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Massive Connectivity

Massive connectivity is a crucial requirement for Internet-of-Things (IoT)
Requires up to 105 ∼ 106 devices connected per base station (BS).

Sporadic traffic, making device identification & scheduling challenging.
Assigning each user an orthogonal resource requires coordination.

Activity Detection is a first step toward coordination.
Equally importantly, we need to schedule users to transmission slots.

What is the cost of coordinated scheduling?
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Contention-Based vs Coordinated Scheduling

Uncoordinated Random Access:
Classic Slotted ALOHA: Contention-based uncoordinated scheduling.
Coded ALOHA can alleviate some of the inefficiencies of classic ALOHA.

Coordinated Random Access:
Coordinated scheduling requires feedback from the BS to the users.
What is the minimum feedback rate for scheduling?

Massive Random Access with Massive MIMO:
Coded Pilot Access vs. Scheduled Random Access
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Classic Solution: Slotted ALOHA

Slotted ALOHA involves contention and is uncoordinated
involving no communication between BS and users.

Slots  Slot 1  Slot 2  Slot 3  Slot 4 Slot 5

Device 1  tx

Device 2 collision tx

Device 3 collision tx

Device 4  tx

Users become active and transmit at random with probability p.
Transmission is successful only if a single user transmits in a slot.
If there is a collision, users must re-transmit their payload.
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Slotted ALOHA: Analysis
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Let X be the number of users that transmit in a slot.
Since X is sum of independent Bernoulli trials, it follows Poisson distribution

Pr(X = k) = λke−λk

k! , where E[X] = λ. (1)

Successful transmission only when k = 1, with probability λe−λ.
Optimize over λ. Throughput is maximized when λ = 1 with P(success) = 1

e .
Slots with collision or slots with no transmission (i.e., 63% slots) are wasted.
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Coded Slotted ALOHA

Coded Slotted ALOHA: Use packet-level erasure codes and successive
interference cancellation (SIC) to extract information from collisions.
Each user chooses an (nh, k) erasure code Ch to encode their k segments.
Code is chosen from a finite set {Ch}θh=1 according to some p.m.f., and the
nh packets are transmitted randomly over a fixed frame.

E. Paolini, G. Liva, and M. Chiani, “Coded Slotted ALOHA: A Graph-Based Method for
Uncoordinated Multiple Access,” IEEE Trans. Inf. Theory, vol. 61, no. 12, pp. 6815–6832, 2015.
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Coded Slotted ALOHA: Graph Representation
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Figure: Bipartite graph model for contention resolution

Users are represented by variable nodes, slots by check nodes.
A user node ui is connected to slot node sj if user i transmits in slot j.
Decoding process is identical to the peeling decoder for erasure channel.
If users select repetition codes, this is known as Contention Resolution
Diversity Slotted ALOHA (CRDSA).
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Coded Slotted ALOHA: Decoding Example
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Figure: Peeling decoding for CRDSA on a bipartite graph.

Decoding procedure for CRDSA is similar to Fountain code or LT code.
This connection allows us to show that the optimal user-node degree
distribution is the soliton distribution [Narayanan-Pfister’12].
With this degree distribution, the throughput , # of decoded users

# of slots → 1
asymptotically as the number of users and slots go to infinity.
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Contention vs. Scheduling

Slots  Slot 1  Slot 2  Slot 3  Slot 4 Slot 5

Device 1  tx

Device 2 collision tx

Device 3 collision tx

Device 4  tx

Slotted ALOHA based schemes all involve contention and collision resolution
Multiple transmissions increases power consumption.
Collision resolution increases delay.
Practical schemes cannot operate at optimal throughput.

Scheduling is an alternative approach to contention.
Contention-based schemes are often justified based on the assumption that
the cost of coordination is too great.

What is the cost of scheduling?
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Feedback-Based Scheduling for Random Access

Each of n potential users is assigned a unique non-orthogonal pilot.

...

Phase 1 (Activity Detection):
The k active users (k � n) send their
pilots synchronuously to the BS.

...

