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Massive Random Access for Internet-of-Things (IoT)

Active Users

Inactive Users

Large number of devices with sporadic activity
Low latency random access scheme for massive users is required
Non-orthogonal signature sequences need to be used
User activity detection (user identification) performed at base station (BS)
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System Model

BS equipped with M antennas
N single-antenna devices, K of which are active at a time
Each device is associated with a length-L unique signature sequence sn

Channel hn of user n includes both (i.i.d.) Rayleigh and large-scale fading
For single-cell system, received signal Y ∈ CL×M at the BS is

Y =
N∑

n=1
αnsnhT

n + Z = SX + Z, (1)

where
αn ∈ {1, 0} activity indicator; Z ∈ CL×M Gaussian noise with variance σ2

S , [s1, . . . , sN ] ∈ CL×N ; X , [α1h1, · · · , αNhN ]T ∈ CN×M
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Joint Sparse Activity Detection and Channel Estimation

Aim to identify the K non-zero rows of X from Y = SX + Z.
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Multiple measurement vector (MMV) problem in compressed sensing
Columns of X share the same sparsity pattern, i.e., row sparsity

Efficiently solved by the approximate message passing (AMP) algorithm
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Approximate Message Passing (AMP)

Derived from graphical model of Y = SX + Z [Donoho-Maleki-Montanari’09]

...

...

Suppose entries of S are i.i.d. random
Aim to compute the marginals of the joint distribution p(X,Y)
Approximate µy→x as Gaussian in the large system limit N, L→∞
Further simplify the messages such that only N + L messages are tracked
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Intuitive Interpretation of AMP
Matched filtering −→ Denoising −→ Computing and correcting the residual

η(y ; θ) =


y − θ, y > θ

0, −θ ≤ y ≤ θ
y + θ, y < −θ

(2)
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Figure: Soft thresholding function with θ = 1
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AMP Algorithm for MIMO

The AMP algorithm expressed in matrix form:

Xt+1 = ηt(SHRt + Xt), (3)

Rt+1 = Y− SXt+1 + N
L Rt〈η′t(SHRt + Xt)〉, (4)

where
Xt+1, estimate at iteration t + 1;
Rt+1, residual at iteration t + 1;
ηt(·), a non-linear function known as denoiser that performs on each row
〈·〉, sample averaging operation

Works well if M is fixed, and L, N, K →∞.
Complexity: O(NLM) + complexity of ηt(·) per iteration

But what if M is large? AMP becomes increasingly difficult to converge.
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Joint Activity Detection and Large-Scale Fading Estimation
Key Assumption: We only need activity αn and do not need hn.

Reformulate sparse activity detection as a large-scale-fading estimation problem:

Y =
N∑

n=1
αnsnhT

n + Z , SΓ 1
2 H̃ + Z (5)

= +

M

L

N

N

N

M

M

L...
...

S , [s1, s2, · · · , sN ] ∈ CL×N , signature matrix
Γ , diag{α1β1, α2β2, · · · , αNβN} ∈ RN×N , where βn is large-scale fading
H̃ ,

[
h1/
√
β1,h2/

√
β2, · · · ,hN/

√
βN
]T ∈ CN×M , normalized channel matrix
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Statistics of the Received Signal

Let ym be the received signal at the m-th antenna, and let h̃m be the normalized
channel and zm be the noise. Then, ym can be expressed as

ym = SΓ 1
2 h̃m + zm (6)

= +

M

L

N

N

N

M

M
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.
..

m -th antenna

Model: Small-scale fading is i.i.d. Rayleigh across M received antennas.
Then, h̃m follows CN (0, I). Also, zm follows CN (0, σ2I).
Therefore, given Γ, ym is i.i.d. across m as CN (0,Σ) with Σ = SΓSH + σ2I.
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Maximum Likelihood Estimation of Γ
The sparse device activity is included in the diagonal matrix Γ, which can be
estimated using the maximum likelihood estimation (MLE) as:

min
Γ≥0

f (Γ) : = − 1
M log p(Y|Γ) ←− minimization of negative log-likelihood

= − 1
M

M∑
m=1

log p(ym|Γ) ←− i.i.d. over antennas

= − 1
M

M∑
m=1

log
(

1
|πΣ| exp

(
−yH

mΣ−1ym
))

←− Gaussian distribution

= − 1
M

M∑
m=1

log
(

1
|πΣ|

)
− 1

M

M∑
m=1

log
(
exp

(
−yH

mΣ−1ym
))

= log |Σ|+ 1
M

M∑
m=1

tr
(
Σ−1ymyH

m
)

+ const. ←− xHAx = tr
(
AxxH)

= log |Σ|+ tr
(

Σ−1 1
M

M∑
m=1

ymyH
m

)
+ const. (7)
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Sample Covariance as a Sufficient Statistic
Define the sample covariance matrix of the received signal as

Σ̂ ,
1
M

M∑
m=1

ymyH
m = 1

M YYH . (8)

With the sample covariance matrix, the MLE of Γ can be expressed as

min
Γ≥0

f (Γ) : = log |Σ|+ tr
(

Σ−1Σ̂
)

+ const.

