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Introduction and Outline

Massive device connectivity is a key requirement for 5G cellular networks

Machine-type (M2M) communications, Internet of Things (IoT), Sensors...

Sporadic traffic with low latency requirement

Large number of devices but only a few are active at a time

This talk is about how to design such a network:

Sparsity device activity detection algorithms

Massive connectivity with massive MIMO

Scheduling and feedback in massive random access
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Main Messages

To support massive connectivity:

The use of non-orthogonal pilots is inevitable.

Compressed sensing techniques are indispensible for device detection.

Massive MIMO can significantly enhance device activity detection.

Channel estimation is the main bottleneck.

Cooperative detection across multiple cells further improves performance.

Scheduing and feedback are superior to uncoordinated random access.
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Massive Random Access

Cellular system with N users, but only K of which are active.

active users

inactive users

BS needs to detect which users are active, then their messages.

User activity pattern carries information. [Chen-Guo’14]

R + H(A) ≤ I (X ;Y ) (1)

We also need to take the cost of channel estimation into account.
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Fundamental Limit of Massive Random Access

For a massive device communications scenario Y = HAX + Z , the achievable sum
rate of data transmission across all the users is approximately bounded by

R . I (X ;Y |HA)− H(A)− I (HA;Y |X ). (2)

Interpretation:

I (X ;Y |HA): Transmission rate with known channels and activity pattern;

H(A): Information content of device activity pattern;

I (HA;Y |X ): Channel estimation and user activity detection.

Why? We see that R + H(A) ≤ I (X ;Y ).

I (HA,X ;Y ) = I (X ;Y ) + I (HA;Y |X ) (3)

= I (HA;Y ) + I (X ;Y |HA) (4)

Note that the I (HA;Y ) term is negligible.
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Cost of User Activity Detection

Traditional MIMO system [Zheng-Tse’02, Lozano-Heath-Andrew’12]:

R . I (X ;Y |H)− I (H;Y |X ). (5)

Massive connectivity system:

R . I (X ;Y |HA)− H(A)− I (HA;Y |X ). (6)

where the cost of user activity detection is:

H(A) = Nh

(
K

N

)
≈ log

(
N
K

)
≈ K log(N/K ). (7)
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User Activity Detection and Channel Estimation via Pilots

Active Users

Inactive Users

BS equipped with M antennas

N single-antenna devices, K of which are active at a time

Each device is associated with a length-L unique signature sequence sn
Channel hn of user n is assumed to be fixed during the L symbols.

For single-cell system, received signal Y ∈ CL×M at the BS is

Y =
N∑

n=1

αnsnhT
n + Z = SX + Z , (8)

where

αn ∈ {1, 0} activity indicator; Z ∈ CL×M Gaussian noise with variance σ2

S , [s1, . . . , sN ] ∈ CL×N ; X , [α1h1, · · · , αNhN ]T ∈ CN×M
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User Activity Detection via Compressed Sensing

Aim to identify the K non-zero rows of X from Y = SX + Z .
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Multiple measurement vector (MMV) problem in compressed sensing

Columns of X share the same sparsity pattern, i.e., row sparsity

Efficiently solved by the approximate message passing (AMP) algorithm
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Practical Detector Design

Device Identification via Non-Orthogonal Pilots:

Due to large number of potential devices N, orthogonal pilot is not feasible.

Natural choice of pilot sequences: i.i.d. Gaussian signature

Approximate Message Passing (AMP) [Donoho-Maleki-Montanari’09]

Prior work on compressed sensing for massive connectivity:

Without channel estimation [Fletcher-Rangan-Goyal’09, Zhang-Luo-Guo’13]

Joint user activity detection and channel estimation: Orthogonal matching
pursuit [Schepker-Bockelmann-Dekorsy’13, Wunder-Jung-Ramadan’15,
Wunder-Boche-Strohmer-Jung’15], Baysian [Xu-Rao-Lau’15]

AMP is used for device detection in [Hannak-Mayer-Jung-Matz-Goertz’15].
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Single-Antenna Case
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Single-Antenna Case

