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Abstract—Beam alignment is an important task for millimeter-
wave (mmWave) communication, because constructing aligned
narrow beams both at the transmitter (Tx) and the receiver
(Rx) is crucial to compensate for the significant path loss
in very high-frequency bands. However, beam alignment is
also a highly nontrivial task, because the hybrid beamforming
architecture typical of large antenna arrays allows only low-
dimensional measurements of the high-dimensional channel. This
paper considers a two-sided beam alignment problem based
on an alternating ping-pong pilot scheme between Tx and Rx
over multiple rounds without explicit feedback. We propose
a deep active sensing framework in which two long short-
term memory (LSTM) based neural networks are employed to
learn the adaptive sensing strategies and to produce the final
aligned beamformers at both sides. In the proposed ping-pong
protocol, the Tx and the Rx alternatively send pilots so that
both sides can leverage local observations to sequentially design
their respective sensing and data transmission beamformers.
Numerical experiments demonstrate significant and interpretable
performance improvement. The proposed strategy works well
even for the challenging multipath channel environments.

I. INTRODUCTION

Millimeter-wave (mmWave) is envisioned to be a key en-
abler for high data rate transmission in the next generation
of communication systems [1], [2]. In mmWave systems, it
is crucial to deploy large antenna arrays in order to focus
narrow beams to compensate for the considerable signal
attenuation at high frequencies. However, due to the cost
and energy consumption constraints, the mmWave transceivers
are generally equipped with only a limited number of radio-
frequency (RF) chains [3], which means only low-dimensional
signals can be observed. This makes it difficult to estimate
the high-dimensional channel and to find the aligned beams
for data transmission so that the signal-to-noise ratio (SNR)
is maximized. This paper aims to alleviate the pilot training
overhead for such a two-sided beam alignment problem in
which two multi-antenna transceivers need to find the optimal
beamforming direction based on a limited number of low-
dimensional measurements designed by the two transceivers.

The two-sided beam alignment problem is highly nontrivial
for several reasons. First, the problem involves sensing a high-
dimensional channel via the low-dimensional observations
through the limited number of RF chains both at the Tx
and Rx. The design of such analog sensing vectors is not an
easy problem to solve analytically. Second, because the pilots
are transmitted over multiple stages, the sensing vectors can

be designed as functions of the observations in the previous
rounds. Such an active sensing strategy can significantly im-
prove the eventual beamforming gain [4]–[6], but the optimal
design of the sensing strategy involves sequential exploration
of the channel landscape and is extremely challenging. Third,
this paper tackles the two-sided beam alignment problem with
the Tx and the Rx actively designing their beamformers at
the same time. Unlike the one-sided scenario [4]–[6], two-
sided beam alignment typically requires feedback between the
transceivers. But coordination and feedback are not easy to
realize before the beam alignment is achieved.

The two-sided beam alignment problem has been inves-
tigated in [7]–[10] using nonadaptive sensing beamformers.
To reduce the pilot training overhead further, iterative search
algorithms have been proposed to actively design the sensing
beamformers based on the historical observations [7], [11]–
[14]. In particular, [13], [14] propose to construct sensing
beamformers adaptively according to a hierarchical codebook,
from which the next sensing beamformers are chosen, based
on the current posterior distribution of the angle of arrivals
(AoAs) and angle of departures (AoDs). For one-sided beam
alignment, [5] proposes a codebook-free approach to map the
posterior distribution to the next sensing vector by a fully
connected deep neural network (DNN). However, calculating
the posterior distribution is computationally feasible only for
the single-path channel model. Instead of using the posterior
distribution, a follow-up paper [6] proposes a deep learning
framework based on the long short-term memory (LSTM)
neural network architecture to summarize the information
contained in the observations automatically, which further
improves the one-sided beam alignment performance and is
applicable to multipath channel models. The main goal of the
current paper is to generalize the approach of [6] to two-sided
beam alignment.

This paper proposes a novel deep active sensing frame-
work to tackle the two-sided beam alignment problem for
a mmWave communication link. The proposed framework
involves a ping-pong pilot transmission scheme, in which
the Tx and the Rx alternatively transmit and receive pilots
through the beamformers designed by their respective active
sensing units based on the pilots received so far. The use of
the ping-pong pilot strategy eliminates the need for feedback
between the transceivers. To account for the sequential nature
of the learning task, this paper proposes to utilize a recurrent



neural network (RNN) with long short-term memory (LSTM)
as the active sensing units at both the Tx and Rx to efficiently
extract the relevant information from the received pilots over
multiple stages to design the Tx and Rx beamformers both
for the sensing phase and for the final data transmission
phase. Overall, the proposed design is shown to significantly
reduce the pilot overhead and to enhance the overall SNR for
the mmWave link, while producing interpretable beamforming
patterns.