= log |SΓSH + σ2I|+ tr
(

(SΓSH + σ2I)−1Σ̂
)

+ const. (9)

Σ̂ is computed by averaging over different antennas, not time slots
Σ̂ is a sufficient statistics since f (Γ) depends on Y only through Σ̂
The size of the MLE problem depends on N, L only, not M.

A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire: “Non-Bayesian Activity Detection, Large-Scale Fading
Coefficient Estimation, and Unsourced Random Access with a Massive MIMO Receiver”, IEEE Trans. Inf.
Theory, May 2021. http://arxiv.org/abs/1910.11266
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Covariance Based Sparse Activity Detection
Instead of jointly estimating the channel, i.e., the non-zero rows in X based on Y:
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We now estimate large-scale fading Γ based on Σ̂ = 1
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In the massive MIMO regime, i.e., if we let M →∞, this can be thought of
detecting a diagonal sparse matrix from the sample covariance.
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Covariance Based Sparse Activity Detection
Instead of jointly estimating the channel, i.e., the non-zero rows in X based on Y:
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We now estimate large-scale fading Γ based on Σ̂ = 1
M YYH :
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Crucial Advantage: Instead of detecting KM variables based on LM observations,
we now detect K variables based on L2 observations!
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Covariance Based Sparse Activity Detection
To estimate Γ, need to solve the optimization problem

min
Γ≥0

f (Γ) : = − 1
M log p(Y|Γ)

= log |SΓSH + σ2I|+ tr
(

(SΓSH + σ2I)−1Σ̂
)

+ const. (10)

f (Γ) is non-convex (since it is concave function + convex function)
Expectation-maximization [Wipf-Rao ’07] (Sparse Bayesian Learning)
Coordinate descent [Haghighatshoar-Jung-Caire ’18]

Observe: In the large M limit, f (Γ) is minimized by the true value Γ0:

Σ̂ ,
1
M

M∑
m=1

ymyH
m → Σ0 , SΓ0SH + σ2I, as M →∞. (11)

Now consider the optimization (10) with Σ̂ = Σ0, optimizing over Σ as in:

min
Σ

log |Σ|+ tr(Σ−1Σ0). (12)

By taking derivative, we see Σopt = Σ0. For finite M, we need to solve (10).
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Coordinate Descent for Solving the MLE problem
Let γn be the n-th diagonal entry of Γ. The MLE can be expressed as

min
γ1,...,γN≥0

log
∣∣∣∣ N∑

n=1
γnsnsH

n + σ2I
∣∣∣∣+ tr

( N∑
n=1

γnsnsH
n + σ2I

)−1

Σ̂

 . (13)

Basic Idea: Update the coordinates γ1, . . . , γN alternatively
Coordinate update: Let γ̂n,∀n be the current estimates. Update γ̂k with
other γ̂n, n 6= k fixed at a time. Let γ̂k + d be the update. Determine d by

min
d≥−γ̂k

log
(

1 + dsH
k Σ̃−1sk

)
− dsH

k Σ̃−1Σ̂Σ̃−1sk

1 + dsH
k Σ̃−1sk

. (14)

Σ̃ =
∑N

n=1 γ̂nsnsH
n + σ2I is the current value of the covariance based on γ̂n.

The constraint d ≥ −γ̂k ensures the new γ̂k + d is always non-negative.
By taking the derivative of the objective in (14), a closed-form solution is

d = max

{
sH

k Σ̃−1Σ̂Σ̃−1sk − sH
k Σ̃−1sk

(sH
k Σ̃−1sk )2

,−γ̂k

}
. (15)

Advantages: Efficient due to closed-form solution; empirically performs well.
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Coordinate Descent for Device Activity Detection

We use two loops in the coordinate decent. The inner loop update all γ1, . . . , γN
in a random permuted order to ensure that each coordinate will be visited once.

Algorithm 1 Coordinate descent for device activity detection

1: Initialize γ̂ = 0, Σ̃ = σ2I, Σ̃−1 = σ−2I.
2: for i = 1, 2, . . . ,T do
3: Select a random permutation i1, i2, . . . , iN of indices {1, 2, . . . ,N}.
4: for n = 1 to N do
5: d = max

{
sH

in Σ̃−1Σ̂Σ̃−1sin−sH
in Σ̃−1sin

(sH
in Σ̃−1sin )2 ,−γ̂in

}
6: γ̂in = γ̂in + d ← Coordinate descent update
7: Σ̃−1 = Σ̃−1 − d Σ̃−1sin sH

in Σ̃−1

1+dsH
in Σ̃−1sin

← Rank-1 update of estimated covariance
8: end for
9: end for

10: Output γ̂ = [γ̂1, . . . , γ̂N ]T . Declare the activity with thresholding on γ̂.
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Covariance Matching Approach

Recall that the MLE aims to recover Γ by solving the following problem

min
Γ≥0

f (Γ) : = − 1
M log p(Y|Γ) = log |Σ|+ tr

(
Σ−1Σ̂

)
+ const. (16)

The objective can be seen as the distance between Σ̂ and Σ = SΓSH + σ2I
measured in the log-det Bregman matrix divergence.
The MLE aims to match the sample covariance Σ̂ to the true covariance Σ.