A single-antenna BS, N devices randomly located in a cell of radius R,

y =
N∑

n=1

hnαnsn + w , Sx + z (9)

hn ∈ C: channel coefficient between user n and BS, including path-loss
fading, shadowing and Rayleigh fading static within each block;

αn ∈ {1, 0}: indicating whether user n is active

x , [h1α1, h2α2, · · · , hNαN ]T ∈ CN×1

sn ∈ CL×1: signature sequence of user n generated as i.i.d. CN (0, 1/L)

S , [s1, s2, · · · , sN ]T ∈ CL×N

z ∈ CL×1: effective noise following i.i.d. CN (0, σ2)
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Sparse Recovery Problem

Identify the columns that correspond to non-zero elements in x via

= +

LASSO formulation:

x̂ = arg min
1

2
‖y − Sx‖2

2 + λ‖x‖1 (10)

CoSaMP is computationally complex: Not scalable at N = 105.
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Soft Thresholding Function

Consider a special case of a single measurement of a scalar, LASSO is

x̂ = arg min
1

2
|y − x |22 + λ|x |1 (11)

The solution is explicitly given by

x̂ = η(y ;λ), (12)

where η is a soft thresholding function as

η(y ; θ) =


y − θ, y > θ

0, −θ ≤ y ≤ θ
y + θ, y < −θ

(13)
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Soft Thresholding Function

This denoiser is nearly minimax optimal:

η(y ; θ) =


y − θ, y > θ

0, −θ ≤ y ≤ θ
y + θ, y < −θ
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Figure: Soft thresholding function with θ = 1
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AMP via Graphical Model

Graphical model with message passing [Donoho-Maleki-Montanari’09]

x1 x2 x3 x4

y1 y2 y3

Vx1→y 1 Vy3→x 4

Main features:

Soft thresholding emerges in a minimax solution.

State evolution describes the progress in iteration.

Better denoiser design is possible by accounting for channel statistics.
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AMP Algorithm

Algorithm: Correlate, denoise, then iterate with the residual

x t+1 = η(x t + ST r t ;λ+ γt) (14)

r t = y − Sx t +
1

L
r t−1‖x t‖0, (15)

where the threshold satisfies

γt+1 =
λ+ γt

L
‖x t+1‖0 (16)

Note: the threshold γt+1 is fixed by the recursion.

Without the last “Onsager term”, this is the classical iterative soft thresholding.
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AMP Algorithm – General Form

Recover x from y via AMP algorithm (complex case)

x t+1 = ηt(S∗r t + x t)

r t+1 = y − Sx t+1 +
r t

δ
〈η′t(S

∗r t + x t)〉

x t : estimate of x at iteration t

r t : residual at iteration t

ηt(·): for soft thresholding, ηt(·) = η(·, θ 1√
L
‖r t‖2), where θ is free parameter

η′t(·): first order derivative of ηt(·)
δ , L

N : undersampling ratio

〈·〉: averaging operation over all entries of a vector
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State Evolution of AMP

The performance of AMP at each iteration can be predicted in the asymptotic
regime where L→∞,N →∞ with fixed L

N

S∗r t + x t can be modeled as signal plus noise, i.e., x + v t

v t is i.i.d. Gaussian noise with variance τt tracked by state evolution equation

τ 2
t+1 = σ2

w +
1

δ
E|ηt(X + τtW )− X |2 (17)

X : random variable following the same distribution as x
W : random variable following CN (0, 1)
initialization: τ0 , σ2

w + 1
δ
E|X |2

Interpretation of state evolution: vector estimation y = Sx + w is reduced to
uncoupled scalar estimation (x t + (S∗r t)i = xi + v t

i
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Denoiser for AMP

Complex soft thresholding denoiser:

ηsoftt (x̃ t) ,

(
x̃ t − θτt

x̃ t

|x̃ t |

)
I(|x̃ t | > θτt) (18)

θ: threshold control parameter

τt : noise variance, estimated by τ̂t = 1√
L
‖r t‖2

I(·): indicator function
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The above is the classical minimax denoiser based on soft thresholding.