Phase 2 (Downlink Feedback): BS sends a
common feedback message to schedule the
data transmissions of k active users.
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Feedback-Based Scheduling for Random Access

...
k Active Devices

Slots  Slot 1  Slot 2  Slot 3  Slot 4 Slot k

Device 1  tx

Device 2 tx

Device 3  tx

Device 4  tx

Device k  tx

Phase 3 (Uplink Payload Transmission): The k active users transmit their payload in the
k slots based on the schedule provided by the BS, while avoiding collision.

What is the minimum feedback needed to ensure collision-free scheduling?
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Straightforward Feedback Scheme

A naive scheme to schedule k out of n users:
Assign a unique index to each of the n users;
The BS detects the k active users based on the pilots;
The BS lists the k users in the order in which they should transmit;
Each active user finds its index in the list, waits for its turn to transmit.

The feedback overhead of this scheme is k log (n) bits.
When n = 106, the cost of identification is log(n) = 20 bits per user.

Can we do better?
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Why Can We Do Better?

The naive k log (n) feedback scheme is not optimal.

There is flexibility in the order that users are scheduled.
Example: Users 1, . . . , k are to be scheduled. The BS can schedule according
to any of the k! permutations of these users, e.g. {1, . . . , k} or {k, . . . , 1}.
We can remove this extraneous cost via enumerative source coding.
This still requires log

(
n
k

)
bits feedback, which scales as O(log(n)) for fixed k.

Each user only needs to know its own slot, and NOT the other users’ slots.
Removing this extraneous information is the key to further reducing feedback.

G. K. Facenda and D. Silva, “Efficient Scheduling for the Massive Random Access Gaussian
Channel,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7598–7609, Aug. 2020.
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Identification Capacity

Identification via channels [Ahlswede-Dueck, 1992] says that identifying
one out of n users only requires O(log log(n)) bits! — This eliminates the
extraneous information as users no longer know which other users are active.

Identification codes lead to a feedback rate of O (k log log(n)).

1
2 4

5

A careful construction can beat even this scheme!
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Two-User Case

Consider the case of two active users (k = 2), out of a total of n users:

Any two distinct binary vectors differ in at least one index:

0 1 1 0 0 0 1 0 1 0 1 0 1 . . . .
0 1 0 0 0 0 1 0 1 0 1 0 1 . . . .Index X:

Index Y:

User X User Y

Slot 0 Slot 1

BS simply transmits the location in which the user indices differ.

The user with 0 transmits first, and the user with 1 transmits second.

This requires only R = dlog dlog (n)ee feedback with a fixed-length encoding.

Optimal for k = 2!
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Feedback Scheduling Code for Arbitrary (n, k)

Notation: [n] = {1, · · · , n}.
([n]
k

)
, set of all k-element subsets of [n].

The BS encodes the “activity pattern” into an index t

f :
(

[n]
k

)
→ {1, 2, . . . , T} , [T ].

Each user “decodes” its scheduled slot using

gi : [T ]→ [k] , i ∈ [n] .

(We consider k slots here, but having more slots can decrease feedback.)
In order for no collisions between active users, we must have:

∀A ∈
(

[n]
k

)
, ∃t ∈ [T ] s.t. ∀i 6= j ∈ A gi(t) 6= gj(t).
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Scheduling via Set-Partitioning

Define a k-partition of a set [n] to be a tuple of subsets X̄ = (X1, . . . ,Xk)

such that Xi

⋂
Xj = ∅, ∀i, j, and

k⋃
i=1

Xi = [n].

Define the set of activity patterns that can be covered by X̄ as

C
(
X̄
)

= {{x1, . . . , xk} | xi ∈ Xi, i = 1, . . . , k} .

i.e., there is exactly one active user in each distinct subset of the partition X̄.

Example: For the set [4], if X̄ = ({1, 2} , {3, 4}), then

C
(
X̄
)

= {{1, 3} , {1, 4} , {2, 3} , {2, 4}} .
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Set-Partition Encoding

To cover all activity patterns, we construct T partitions X̄(1), . . . , X̄(T ) s.t.
T⋃

t=1

C
(
X̄(t)) =

(
[n]
k

)
.

For activity pattern A, the following encoder/decoders ensure no collision:

f(A) = t s.t. A ∈ C
(
X̄(t)

)
;

gi (t) = j if i ∈ X(t)
j .

