

The above problem can be solved efficiently using coordinate descent.
A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire: “Non-Bayesian Activity Detection, Large-Scale Fading
Coefficient Estimation, and Unsourced Random Access with a Massive MIMO Receiver”, T-IT, May 2021.
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Covariance Based Sparse Activity Detection
Instead of jointly estimating the channel, i.e., the non-zero rows in X based on Y:
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We now estimate large-scale fading Γ based on Σ̂ = 1
M YYH :
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Crucial Advantage: We now detect K variables based on L2 observations!
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Analysis of the Maximum Likelihood Estimate of Γ

Theorem
Let I be an index set corresponding to zero entries of γ0, i.e., I , {i | γ0

i = 0}.
We define two sets N , C in the space RN , respectively, as follows

N , {x | xT J(γ0)x = 0, x ∈ RN}, (6)
C , {x | xi ≥ 0, i ∈ I, x ∈ RN}, (7)

where xi is the i-th entry of x. Then a necessary and sufficient condition for the
consistency of γ̂ML, i.e., γ̂ML → γ0 as M →∞, is N ∩ C = {0}.

N is the “null space” of the Fisher Information Matrix J(γ0);
C is a cone with non-negative entries indexed by the inactive users I.

This condition leads to a phase analysis for the covariance based method, i.e., set
of (N, L,K ) outside of which γ̂ML cannot approach γ0 even in the large M limit.
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Phase Transition of Covariance Approach
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Figure: Phase transition in the space of N, L,K . All users are located at the cell-edge
(1000m) with transmit power 23dBm. Path-loss is 128.1 + 37.6 log(d [km]). Generated
by 100 Monte Carlo simulations. Error bars indicate the range below which all 100
realizations satisfy the condition and above which none satisfies the condition.
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Activity Detection with Known Large-Scale Fading

Suppose that large-scale fading is known, activity detection now becomes
over the binary indicators αn:

min
{αn}

log
∣∣SΓSH + σ2I

∣∣+ tr
(

(SΓSH + σ2I)−1Σ̂
)

(8a)

s. t. αn ∈ {0, 1}, n = 1, 2, . . . ,N (8b)

Binary αn is challenging to deal with. We relax the constraint such that

αn ∈ [0, 1], n = 1, 2, . . . ,N (9)

The relaxed problem can be solved by coordinate descent:

d = min
{

max
{

sH
k Σ̃−1Σ̂Σ̃−1sk − sH

k Σ̃−1sk

βk(sH
k Σ̃−1sk)2

,−α̂k

}
, 1− α̂k

}
. (10)

With unknown large-scale fading βn, we estimate γn = αnβn in [0,∞].
With known large-scale fading βn, we estimate αn in [0, 1].
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Value of Knowing Large-Scale Fading

The covariance method directly estimates the activity indicator αn in [0, 1] instead
of γn = αnβn in [0,∞). Let α , [α1, . . . , αN ]T and let the true value of α be α0.

Theorem
Let I be an index set corresponding to zero entries of α0, i.e., I , {i | α0

i = 0}.
We define two sets N ′, C′ in the space RN , respectively, as follows

N ′ , {x | xT J(γ0)x = 0, x ∈ RN}, (11)
C′ , {x | xi ≥ 0, i ∈ I, xi ≤ 0, i /∈ I, x ∈ RN}, (12)

where xi is the i-th entry of x. Then a necessary and sufficient condition for the
consistency of α̂ML, i.e., α̂ML → α0 as M →∞, is N ′ ∩ C′ = {0}.

The extra constraint in the definition of C is due to that αn is upper bounded.
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Value of Knowing Large-Scale Fading
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Figure: Phase transition comparison of the cases with and without knowing large-scale
fading. N = 1000. With known large-scale fading, αn is both lower and upper bounded.

When K
N ≈ 1, then inactive users are sparse!
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User Activity Detection in Multicell Systems

What is the impact of the inter-cell interference?

  

  

  

  

How to overcome the inter-cell interference?
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Activity Detection in Multicell Systems
Multi-cell system with B BSs each equipped with M antennas;
N single-antenna devices per cell, K of which are active;
Device n in cell b is assigned a length-L unique signature sequence sbn;
Received signal Yb ∈ CL×M at BS b is

Yb =
N∑

n=1
αbnsbnhT

bbn +
j=B∑

j=1,j 6=b

N∑
n=1

αjnsjnhT
bjn + Zb

= SbAbG
1
2
bbH̃bb +

j=B∑
j=1,j 6=b

SjAjG
1
2
bjH̃bj + Zb

= SbΓ
1
2
bbH̃bb +

j=B∑
j=1,j 6=b

SjΓ
1
2
bjH̃bj + Zb (13)

where
αbn ∈ {1, 0} activity indicator; Aj , diag{αj1, αj2, · · · , αjN} ∈ {0, 1}N×N ;
hbjn ∈ CM×1 is the channel from user n in cell j to BS b
H̃bj ,

[
hbj1/

√
βbj1, · · · , hbjN/

√
βbjN
]T
∈ CN×M , normalized channel

Sj , [sj1, sj2, · · · , sjN ] ∈ CL×N ; Gbj , diag{βbj1, βbj2, · · · , βbjN} ∈ RN×N
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Cooperative Activity Detection via Covariance Approach

Assume that each BS is equipped with a large-scale antenna array.