Better MMSE denoiser can be designed while accounting for channel distribution:

ηmmse
t (x̃ t) , E(X |X̃ t = x̃ t) (19)

where X̃ t is the random variable defined as X̃ t , X + τtW .
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Comparison of Denoisers
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Figure: Soft thresholding denoiser and MMSE denoiser
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User Activity Detection

Recall the signal plus noise model in AMP: (S∗r t + x t)i = xi + v t
i , which can be

re-expressed as X̃ t = X + τtW via random variables X̃ t ,X ,W

Consider the hypothesis testing problem{
H0 : X = 0, user is inactive

H1 : X 6= 0, user is active
(20)

The optimal decision rule

LLR = log

(
pX̃ t |X (x̃ t |x 6= 0)

pX̃ t |X (x̃ t |x = 0)

)
H0

≶
H1

lth (21)

LLR: log-likelihood ratio

lth: decision threshold determined by the detection criterion.
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Analysis of Detection Error Probability

By state evolution, the likelihood distribution given X can be derived as:

pX̃ t |X (x̃ t |x = 0) =
1

πτ 2
t

exp

(
−|x̃

t |2

τ 2
t

)
(22)

pX̃ t |X (x̃ t |x 6= 0) = a

∫ ∞
0

erfc(b ln z + c)

zγ(z2 + τ 2
t )

exp

(
−|x̃ t |2

z2 + τ 2
t

)
dz (23)

The log-likelihood ratio is computed as

LLR = log

∫ ∞
0

aπτ 2
t z
−γ

z2 + τ 2
t

erfc(b ln z + c) exp(|x̃ t |2∆)dz (24)

∆ , 1
τ 2
t
− 1

z2+τ 2
t

LLR is monotonic in |x̃ t |
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Missed Detection vs. False Alarm Probabilities

Based on the monotonicity, we simplify the decision rule as

|x̃ t |
H0

≶
H1

l ′th (25)

The false alarm and missed detection probabilities:

P t
F =

∫
|x̃ t |>l′th

pX̃ t |X (x̃ t |x = 0)dx̃ t (26)

P t
M =

∫
|x̃ t |<l′th

pX̃ t |X (x̃ t |x 6= 0)dx̃ t (27)

Decision is based on the amplitude of x̃

Trade-off between P t
F and P t

M is achieved by adjusting l ′th
P t
F and P t

M depend on noise variance τt (τ∞ after converging), which can be
tracked via the AMP state evolution
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Simulation Parameters

User number N 4000
Cell radius R 1000m

Activity probability ε 0.05
Signature sequence length L 800

Pathloss parameter α 15.3
Pathloss parameter β 37.6

Shadowing parameter σSF 8 dB
Background noise power -99 dBm

Transmission power 5, 15, 25 dBm
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Missed Detection vs. False Alarm
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CoSaMP, Tx power 5dBm
AMP simulated, Tx power 5dBm
AMP predicted, Tx power 5dBm
lower bound, Tx power 5dB
CoSaMP, Tx power 15dBm
AMP simulated, Tx power 15dBm
AMP predicted, Tx power 15dBm
lower bound, Tx power 15dB
CoSaMP, Tx power 25dBm
AMP simulated, Tx power 25dBm
AMP predicted, Tx power 25dBm
lower bound, Tx power 25dB

Small mismatch of predicted vs simulated curves due to neglecting shadowing
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AMP Performance vs. SNR
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soft thresholding denoiser, L = 800

Threshold for MMSE denoiser is better than soft thresholding denoiser.
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Multi-Antenna Case
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Multiple Antennas at the BS

= +L

NM

Multiple measurement vector (MMV) problem

Better performance than single measurement vector (SMV)

Asymptotic analysis: Fix M, let N,K , L→∞, ε = K
N , δ = L

N ,

Main insight: Perfect user detection is possible when M →∞!

But, the multi-antenna case is also more challenging:

(i) convergence is slower;
(ii) channel estimation error.
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Two-Phase Transmission

Pilot Transmission Phase

Due to large number of devices, non-orthogonal pilots are inevitable.
The same pilots can be used for both activity detection and channel
estimation.