We can also use other distance metrics. With Frobenius norm as metric, we get

min
Γ≥0

‖SΓSH + σ2I− Σ̂‖2
F (17)

This method is also known as non-negative least square (NNLS).
The objective is convex. Coordinate descent can also be used to solve NNLS.
A scaling law on N, L, K , and M has been established under NNLS.
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MLE versus NNLS for Device Activity Detection
We compare the detection performance of MLE and NNLS via simulations.
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Figure: Performance comparison of MLE and NNLS. N = 2000, K = 100, and M = 64.
MLE outperforms NNLS. The performance gap becomes more substantial as L increases.
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Activity Detection with Known Large-Scale Fading

The covariance approach detects the device activity by estimating γn , αnβn.
There are scenarios in which the large-scale fading βn is known at the BS, only
the activities αn need to be estimated.

Maximizing the log-likelihood function of Y given α1, . . . , αN can be cast as

min
α1,...,αN

f (α1, . . . , αN) : = − 1
M log p(Y|α1, . . . , αN)

= − 1
M

M∑
m=1

log p(ym|α1, . . . , αN)

= − 1
M

M∑
m=1

log
(

1
|πΣ| exp

(
−yH

mΣ−1ym
))

= log |Σ|+ tr
(

Σ−1Σ̂
)

+ const. (18)

Note that p(ym|α1, . . . , αN) remains Gaussian with covariance Σ.
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Activity Detection with Known Large-Scale Fading

The problem of detecting the binary activity indicator αn is now:

min
{αn}

log
∣∣SΓSH + σ2I

∣∣+ tr
(

(SΓSH + σ2I)−1Σ̂
)

(19a)

s. t. αn ∈ {0, 1}, n = 1, 2, . . . ,N (19b)

Binary αn is challenging to deal with. We relax the constraint such that

αn ∈ [0, 1], n = 1, 2, . . . ,N (20)

The relaxed problem can be solved by coordinated descent with minor
modifications:

d = min
{

max
{

sH
k Σ̃−1Σ̂Σ̃−1sk − sH

k Σ̃−1sk

βk(sH
k Σ̃−1sk)2

,−α̂k

}
, 1− α̂k

}
. (21)

With unknown large-scale fading βn, we estimate γn = αnβn in [0,∞].
With known large-scale fading βn, we estimate αn in [0, 1].
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Recap of Problem Formulations

Sparse user activity detection with channel αnhn ∼ αn
√
βnCN (0, I):

Active Users

Inactive Users

If channel estimate is needed for subsequent data transmission:
We can use AMP, which gives a rough estimate of the instantaneous hn.

If only user activities (αn) are needed and large-scale fading is not known:
We can estimate large-scale fading (αnβn) using the covariance method.

If the users are not mobile and large-scale fading (βn) is known:
We can modify the covariance method to estimate αn.
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Comparison of AMP vs Covariance Approaches

Compressed Sensing (AMP) Covariance Based Estimation

Derived from Approx. marginals of p(X,Y) Maximization of p(Y|Γ)

Prior needed Sparsity level
for design of ηt(·)

None
(deterministic Γ)

Estimate Activities αn and
channels hn

Activities αn and
large-scale fading βn

Preferred regime Fix ε , K
N , δ , L

N , and M
Let N, L,K →∞

Fix N,K , L
Let M →∞

Complexity Roughly O(NLM)
per iteration

Roughly O(NL2) via CD
per iteration
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Remark on Complexity
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Figure: Numerical runtime for γ̂ to converge to an ε norm ball around γ for fixed K
N = 0.1

Each coordinate descent step requires O(L2) operations so updating all N
coordinates resulting in a complexity of O(L2N) per iteration.
The average number of iterations required to converge to solution increases
as the operating point approaches the phase transition boundary.
The complexity of each iteration grows as O(L2), but the complexity of the
overall algorithm decreases with L.
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Instability of AMP at High SNR

Total users N = 1000, active users K = 100, BS antennas M = 64, L = 110.
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Users are uniformly distributed between 0.8 and 1km from the BS.
User transmit power is 13dBm; Path-loss model 128.1 + 37.6 log(d [in km])
Error probability is the probability chosen such that N · PFA ≈ K · PMD

Wei Yu (University of Toronto) Covariance Based Detection 24 / 64



Damping for AMP

Total users N = 1000, active users K = 100, BS antennas M = 64, L = 110.
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Consider a damping term in the AMP update, improving stability and
convergence, making AMP more effective with large M.