II. TWO-SIDED BEAM ALIGNMENT

A. System Model

Consider a mmWave MIMO communication system consist-
ing of a Tx, also called agent A, with Mt antennas configured
as a uniform linear array (ULA), and a Rx, also called agent
B, with Mr antennas as a ULA. The Tx and the Rx each have
a single RF chain. Let wt ∈ CMt and wr ∈ CMr denote the
beamforming vectors at the Tx and the Rx side, respectively.
Without loss of generality, the transmitted signal is subject to
a power constraint and the beamformers are normalized such
that ‖wt‖2 = ‖wr‖2 = 1. To establish a reliable link between
the Tx and the Rx, the beamforming vectors {wt,wr} should
be jointly optimized according to the channel state information
(CSI) so that the achievable rate (or equivalently the SNR) of
the communication link is maximized.

Let matrix G ∈ CMt×Mr denote the uplink channel matrix
from the Rx to the Tx, then the downlink channel is denoted by
GH, where we assume the system operates in the time-division
duplex (TDD) mode with channel reciprocity. We assume
a block fading channel model, where the channel remains
constant over a coherence interval but changes independently
over different coherence intervals. To capture the intrinsic
sparse nature of the mmWave propagation environments, a
mmWave channel is typically modeled by a sparse multipath
channel as follows [3]:

G =

Lp∑
i=1

αiat(φ
i
t)a

H
r (φ

i
v), (1)

where Lp denotes the number of paths, αi denotes the complex
fading coefficients of the i-th path, {φit, φir} denotes the set of
AoA and AoD corresponding to the i-th path, and at(·),ar(·)
are the steering vectors as given by the following (assuming
half-wavelength antenna spacing):

[at(φ
i
t)]n = ejπ(n−1) sin(φ

i
t), n = 1, · · · ,Mt, (2a)

[ar(φ
i
r)]n = ejπ(n−1) sin(φ

i
r), n = 1, · · · ,Mr. (2b)

Let x ∈ C with E[|x|2] = P denote the intended data
symbol, then the received signal at the Rx can be expressed
as

r = wH
r G

Hwtx+ n, (3)

where n ∼ CN (0, σ2
0) is the additive Gaussian noise. In

order to maximize the transmission rate, the beamforming
vectors should be designed to maximize the beamforming gain
|wH

r G
Hwt|2.
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Fig. 1: Proposed ping-pong pilot training protocol. The sensing beamformers
actively designed at agent A and agent B are highlighted as blue (e.g.,
wA

t,1, wA
r,1) and green (e.g., wB

t,0, wB
r,1), respectively. The initial sensing

vectors wA
t,0, wA

r,0 and wB
r,0 are fixed and can be learned from the channel

and noise distributions in the proposed active sensing framework.

Given perfect CSI G, the beamforming vectors {w?
t ,w

?
r }

that maximize the beamforming gain are given by

w?
t = umax/‖umax‖2, (4a)

w?
r = vmax/‖vmax‖2, (4b)

where umax and vmax are respectively the left and the right
singular vectors associated with the largest singular value of
the matrix G.

However, the channel matrix G is not known initially. The
transceivers need to effectively obtain the CSI from a pilot
training phase. To this end, this paper considers an adaptive
sensing strategy without explicit CSI estimation. In particular,
this paper proposes to use a deep active sensing approach to
adaptively design the sensing beamformers at both sides during
pilot training. Moreover, the subsequent beamformers for data
transmission are also learned in an end-to-end fashion. This
is all accomplished based on a novel ping-pong pilot protocol
without explicit feedback.

B. Ping-Pong Pilot Training Protocol
The ping-pong pilot training protocol is illustrated in Fig. 1,

in which the pilot symbols are sent back and forth between
agent A (i.e., Tx) and agent B (i.e., Rx) such that each side
gathers the required information to design its own beamformer
for the data transmission phase.