Data Transmission Phase

The achievable rates are limited by the channel estimation error.
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Signal Model in Pilot Phase

Received signal in pilot phase:

Y =
√
ξ

N∑
n=1

αnsnhT
n + Z ,

√
ξSX + Z (28)

ξ = ρpilotL: total transmit energy in pilot phase

hn ∈ CM×1: channel coefficient between user n and BS, including path-loss
fading, shadowing and Rayleigh fading static within each block;

αn ∈ {1, 0}: indicating whether user n is active

X , [h1α1,h2α2, · · · ,hNαN ]T ∈ CN×M

sn ∈ CL×1: signature sequence of user n following i.i.d. CN (0, 1/L)

S , [s1, s2, · · · , sN ]T ∈ CL×N

Z ∈ CL×M : effective noise following i.i.d. CN (0, σ2I )
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Vector Approximate Message Passing

Vector generalization of AMP works iteratively as follows:

x t+1
n = ηt,n((Rt)Hsn + x t

n)

Rt+1 = Y − SX t+1 +
1

δ
Rt

N∑
n=1

η′t,n((Rt)Hsn + x t
n)

N

where Rt = [r t1, · · · , r tL]T ∈ CL×M is the residual

Use MMSE denoise that accounts for channel distribution: (Here δ = L
N )

ηt,n(·): denoiser that depends on βn
η′t,n(·): first-order derivative of ηt,n(·)

Wei Yu (University of Toronto) Sparse Activity Detection 2021 31 / 51



State Evolution

Performance analysis by state evolution for K ,N, L→∞ with L
N = δ

[Bayati-Montanari’11], [Kim-Chang-Jung-Baron-Ye’11], [Rangan’11]:

Σt+1 =
σ2

ξ
I +

1

δ
E
[

(ηt,β(Xβ + Σ
1
2
t V )− Xβ)(ηt,β(Xβ + Σ

1
2
t V )− Xβ)H

]
(29)

AMP is statistically equivalent to applying the denoiser to

x̂ t,n = xn + Σ
1
2
t vn = αnhn + Σ

1
2
t vn (30)

MMSE denoiser:

ηt,n(x̂ t,n) = φt,nβn(βnI + Σt)
−1x̂ t,n (31)

φt,n =
1

1 + 1−ε
ε exp

(
−M

2 (πt,n − ψt,n)
) (32)

πt,n =
x̂H
t,n(Σ−1

t − (Σt + βnI )−1)x̂ t,n

M
(33)

ψt,n =
log det(I + βnΣ−1

t )

M
(34)
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Simplified MMSE Denoiser

With i.i.d. fading, Σt+1 is a diagonal matrix with identical diagonal entries

Σt = τ 2
t I

MMSE denoiser reduces to

ηt,n(x̂ t,n) = φt,n
βn

βn + τ 2
t

x̂ t,n (35)

φt,n =
1

1 + 1−ε
ε exp

(
−M

2 (πt,n − ψt,n)
) (36)

πt,n =

(
1
τ 2
t
− 1

τ 2
t +βn

)
x̂H
t,nx̂ t,n

M
(37)

ψt,n = log

(
1 +

βn
τ 2
t

)
(38)

Asymptotically as M →∞, φt,n is either 0 or 1 depending on whether device
n is active or not.
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Massive MIMO Guarantees Perfect Activity Detection

Theorem: A massive MIMO system can detect device activities perfectly, i.e.,

lim
M→∞

P t,n
M (M) = lim

M→∞
P t,n
F (M) = 0

Proof: By strong law of large numbers:

πt,n →
{
βn/τ

2
t , if αn = 1

βn/(βn + τ 2
t ), if αn = 0

The proof follows as a > log(1 + a) > a
1+a for all a > 0.