Xt+1 = (1− α)ηt
(
SHRt + Xt)+ αXt ,

where α ∈ [0, 1] is a damping factor (α = 0 for standard AMP).
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Numerical Comparison of AMP vs. Covariance Approach
Total users N = 1000, Active users K = 50, Number of antennas M = 8
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Figure: Performance and complexity of AMP vs covariance based estimation

All users are located in the cell-edge (1000m) with transmit power 23dBm.
Path-loss model 128.1 + 37.6 log(d [in km]).
Error probability is defined as the average of #(Incorrectly detected users)

K
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Numerical Comparison of AMP vs. Covariance Approach
Total users N = 1000, Active users K = 50, Signature length L = 100
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Figure: Performance and complexity of AMP vs covariance based estimation

All users are located at the cell-edge (1000m) with transmit power 23dBm.
Path-loss model 128.1 + 37.6 log(d [in km]).
Error probability is defined as the average of #(Incorrectly detected users)
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Numerical Comparison of AMP vs. Covariance Approach
Total users N = 1000, Active users K = 90, Signature length L = 100
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Figure: Performance and complexity of AMP vs covariance based estimation

All users are located at the cell-edge (1000m) with transmit power 23dBm.
Path-loss model 128.1 + 37.6 log(d [in km]).
Error probability is defined as the average of #(Incorrectly detected users)
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AMP vs Covariance Approach

Objectives:
Both algorithms perform sparse activity detection for massive random access.
AMP aims to recover the channels as well.

Performance:
AMP and covariance approach have similar performance if K � L and M small
Covariance approach is more effective in exploiting large M and when K ' L.

Complexity:
AMP is more computationally efficient when K � L and M small.

Crucial advantage of covariance method:
Being able to accommodate K � L (!)
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Scaling Law of the Covariance Approach

Suppose high SNR, perfect sampled covariance matrix Σ̂ (M →∞), we plot the
estimation error of Γ under different (K , L) with N = 2000
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Analysis
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Analysis of AMP via State Evolution

The performance of AMP at each iteration can be predicted in the asymptotic
regime where L→∞,N →∞ with fixed L

N
SHrt + xt can be modeled as signal plus noise, i.e., x + vt

vt is i.i.d. Gaussian noise with variance τt tracked by state evolution equation

τ 2
t+1 = σ2 + 1

δ
E|ηt(X + τtZ )− X |2 (22)

for the M = 1 case.

Interpretation of state evolution: Vector estimation y = Sx + z is reduced to
uncoupled scalar estimation (xt + SHrt)i = xi + v t

i
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Analysis of Covariance Approach via Fisher Info Matrix

Recall the MLE formulation, and let γ denote the diagonal entries of Γ

min
γ≥0

f (γ) : = − 1
M log p(Y|γ) = − 1

M

M∑
m=1

log p(ym|γ)

= log |SΓSH + σ2I|+ tr
(

(SΓSH + σ2I)−1Σ̂
)

+ const. (23)

Analyzing the solution to (23) under coordinate descent is hard.
Instead, let’s analyze the true optimum of (23), i.e., MLE solution γ̂ML.
Investigate asymptotic property of γ̂ML in the massive MIMO regime.
The Fisher information matrix, denoted by J(γ), plays a critical role in the
asymptotic analysis. The (i , j)-th entry of J(γ) is defined as

[J(γ)]ij = E
[
∂ log p(Y|γ)

∂γi

∂ log p(Y|γ)
∂γj

]
. (24)

Key assumption for the analysis: M →∞.
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Fisher Information Matrix
The Fisher Information matrix can be also written as the negative expected
second derivative of the log-likelihood function

[J(γ)]ij = E
[
∂ log p(Y|γ)

∂γi

∂ log p(Y|γ)
∂γj

]
= −E

[
∂2 log p(Y|γ)

∂γi∂γj

]
(25)

Intuitive interpretation: Fisher information matrix measures how
informative the likelihood function is, and how effective the MLE can be
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Cramer-Rao Bound and Asymptotic Property of MLE

Fisher information matrix plays a critical role in classic estimation theory.
Cramer-Rao bound: Let γ be a parameter, and let γ̂ be an unbiased
estimator of γ. Then the covariance of estimation error is lower bounded by

E
[
(γ̂ − γ)(γ̂ − γ)T ] ≥ J−1(γ) (26)

Asymptotic properties of the MLE: Let γ̂ML be the maximum likelihood
estimator of γ. Then, under certain regularity conditions, as M →∞

Consistency: γ̂ML P→ γ (27)

Asymptotic normality:
√

M(γ̂ML − γ) D→ N (0,MJ−1(γ)) (28)

It means that the maximum likelihood estimator γ̂ML is asymptotically unbiased
and asymptotically attains the Cramer-Rao bound, i.e., asymptotically efficient.