Wei Yu (University of Toronto) Contention versus Scheduling 18 / 40



Tetra Code: An Example for (n, k) = (9, 3)

1 2  3  4  5  6  7  8  9

1 2  3  4  5  6  7  8  9

1 2  3  4  5  6  7  8  9

1 2  3  4  5  6  7  8  9

Figure: The tetra code can be used to define 4 partitions.

Example: For the activity pattern A = {1, 5, 6}, the t = 3 partition has all
three active users in separate subsets, thus f (A) = 3 ensures no collision.
Only 2 bits of feedback as required! Optimal [Körner and Marton, 1988].
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Set-Partition Encoding

Any set of collision-free encoding and decoding function can be described
with the set-partition framework.
Given the decoding functions g′i : [T ]→ [k], we can define T partitions
X̄(t) =

(
X(t)

1 , . . . ,X(t)
k

)
, t ∈ [T ], where

X(t)
j = {i | g′i (t) = j, i ∈ [n]} .

For a fixed-length feedback code, we define the feedback rate as

R∗f (n, k) , log(T ∗)

where T ∗ is the minimum number of partitions needed to cover all activity
patterns.

Finding the minimum-rate zero-collision feedback code
now reduces to finding T ∗.
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Perfect Hashing Families

Finding T ∗ is equivalent to the perfect hashing families problem.

An (n, b, k)-family of perfect hash functions is a
family of functions from [n]→ [b] for n ≥ b ≥ k
such that for every A ⊂ [n], |A| = k, there exists a
function in the family that is injective on A.

hash
functionkeys

User 1

User 2

User 3

User 4

hashes

1

2

3

4

5

We can view our decoding functions as a (n, k, k)-family perfect hash
functions from [n]→ [k] if we swap the argument and the subscript.

Theorem (Fredman and Komlós, 1984, Körner and Marton, 1988)
The minimum size T ∗ of an (n, b, k) perfect hash family is bounded as:

logn
min1≤s≤k−1

bs

bs log b−s+1
k−s

. T ∗ .
(k − 1) logn

log 1
1− b

k

bk

.

The proof uses a notion of hypergraph entropy, but we can derive simpler,
but still instructive bounds. Here, bk , b!

(b−k)! is the falling factorial.
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Random Partition Construction

Take T random partitions X̄(1), . . . , X̄(T ), then the
probability an activity pattern A is not covered is

Pr
(

A /∈
T⋃
t=1

C
(
X̄(t)

))
=
(

1− k!
kk

)T
.

By the union bound we have:

Pr
(

T⋃
t=1

C
(
X̄(t)

)
6=
(

[n]
k

))
≤
(
n

k

)(
1− k!

kk

)T
.

If the RHS of the above falls below 1, it means that there exists a family of
partitions that cover all activity patterns.
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Achievability Bound on Minimum Feedback Rate

Using the fact 1− x < e−x, we can show that the RHS falls below 1 for:

T ≥
(

ln
(
n

k

))(
kk

k!

)
.

Proposition
The minimum rate for a fixed-length collision-free feedback code must be upper
bounded as:

R∗f (n, k) , log (T ∗) ≤ k log(e) + log
(

ln
(n
k

)
+ 1
)

+ 1
2 log

(
k

2π

)
.

Key observation: R∗f (n, k) ≤ O(log log(n)), plus a linear term in k log(e).
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Converse: Volume Bound

Since each partition can cover at most only a small
fraction of the activity patterns, we can also place a
volume bound on the covering:

T ∗ ≥
(
n
k

)⌈
n
k

⌉n mod k ⌊n
k

⌋k−n mod k .

Proposition
The minimum rate for a fixed-length collision-free feedback code must be lower
bounded as:

R∗f (k, n) ≥ k log (e)− log
(

nk

n(n− 1)...(n− k + 1)

)
− 1

2 log (2πk)− log (e)
12k .

Thus, R∗f (n, k) ≥ O(k).
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Converse: Exclusion Bound

A partition X̄(1) cannot have covered any activity pattern which has all its
elements drawn from S1 = [n]−X(1)

j , as

C
(
X̄(1)

)
∩
(

[n]−X(1)
j

k

)
= ∅, j = 1, . . . , k.

i.e., activity patterns with indices exclusively drawn from S1 are excluded.