Cooperative detection: To alleviate the impact of inter-cell interference, we
further consider BS cooperation by assuming all BSs are connected to a CU.

Depending on whether the large-scale fading matrices Gbj ,∀b, j are known,
the device activity detection problem can be formulated differently.

When Gbj are not known, we need to estimate Γbj = AjGbj , ∀b, j , which has

B2N unknown parameters

When Gbj are known, we only need to estimate Ab,∀b, which contains

BN unknown parameters

Device activity detection is much easier if large-scale fading is known!
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Cooperative Detection with Unknown Large-scale Fading

We aim to estimate Γbj = AjGbj ,∀b, j from the received signals Yb,∀b.
The likelihood function of Yb’s given Γbj ’s can be expressed as

p(Y1, . . . ,YB |Γ11,Γ12, . . . ,ΓBB) =
B∏

b=1
p(Yb|Γ11,Γ12, . . . ,ΓBB)

=
B∏

b=1

1
|πΣb|M

exp
(
− tr

(
MΣ−1

b Σ̂b

))
. (14)

The MLE problem can be cast as minimization of negative log-likelihood:

min
{Γbj}

B∑
b=1

(
log |Σb|+ tr

(
Σ−1

b Σ̂b

))
(15a)

s. t. γbjn ∈ [0,∞),∀b, j , n (15b)

This is a challenging problem to solve.
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Cooperative Detection with Known Large-scale Fading
Assuming that all large-scale fading matrices Gbj ’s, we directly estimate the device
activity Ab’s using the MLE. The likelihood function of Yb’s can be expressed as

p(Y1, . . . ,YB |A1, . . . ,AB) =
B∏

b=1
p(Yb|A1, . . . ,AB)

=
B∏

b=1

1
|πΣb|M

exp
(
− tr

(
MΣ−1

b Σ̂b

))
. (16)

Since the activity αbn is binary, the maximization of likelihood can be cast as

min
{Ab}

B∑
b=1

(
log |Σb|+ tr

(
Σ−1

b Σ̂b

))
(17a)

s. t. αbn ∈ {0, 1},∀b, n (17b)

Known large-scale fading: Single-cell and multicell have same phase transition
Multicell problem: Find a BN-dim sparse vector in (BN −BL2)-dim subspace.
Single-cell problem: Find a N-dim sparse vector in (N − L2)-dim subspace.
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Multicell Activity Detection: Known Large-Scale Fading

Let α , [α1, . . . , αBN ]T be the activity indicators, and let true value of α be α0.

Theorem
Let I be an index set corresponding to zero entries of α0, i.e., I , {i | α0

i = 0}.
We define two sets N ′′, C′′ in the space RBN , respectively, as follows

N ′′ , {x | xT J(γ0)x = 0, x ∈ RBN}, (18)
C′′ , {x | xi ≥ 0, i ∈ I, xi ≤ 0, i /∈ I, x ∈ RBN}, (19)

where xi is the i-th entry of x. Then a necessary and sufficient condition for the
consistency of α̂ML, i.e., α̂ML → α0 as M →∞, is N ′′ ∩ C′′ = {0}.

All the dimensions scale by B, so we expect the same phase transition curve.
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Phase Transition of Multicell vs. Single-Cell
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Figure: Phase transition comparison for multicell system with B = 7, N = 200.
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Performance of Covariance Based Detection for Multi-cell
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Figure: Performance comparison of the multicell covariance approach with and without
knowing large-scale fading. B = 7, N = 200, K = 20, and L = 20. We observe that
knowing the large-scale fading brings substantial improvement.
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Performance of Covariance Based Detection for Multi-cell
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Figure: Performance comparison of the multicell covariance approach with single-cell
system, with knowing large-scale fading. B = 7, N = 200, K = 20.
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Conclusions

Device activity detection for massive random access in machine-type and IoT
communications is a sparse recovery problem.

Covariance based MLE can detect activities without estimating the channels.

Analysis and algorithm can be extended from single-cell to multicell systems.

Multicell cooperative detection has a similar phase transition as single-cell
system, but only if the large-scale fading is known.

In practice, there is a performance degradation due to intercell interference.
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