Wei Yu (University of Toronto) Covariance Based Detection 35 / 64



Regularity Conditions

The regularity conditions for consistency and asymptotic normality include
The true parameter γ0 is identifiable, i.e.„ there exists no other γ′ 6= γ0 with

p(Y|γ0) = p(Y|γ′). (29)

The true parameter should be in the interior of the feasible region, as
otherwise γ̂ML − γ0 cannot be Gaussian distributed.

These conditions are usually reasonable and mild.
But, these conditions are NOT always satisfied for sparse activity detection.

The identifiability may not be guaranteed when

N � L2, (30)

i.e., when the dimension of γ0 is larger than the dimensions of the sample
covariance Σ̂, there are too many parameters to estimate.
The true parameter γ0 in fact always lies on the boundary of its parameter
space [0,∞)N , because most of the entries of γ0 are zero.

Need new analysis!
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Fisher Information Matrix in Sparse Activity Detection

We first derive the Fisher information matrix for the activity detection problem:

[J(γ)]ij = −E
[
∂2 log p(Y|γ)

∂γi∂γj

]
. (31)

p(ym|γ) is Gaussian, the second derivative of log p(Y|γ) =
∑

m log p(ym|γ) is

∂2 log p(Y|γ)
∂γi∂γj

= M tr(Σ−1sjsH
j Σ−1si sH

i )−M tr(Σ−1sjsH
j Σ−1si sH

i Σ−1Σ̂)

−M tr(Σ−1si sH
i Σ−1sjsH

j Σ−1Σ̂). (32)

Taking the expectation of Σ̂ using the fact that E[Σ̂] = Σ gives

−E
[
∂2 log p(Y|γ)

∂γi∂γj

]
= M(sH

i Σ−1sj)(sH
j Σ−1si ). (33)
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Fisher Information Matrix in Sparse Activity Detection

The Fisher information matrix J(γ) can be further written in a matrix form as

J(γ) = M (P� P∗) , (34)

where P , SH (SΓSH + σ2I
)−1 S; � element-wise product; (·)∗ conjugate

J(γ) is a real symmetric matrix of dimensions N × N, whose rank satisfies:

Rank(P� P∗)
(a)
≤ Rank(P)2

(b)
≤ L2, (35)

where
(a) is due to Rank(U� V) ≤ Rank(U) Rank(V);
(b) is due to Rank(P) ≤ Rank(S) ≤ min{N, L}.

Thus J(γ) is rank-deficient if N > L2 since P� P∗ is of size N × N.

Our new analysis takes rank-deficiency of J(γ) into consideration

Wei Yu (University of Toronto) Covariance Based Detection 38 / 64



Performance Analysis of Activity Detection

Since the regularity conditions may not hold in the sparse activity detection
problem, we need to ask:

What are the conditions on the system parameters such that γ̂ML can
approach the true parameter γ0 as M →∞?
This helps identify the desired operating regime of the system parameters for
getting an accurate estimate γ̂ML via MLE with massive MIMO

If M is finite, how is the estimation error γ̂ − γ0 distributed?
This helps characterize the error probabilities in device activity detection.

We answer these questions by examining the “null space” of
the Fisher information matrix.
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Necessary and Sufficient Condition for γ̂ML → γ0

Theorem
Let I be an index set corresponding to zero entries of γ0, i.e., I , {i | γ0

i = 0}.
We define two sets N , C in the space RN , respectively, as follows

N , {x | xT J(γ0)x = 0, x ∈ RN}, (36)
C , {x | xi ≥ 0, i ∈ I, x ∈ RN}, (37)

where xi is the i-th entry of x. Then a necessary and sufficient condition for the
consistency of γ̂ML, i.e., γ̂ML → γ0 as M →∞, is N ∩ C = {0}.

N is the “null space” of J(γ0); C is a cone with non-negative entries indexed by I.

This condition leads to a phase analysis for the covariance based method, i.e., set
of (N, L,K ) outside of which γ̂ML cannot approach γ0 even in the large M limit.
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Interpretation of the Condition
N corresponds to all directions in RN along which likelihood stays constant.
In these directions, the true parameter cannot be identified via the likelihood.
C is the directions along which parameters remain within constraint RN

+

N ∩ C = {0} ensures that the true parameter γ0 is uniquely identifiable via
the likelihood in its feasible neighborhood, also termed as local identifiability

Local identifiability is clearly necessary.
Sufficiency due to equivalence of local and global identifiability in this case.
A necessary condition for N ∩ C = {0} is that dim(N ) < |I|.
Since dim(N ) is roughly N − L2 and |I| = N − K , we have K < L2.
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Numerically Verify the Condition via M+ Criterion

Proposition

Let I , {i | γ0
i = 0} and Ic , {i | γ0

i > 0} be two index sets with |I| = N − K
and |Ic | = K.We define three submatrices of J(γ0) ∈ RN×N as follows.

A ∈ R(N−K)×(N−K), row indices and column indices from I
B ∈ R(N−K)×K , row indices from I and column indices from Ic

C ∈ RK×K , row indices and column indices from Ic

If C is invertible, then the condition N ∩C = {0} is equivalent to the feasibility of

find x (38a)
subject to (A− BC−1BT )x > 0, (38b)

where vector x ∈ RN−K .