Since one of the partitions X(i)
j is at most size

⌊
n
k

⌋
, we have:

|S1| = m1(n, k) ≥ n
(

1− 1
k

)
.
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Exclusion Bound

By repeated application of the exclusion argument:

mt(n, k) ≥ n
(

1− 1
k

)t
.

For this exclusion set to shrink down to the null set
(not containing any activity pattern), we need

n

(
1− 1

k

)T
≤ k − 1. With each partition, the

exclusion region shrinks.

Proposition
The minimum rate for a fixed-length collision-free feedback code must be lower
bounded as:

R∗f (n, k) ≥ log log
(

n

k − 1

)
+ log(k)− 1.
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From Fixed to Variable Length Feedback Code
Fixed-length collision-free feedback code:

Random Partition: R∗f (n, k) scales at most as k log(e) plus O(log log(n)).
Volume Bound: R∗f (n, k) scales at least as k log(e) for large n.
Exclusion Bound: R∗f (n, k) scales at least as Ω(log log(n)) for fixed k.

Thus, rate of fixed-length code scales linearly as k log(e) and as Θ (log log(n)).

Can we do better?

Variable-length collision-free feedback code:
Treat A as a random variable with distribution Q(A) and define
Rv(n, k) , H (f(A)), corresponding to optimal entropy coding.
Focusing on the worst-case activity distribution, define the optimal rate as:

R∗v(n, k) , sup
Q(·)

H (f(A)) .

It turns out we can remove even the Θ(log log(n)) growth in n.
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Greedy Encoding for k = 2

Consider the index based feedback
strategy for k = 2, but now greedily
choose the first position where user
indices differ.

If the user activity is the worst-case
uniform distribution, f (A) follows a
truncated geometric distribution.

0 1 1 0 0 0 1 0 . . .
0 1 0 1 1 1 0 1 . . .Index X:

Index Y:

A direct application of Huffman Coding results in a code of rate:

Rv(n, 2) = 2− log(n) + 1
n− 1 .

This implies lim
n→∞

R∗v(n, 2) ≤ 2, thus the achievable feedback rate remains
bounded as n tends to infinity.
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Greedy Encoding for k > 2

We again use the concept of greedy encoding strategy. Given a family of T
k-partitions B = (X̄(1), . . . , X̄(T )), define the greedy encoder fB:

fB(A) = min
t∈[T ]

t, s.t. A ∈ C
(
X̄(t)

)
, else T + 1,

and the resulting distribution pB(t) , Pr(fB(A) = t).
Denote the set of all families of k-partitions of size T as B, regardless of
whether each of them covers all activity patterns, or not.
Consider an encoder that chooses B uniformly at random from B. Define
pB(t) , EB

[
pB(t)

]
. The first T terms in this distribution are:

pB(t) = k!
kk

(
1− k!

kk

)t−1
, t = 1, . . . , T,

with the remainder of the mass at T + 1, regardless of the distribution of A.
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Variable-Length Feedback Bounds

With Jensen’s inequality, this implies the following bound independent of T :

EB
[
H
(
pB(t)

)]
≤ H (pB(t)) ≤ (k + 1) log(e).

For families of partitions of size T , let 1− ε be the fraction of collision-free
families in B, then the rate for collision-free feedback can be bounded as:

R∗v(n, k) ≤ 1
1− ε (k + 1) log(e)

Now, we can let T →∞, so ε→ 0, implying R∗v(n, k) ≤ (k + 1) log(e).
The volume bound converse can also be extended to variabe-length codes.

Theorem
The minimum rate for variable-length collision-free feedback code is bounded as

(k + 1) log(e) ≥ R∗v(n, k) ≥ k log (e) − log
(
nk

nk

)
− 1

2 log (2πk) − log (e)
12k .
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Practical Implementations

Consider a system with n = 106 potential users and k = 103 active users:
Naive scheme would require 20 kbits
Enumerative source coding requires 11.5 kbits.
Optimal feedback only needs approximately 1.5 kbits.