What is the cost of massive connectivity?
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Channel Estimation Error

Covariance of estimated channel ĥt,k : Cov(ĥt,k , ĥt,k) = υt,k(M)I

Covariance of channel estimation error ∆ht,k = ht,k − ĥt,k

Cov(∆ht,k ,∆ht,k) = ∆υt,k(M)I (39)

As M →∞

lim
M→∞

υk(M) =
β2
k

βk + τ 2
∞

(40)

lim
M→∞

∆υk(M) =
βkτ

2
∞

βk + τ 2
∞

(41)

where τ 2
∞ is the fixed-point solution to state evolution: (ε = K

N , δ = L
N )

τ 2
t+1 =

σ2

ξ
+
ε

δ
Eβ
[
βτ 2

t

β + τ 2
t

]
(42)

Assuming L > K and high SNR, then τ 2
∞ → σ2

ξ(1− ε
δ ) .
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Data Transmission Phase

Consider a system with K users transmitting to BS with M antennas.

Received signal at the BS with estimated channel h̃k ’s:

y =
∑
k∈K

hk

√
ρdatauk + z =

∑
k∈K

h̃k

√
ρdatauk +

∑
k∈K

∆hk

√
ρdatauk + z

Maximum ratio combining:

ûk = wH
k h̃k

√
ρdatauk + wH

k

 ∑
n∈K,n 6=k

h̃n

√
ρdataun +

∑
n∈K

∆hn

√
ρdataun + z


The achievable rate of user k is [Hassibi-Hochwald’03]

Rk =
T − L

T
E[log2(1 + γk)], ∀k ∈ K,

where

γk =
ρdata|wH

k ĥk |2

ρdata
∑

n∈K,n 6=k

|wH
k ĥn|2 + ρdata‖w k‖2

∑
n∈K

βnτ 2
∞

βn+τ 2
∞

+ σ2‖w k‖2
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Achievable Rate with MMSE Beamforming

With MMSE: wMMSE
k =

(∑
n∈K

ρdataĥnĥ
H

n +
∑
n∈K

ρdataβnτ
2
∞

βn+τ 2
∞

I + σ2I
)−1

ĥk

lim
M→∞

γMMSE
k → β2

k

βk + τ 2
∞

Γ

where Γ is fixed-point solution to (µ = K
M ):

Γ =
1

µE
[

β2

β+τ 2
∞+β2Γ

]
+ µE

[
βτ 2

∞
β+τ 2

∞

]
In the special case of perfect CSI, the above result reduces to [Tse-Hanly’99]
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Cost of Massive Uncoordinated Access

Fixed number of K users:

γk →
β2
k

βk + σ2

ρpilotL

Γ (43)

1

Γ
=

1

M

∑
n∈K

β2
n

βn + σ2

ρpilotL
+ β2

nΓ
+

1

M

∑
n∈K

βnσ
2

ρpilotL

βn + σ2

ρpilotL

(44)

Massive number of N potential users with K active user:

γk →
β2
k

βk + τ 2
∞

Γ (45)

1

Γ
=

1

M

∑
n∈K

β2
n

βn + τ 2
∞ + β2

nΓ
+

1

M

∑
n∈K

βnτ
2
∞

βn + τ 2
∞

(46)

At high SNR: τ 2
∞ ≈ σ2

ρpilot(L−K)

Channel estimation error is increased due to the non-orthogonal pilots
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Numerical Example

active users

inactive users

N = 2000 users

K = 100 active users

Transmit power: ρpilot = ρdata = 23dBm

User distance to BS: [0.5km, 1km]

Path loss: βn = −128.1− 36.7 log10(dn), ∀n
100kHz bandwidth, 10ms coherence time

T = 1000 symbols per coherence time
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User Activity Detection
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PFA(M): L=90

PMD(M): L=90
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PFA(M): L=110

PMD(M): L=110

Probabilities of missed detection and false alarm reduce as L increases

Probabilities of missed detection and false alarm go to zero as M increases
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Achievable Rate with Massive MIMO
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AMP with M=256: Numerical

AMP with M=256: Predicted with Exact τ
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2

AMP with M=256: Predicted with Exact τ
∞
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=σ

2
/ξ(1-K/L)

Known User Activity with M=256

The optimal L when user activity is unknown needs to be longer

There is a loss in sum-rate due to the need for longer pilot
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Multi-Cell Systems
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User Activity Detection in Multicell Systems

What is the impact of the inter-cell interference?