Note that matrix M satisfying MT x > 0 for some x, i.e., row span intersecting the
positive orthant, is referred to as M+ [Bruckstein-Elad-Zibulevsky’08].
Proof based on analyzing the null space of J(γ0) and that ∀M: (i) Mx = 0 has
no solution for x ≥ 0 and x 6= 0, is equivalent to (ii) MT x > 0 has solutions.
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Covariance Matching Perspective

Analyzing the optimization problem:

min
γ�0

f (γ) = log |SΓSH + σ2I|+ tr
(

(SΓSH + σ2I)−1Σ̂
)

(39)

By taking the derivative, we see that ideally we need: SΓSH + σ2I = Σ̂
For finite M, usually SΓSH + σ2I 6= Σ̂ since Σ̂ is the sample covariance
For M →∞, SΓSH + σ2I = Σ̂ holds at true γ0, i.e., γ0 minimizes f (γ).

Intuition
γ̂ML → γ0 as M →∞ ⇐⇒ γ0 uniquely minimizes f (γ) in the limit M →∞

⇐⇒ γ0 is the unique solution to SΓSH + σ2I = Σ̂ in
the limit M →∞.

A necessary and sufficient condition for the consistency of γ̂ML can be derived by
studying the uniqueness of SΓSH + σ2I = Σ̂ in the limit M →∞.
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Equivalent Necessary and Sufficient Condition

Proposition

Let Ŝ ∈ CL2×N be the column-wise Kronecker product (Khatri-Rao product) of S∗
and S, i.e., Ŝ , [s∗1 ⊗ s1, . . . , s∗N ⊗ sN ]. We define a set Ñ in the space RN as

Ñ , {x | Ŝx = 0, x ∈ RN}. (40)

Then a necessary and sufficient condition for γ0 being the unique solution to
SΓSH + σ2I = Σ̂ in the limit M →∞, is Ñ ∩ C = {0}, where C is as in (37).

The proof is obtained by vectorizing SΓSH + σ2I = Σ̂ in the limit M →∞, and
studying the resulting linear equation.

Proposition

We have that Ñ defined in (40) and N defined in (36) are identical. Thus, the
condition Ñ ∩ C = {0} is equivalent to N ∩ C = {0}

Key advantage of using Ñ is that it depends only on S and is independent of SNR.
Wei Yu (University of Toronto) Covariance Based Detection 44 / 64



Alternative Way to Numerically Verify the Condition

Theorem
Let rT

i = [si1, si2, . . . , siN ] be the i-th row of S. Based on rT
i , we construct two

sets of row vectors to represent the real and imaginary parts of rows of Ŝ:{
Re(rT

i )� Re(rT
j ) + Im(rT

i )� Im(rT
j ), 1 ≤ i ≤ j ≤ L

}
, (41){

Re(rT
i )� Im(rT

j )− Im(rT
i )� Re(rT

j ), 1 ≤ i < j ≤ L
}
. (42)

Let D ∈ RL2×N be the matrix formed by all L2 rows from these two sets. The
condition Ñ ∩ C = {0} is equivalent to the infeasibility of the following problem

find x (43a)
subject to Dx = 0, (43b)

‖x‖1 = 1, (43c)
xi ≥ 0, i ∈ I, (43d)

where x ∈ RN and the constraint (43c) guarantees x 6= 0.
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Scaling Law for NNLS Formulation

Theorem (Fengler-Haghighatshoar-Jung-Caire ’19)

Let S ∈ CL×N be the signature sequence matrix whose columns are uniformly
drawn from the sphere of radius

√
L in an i.i.d. fashion. There exist some

constants c1, c2, c3, and c4 whose values do not depend on K, L, and N such that
if K ≤ c1L2/ log2(eN/L2), then with probability at least 1− exp(−c2L), the
solution of the NNLS problem, γ̂NNLS, satisfies

‖γ0 − γ̂NNLS‖2 ≤ c3

(√
L
K + c4

)
‖SΓ0SH + σ2I− Σ̂‖F

L . (44)

The derivation is based on restricted isometry property in compressed sensing.
It implies that the error vanishes as M →∞, because Σ̂→ SΓ0SH + σ2I.
The result is for specific sequence S.
Since K < L2, we get a simpler form of scaling law: L2 ≈ K log2(N/K ).
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Scaling Law for MLE Formulation
Scaling laws in compressed sensing:

For Ax = b with A satisfying restricted isometry property, the number of
measurements needed to recover a K -sparse vector x of length-N is

L = O(K log(N/K)).

For Σ̂ = SΓSH + σ2I with Ŝ satisfying robust null space property, the number
of measurements needed to receover a K -sparse diagonal matrix Γ of size N2 is

L2 = O(K log2(N/K)).