Some practical schemes come close to achieving the k log(e) linear scaling:

Table: Practical Hashing/Feedback Algorithms

Method Bits Per User

Random Coding 1.44
Boolean SAT 1.83

Compress-Hash-Displace 2.07
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More Slots and Multiple Users per Slot

0 200 400 600 800 1000
Number of Slots b

0

500

1000

1500

Fe
e
d

b
a
ck

 R
a
te

 (
b

it
s)

Fixed-Length Achievability Bound
Fixed-Length Volume Bound Converse

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Slots b

0

500

1000

1500

Fe
e
d
b
a
ck

 R
a
te

 (
b
it

s)

Fixed-Length Achievability Bound
Fixed-Length Volume Bound Converse

These bounds can be extended to the case of:
b ≥ k slots (over-provisioned system), and
b ≤ k slots for systems where the BS can decode multiple users per slot.
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Summary

What is the cost of coordinating collision-free scheduling?

Fixed-length feedback codes for collision-free scheduling of k active users
among n potential users into k slots requires a rate of approximately k log(e)
bits, plus a Θ(log log(n)) term.

Using variable-length feedback codes can reduce the required feedback rate
for collision-free scheduling to (k + 1) log(e) bits, independent of n.

If b ≥ k slots are available, or more than one user can be decoded per slot,
feedback can be further reduced.
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Random Access for Massive MIMO Systems

1 Uncoordinated Random Access for Massive MIMO
Channel estimation and data transmission must both be without coordination.
Coded ALOHA can be adapted to Massive MIMO systems to enable
uncoordinated communication.
We will consider a variant of coded ALOHA known as Coded Pilot Access.

2 Scheduled Random Access for Massive MIMO
Activity detection can serve as an initial step for scheduled random access.
A relatively small amount of feedback can be used to ensure collision-free
scheduling for the users.
Users are assigned orthogonal pilots for channel estimation.
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Slotted Random Access

The BS is equipped with M antennas.
There are n single-antenna devices k of which are active.
Active users transmit across ∆ temporal slots each containing L symbols.
The channels hd,i ∼ CN (0, 1) is i.i.d for each user i in the dth slot. We assume
users apply inverse power control to compensate for large scale fading.
The BS uses the received signal Yd over ∆ slots to decode the messages of k
active users.
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Coded Pilot Access

Users transmit their payload xi multiple times, each time preceded by a pilot
randomly selected from a set of orthogonal pilots {φt}τt=1.
In cases with no collision, the BS can perform channel estimation and data
decoding for that user.
The data contains the location of the other slots where the user has
transmitted, allowing the BS to perform SIC.

J. H. Sørensen, E. De Carvalho, Č. Stefanović, and P. Popovski, “Coded Pilot Random Access for
Massive MIMO Systems”, IEEE Trans. Wireless Commun., vol.17, no.12, pp.8035–8046, 2018.
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Scheduled Random Access for Massive MIMO

Users first transmit non-orthogonal
pilots si ∈ CL for activity detection.

BS sends scheduling message.

Each user is assigned a unique
(slot, orthogonal pilot) pair based
on common feedback from the BS.

The BS performs channel estimation using the orthogonal pilots, and then
maximum ratio combining to reconstruct the payload.

Each user is only required to transmit twice, in contrast to Coded ALOHA.
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Scheduled Random Access vs. Coded Pilot Access

Figure: Throughput of Coded Pilot Access and Scheduled Random Access with
k = 1000, n = 10000, SNR = 10dB, M = 400 BS antennas, τ = 64 orthogonal pilots

Each slot consists of L = 300 symbols.
Number of slots ∆ = 20 for coded pilot access;
Number of slots ∆ = 17 for scheduled random access.

Activity detection is done via covariance method over one slot for SRA.
Sum rate calculation assumes MRC beamforming and perfect SIC for CPA.
Sum rate gain of 50 kbits at moderate cost of 1.44 kbits of feedback.
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Conclusions

Classic random access is contention based.

Coded random access can alleviate some of the loss due to collision.

If feedback is available from BS to the users:
BS can first detect the active users using sparse recovery methods;
BS can then schedule orthogonal pilots to users for channel estimation;
Finally, the users transmit their data to the BS.

Significant performance improvement can be obtained at moderate feedback
of 1.44 bits/user for scheduling.
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Further Information

Justin Kang and Wei Yu,
“Minimum Feedback for Collision-Free Scheduling in Massive Random Access”,
Submitted to IEEE Transactions on Information Theory, 2020.
[Online] available: https://arxiv.org/abs/2007.15497.
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