  

  

  

  

How to overcome the inter-cell interference?
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Activity Detection in Multicell Systems

Multi-cell system with B BSs each equipped with M antennas;

N single-antenna devices per cell, K of which are active;

Device n in cell b is assigned a length-L unique signature sequence sbn;

Received signal Y b ∈ CL×M at BS b is

Y b =
N∑

n=1

αbnsbnhT
bbn +

j=B∑
j=1,j 6=b

N∑
n=1

αjns jnhT
bjn + Z b

= SbX bb +

j=B∑
j=1,j 6=b

S jX bj + Z b, (47)

where

αbn ∈ {1, 0} activity indicator; Z b ∈ CL×M Gaussian noise with variance σ2.
hbjn ∈ CM×1 is the channel from user n in cell j to BS b
S j , [s j1, · · · , s jN ] ∈ CL×N ; X bj , [αj1hbj1, · · · , αjNhbjN ]T ∈ CN×M

The inter-cell interference brings performance degradation for activity detection.
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AMP Based Activity Detection for Multi-cell

With AMP, we consider two strategies to deal with the inter-cell interference

Massive 

MIMO

Central 

Unit

Massive MIMO: Each BS has a large-scale antenna array, and operates
independently, while treating the inter-cell interference as noise.

Cooperative MIMO: Each BS has a moderate number of antennas, and is
connected to a central unit (CU), where cooperative detection is performed.
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Activity Detection in Massive MIMO System

Each BS is equipped with a large-scale antenna array, i.e., M is large.

Each BS aims to detect the active devices within its own cell, and the
inter-cell interference is treated as noise:

Y b = SbX bb +
∑
j 6=b

S jX bj + Z b

, SbX bb + Z ′
b (48)

By approximating Z ′
b as a Gaussian noise, the resulting system model in

multicell case is similar to that in the single-cell case.

AMP can be used to detect the active devices in cell b by recovering the
non-zero rows of X bb based on Y b.
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Activity Detection in Cooperative MIMO System

Potential ways to perform the cooperative detection with BSs connected to CU:

Centralized detection: The received signals at the BSs Y b’s are forwarded
to the CU, where a large-scale AMP is used for activity detection.
Interference is completely avoided. However, need high-bandwidth BS-CU links.

Distributed detection: Each BS performs a preliminary activity detection,
and forwards the results to the CU, where an aggregation is performed.
Forwarding the detection LLRs can save bandwidth of the BS-CU links.

LLR 

Exchange
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Cooperative Activity Detection

Each BS detects the active devices in all B cells using the knowledge of all
signature sequences. This can be achieved by recovering the interference as

Y b = SbX bb +
∑
j 6=b

S jX bj + Z b

=
[

S1 · · · SB

]  X 1b

...
XBb

+ Z b

, SX b + Z b (49)

Preliminary detection: The BS detects the active devices by estimating the
non-zero row of X b from Y b using AMP. This is similar to the single-cell
case.

Quantization and forwarding: The detection results by AMP at each BS
are quantized and sent to the CU in the form of LLRs (e.g., 3-4 bits per LLR.)

Aggregation: CU aggregates the independent LLRs and declares activities.
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Comparison of Massive MIMO and Cooperative MIMO
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Figure: Cell-edge user performance in a network with 19 cells and 2000 devices per cell,
among which 100 devices are active. To achieve comparable performance as cooperative
MIMO, four times as many as antennas are required in the massive MIMO case.
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Summary

AMP is a practical sparse user activities detection algorithm:

State evolution provides accurate detector performance analysis.

Denoiser should be designed to match channel characteristics.

Detection becomes accurate with massive MIMO but convergence is slower.

Cooperation can improve the cell-edge performance.

Implications for network design:

The use of non-orthogonal pilots is inevitable.

Massive MIMO needs to be deployed for good detection performance.

Multi-cell cooperation can further help.

Channel estimation is the main bottleneck.
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