Based on the same robust NSP of Ŝ, we can derive the scaling law of MLE:

= +
M

L

M

L

L

L

×

 
×

 

= +

N

...

N..
.

...

N

...

...

Theorem
Under the same scaling law for K, L, N and for the same randomly chosen S,
Ñ ∩ C = {0} holds with probability at least 1− exp(−c2L).
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Numerical Results – Scaling Law of Covariance Approach
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Region where the condition 
is not satisfied

Region where the condition
is satisfied

Figure: Phase transition in the space of N, L,K . All users are located at the cell-edge
(1000m) with transmit power 23dBm. Path-loss is 128.1 + 37.6 log(d [km]). Generated
by 100 Monte Carlo simulations. Error bars indicate the range below which all 100
realizations satisfy the condition and above which none satisfies the condition.
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Phase Transition of the Covariance Approach
Suppose high SNR, perfect sampled covariance matrix Σ̂ (M →∞), we plot the
estimation error of Γ under different (K/N, L2/N) with N = 2000

Performance of coordinate descent algorithm is very close to the optimal MLE!
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Value of Knowing Large-Scale Fading

The covariance method directly estimates the activity indicator αn in [0, 1] instead
of γn = αnβn in [0,∞). Let α , [α1, . . . , αN ]T and let the true value of α be α0.

Theorem
Let I be an index set corresponding to zero entries of α0, i.e., I , {i | α0

i = 0}.
We define two sets N , C in the space RN , respectively, as follows

N , {x | xT J(γ0)x = 0, x ∈ RN}, (45)
C , {x | xi ≥ 0, i ∈ I, xi ≤ 0, i /∈ I, x ∈ RN}, (46)

where xi is the i-th entry of x. Then a necessary and sufficient condition for the
consistency of α̂ML, i.e., α̂ML → α0 as M →∞, is N ∩ C = {0}.

The extra constraint in defining C is due to the fact that αn is upper bounded.
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Value of Knowing Large-Scale Fading
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Figure: Phase transition comparison of the cases with and without knowing large-scale
fading. N = 1000. With known large-scale fading, αn is both lower and upper bounded.

When K
N ≈ 1, then inactive users are sparse!
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Asymptotic Distribution of the ML Estimation Error

For MLE solutions not on boundary, we have
√

M(γ̂ML − γ) D→ N (0,MJ−1(γ)).
For MLE with boundary constraint: C , {x | xi ≥ 0, i ∈ I, x ∈ RN}:

Theorem
Let x ∈ RN×1 ∼ N

(
0,MJ†(γ0)

)
, where † denotes Moore-Penrose inverse. Let

µ ∈ RN×1 be a solution to the constrained quadratic programming problem

minimize
µ

1
M (x− µ)T J(γ0)(x− µ) (47a)

subject to µ ∈ C, (47b)

where C is defined in (37). For the case without knowing large-scale fading,
assume that γ̂ML → γ0, then there exists a sequence of µ such that
M 1

2 (γ̂ML − γ) has asymptotically the same distribution as µ as M →∞.

Note that µ is random due to the randomness of x.
Detection error can be characterized based on the distribution of γ̂ML − γ0.
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Distribution of Estimation Error
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Error on zero entries, by analysis, M=256
Error on zero entries, by coordinate descent, M=256
Error on non-zero entries, by analysis, M=256
Error on non-zero entries, by coordinate descent, M=256

Figure: Probability density functions (PDFs) of the error γ̂ML
i − γ0

i (normalized). The
parameters are N = 1000, K = 50, and L = 20 (L2/N = 0.4,K/N = 0.05). Note that
there is a point mass in the distribution of the error for the zero entries. This is the
probability that the inactive devices are correctly identified at finite M = 256.
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Detection Error Probabilities
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L=20, M=64, by analysis
L=20, M=64, by coordinate descent
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L=20, M=128, by coordinate descent
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Figure: Probability of missed detection vs. probability of false alarm. The parameters are
N = 1000, K = 50, and L = 20 (L2/N = 0.4,K/N = 0.05). All users are located at the
cell-edge (1000m) with transmit power 23dBm. Path-loss is 128.1 + 37.6 log(d [km]).
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User Activity Detection in Multicell Systems

What is the impact of the inter-cell interference?

  

  

  

  

How to overcome the inter-cell interference?
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Activity Detection in Multicell Systems

Multi-cell system with B BSs each equipped with M antennas;
N single-antenna devices per cell, K of which are active;
Device n in cell b is assigned a length-L unique signature sequence sbn;
Received signal Yb ∈ CL×M at BS b is

Yb =
N∑

n=1
αbnsbnhT

bbn +
j=B∑

j=1,j 6=b

N∑
n=1

αjnsjnhT
bjn + Zb

= SbXbb +
j=B∑

j=1,j 6=b
SjXbj + Zb, (48)

where
αbn ∈ {1, 0} activity indicator; Zb ∈ CL×M Gaussian noise with variance σ2.
hbjn ∈ CM×1 is the channel from user n in cell j to BS b
Sj , [sj1, · · · , sjN ] ∈ CL×N ; Xbj , [αj1hbj1, · · · , αjNhbjN ]T ∈ CN×M

The inter-cell interference brings performance degradation for activity detection.
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Covariance Based Activity Detection for Multi-cell
To use the covariance approach, the signal at BS b is re-written as

Yb =
N∑

n=1
αbnsbnhT

bbn +
j=B∑

j=1,j 6=b

N∑
n=1

αjnsjnhT
bjn + Zb

= SbAbG
1
2
bbH̃bb +

j=B∑
j=1,j 6=b

SjAjG
1
2
bjH̃bj + Zb

= SbΓ
1
2
bbH̃bb +

j=B∑
j=1,j 6=b

SjΓ
1
2
bjH̃bj + Zb (49)

Sj , [sj1, sj2, · · · , sjN ] ∈ CL×N ; Aj , diag{αj1, αj2, · · · , αjN} ∈ {0, 1}N×N

Gbj , diag{βbj1, βbj2, · · · , βbjN} ∈ RN×N large-scale fading matrix
Γbj , diag{αj1βbj1, αj2βbj2, · · · , αjNβbjN} ∈ RN×N

H̃bj ,
[
hbj1/

√
βbj1, · · · ,hbjN/

√
βbjN

]T ∈ CN×M , normalized channel

Similar to single-cell case, all Γbj are treated as deterministic unknown parameters
and all H̃bj are treated as random samples.
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Cooperative Activity Detection via Covariance Approach

Assume that each BS is equipped with a large-scale antenna array.

Cooperative detection: To alleviate the impact of inter-cell interference, we
further consider BS cooperation by assuming all BSs are connected to a CU.

Depending on whether the large-scale fading matrices Gbj ,∀b, j are known,
the device activity detection problem can be formulated differently.

When Gbj are not known, we need to estimate Γbj = AjGbj , ∀b, j , which has

B2N unknown parameters

When Gbj are known, we only need to estimate Ab,∀b, which contains
BN unknown parameters

Device activity detection is much easier if large-scale fading is known!
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Cooperative Detection with Unknown Large-scale Fading

We aim to estimate Γbj = AjGbj ,∀b, j from the received signals Yb,∀b.
The likelihood function of Yb’s given Γbj ’s can be expressed as

p(Y1, . . . ,YB |Γ11,Γ12, . . . ,ΓBB) =
B∏

b=1
p(Yb|Γ11,Γ12, . . . ,ΓBB)

=
B∏

b=1

1
|πΣb|M

exp
(
− tr

(
MΣ−1

b Σ̂b

))
. (50)

The MLE problem can be cast as minimization of negative log-likelihood:

min
{Γbj}

B∑
b=1

(
log |Σb|+ tr

(
Σ−1

b Σ̂b

))
(51a)

s. t. γbjn ∈ [0,∞),∀b, j , n (51b)

The problem can be solved using coordinate descent.
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Cooperative Detection with Known Large-scale Fading
Assuming that all large-scale fading matrices Gbj ’s, we directly estimate the device
activity Ab’s using the MLE. The likelihood function of Yb’s can be expressed as

p(Y1, . . . ,YB |A1, . . . ,AB) =
B∏

b=1
p(Yb|A1, . . . ,AB)

=
B∏

b=1

1
|πΣb|M

exp
(
− tr

(
MΣ−1

b Σ̂b

))
. (52)

Since the activity αbn is binary, the maximization of likelihood can be cast as

min
{Ab}

B∑
b=1

(
log |Σb|+ tr

(
Σ−1

b Σ̂b

))
(53a)

s. t. αbn ∈ {0, 1},∀b, n (53b)

Known large-scale fading: Single-cell and multicell have same phase transition
Multicell problem: Find a BN-dim sparse vector in (BN −BL2)-dim subspace.
Single-cell problem: Find a N-dim sparse vector in (N − L2)-dim subspace.
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Performance of Covariance Based Detection for Multi-cell
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Figure: Performance comparison of the multicell covariance approach with and without
knowing large-scale fading. B = 7, N = 200, K = 20, and L = 20. We observe that
knowing the large-scale fading brings substantial improvement.
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Performance of Covariance Based Detection for Multi-cell
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Figure: Performance comparison of the multicell covariance approach with single-cell
system, with knowing large-scale fading. B = 7, N = 200, K = 20.
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Conclusions

Device activity detection for massive random access in machine-type and IoT
communications is a sparse recovery problem.

Two detection algorithms for user activity detection:
Signal-based AMP for estimating the user activity and the exact channel.
Covariance-based MLE for estimating the user activity only.

Analyses for AMP and the covariance approach:
State evolution for AMP: Low complexity, works best for small M.
Fisher information matrix for covariance approach: Suited for massive MIMO.

Advantage of covariance-based approach is that it can handle K = O(L2), as
compared to AMP which can only handle K = O(L).
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