In the `-th transmission round, agent A first sends a pilot
symbol xA` under a power constraint E[|xA` |2] ≤ P1 to agent
B, then the received pilot symbol at agent B is given by

yB` = (wB
r,`)

HGHwA
t,`x

A
` + nB` , ` = 0, · · · , L− 1, (5)

where the vectors wA
t,` ∈ CMt and wB

r,` ∈ CMr are respec-
tively the transmit sensing beamforming vector at agent A and
the receive sensing beamforming vector at agent B in the `-
th round of pilot transmission, and nB` ∼ CN (0, σ2) is the
additive Gaussian noise. The beamforming vectors in the pilot
training phase are called sensing vectors to distinguish from
the beamforming vectors in the data transmission phase. After
receiving the pilot, as shown in Fig. 1, agent B sends back a
pilot symbol xB` under a power constraint E[|xB` |2] ≤ P2 to
agent A. Similarly, the received pilot at agent A is given by

yA` = (wA
r,`)

HGwB
t,`x

B
` + nA` , ` = 0, · · · , L− 1, (6)



where the vectors wA
r,` ∈ CMt and wB

t,` ∈ CMr are the
sensing vectors at agent A and agent B, respectively, and
nA` ∼ CN (0, σ2) is the additive Gaussian noise. Without loss
of generality, we can set xA` =

√
P1 and xB` =

√
P2. After L

rounds of pilot transmission, each of the transceivers obtains L
measurements of the channel, which can be utilized to design
their own beamforming vector for the data transmission phase.
The overall pilot training overhead is 2L for L rounds of pilot
transmission.

Unlike the conventional schemes in which both the trans-
mit and receive beamformers are designed at one node, the
presented protocol designs the beamformers locally, hence it
does not require a subsequent feedback procedure.

C. Active Sensing for Two-Sided Beam Alignment

The proposed active sensing approach is an adaptive sensing
method because each sensing vector is designed based on the
previously received pilot symbols. At the begining of the `-
th ping-pong round, as shown in Fig. 1, agent A sends a
pilot to agent B. After receiving the observation yB` , agent
B utilizes all the historical observations {yBi }`i=0 to design its
next transmit sensing beamformer wB

t,`, as well as the receive
sensing beamformer wB

r,`+1 in the next round, i.e.,

wB
t,` = fBt,`

(
{yBi }`i=0

)
, ` = 0, · · · , L− 1, (7a)

wB
r,`+1 = fBr,`

(
{yBi }`i=0

)
, ` = 0, · · · , L− 2, (7b)

where fBt,` : C`+1 → CMr and fBr,` : C`+1 → CMr are the
corresponding active sensing schemes at agent B. The outputs
of the functions fBt,` and fBr,` should also satisfy the unit `2-
norm constraints, i.e., ‖wB

t,`‖2 = ‖wB
r,`+1‖2 = 1.

At the end of the `-th ping-pong round, agent A has
made ` + 1 observations, i.e., {yAi }`i=0, so its next transmit
sensing beamforming vector wA

t,`+1 and next receive sensing
beamforming vector wA

r,`+1 in the next round can be designed
as functions of these observations, i.e.,

wA
t,`+1 = fAt,`

(
{yAi }`i=0

)
, ` = 0, · · · , L− 2, (8a)

wA
r,`+1 = fAr,`

(
{yAi }`i=0

)
, ` = 0, · · · , L− 2, (8b)

where fAt,` : C`+1 → CMt and fAr,` : C`+1 → CMt are
respectively the transmit and receive active sensing strategies
that map the historical observations to the sensing vectors in
the next round, while satisfying the unit `2-norm constraints,
‖wA

t,`+1‖2 = ‖wA
r,`+1‖2 = 1. In the initial stage, since no prior

observation is available, we fix the initial beamformers wA
t,0,

wB
r,0, and wA

r,0 to be some fixed unit-norm vectors, which can
be designed based on channel statistics.

After L rounds of pilot transmission, the two agents design
their respective beamformers for data transmission based on
all the historical received pilots. In particular, the final beam-
forming vectors in the data transmission phase are given by

wt = gt
(
{yAi }L−1i=0

)
, (9a)

wr = gr
(
{yBi }L−1i=0

)
, (9b)

where gt : CL → CMt and gr : CL → CMr are functions that
map the received pilots to the final beamforming vectors with

Fig. 2: Proposed active sensing unit for the two-sided beam alignment problem
in the `-th ping-pong pilot training round.

unit-norm constraints at agent A (i.e., Tx) and agent B (i.e.,
Rx), respectively.

This paper aims to find the optimal active sensing strategies
together with the mapping functions at the final stage so
that the overall beamforming gain for data transmission is
maximized. The overall problem can be formulated as

maximize
F

E
[
|wH

r G
Hwt|2

]
(10a)

subject to (7), (8), and (9), (10b)

where the optimization variables are a set of functions

F =
{
{fAt,`(·)}L−2`=0 , {fAr,`(·)}L−2`=0 , {fBt,`(·)}L−1`=0 ,

{fBr,`(·)}L−2`=0 , gt(·), gr(·)
}
,

(11)

and the expectation is taken over all the stochastic parameters
in the system, i.e., the channels and the noise.

Solving the problem (10) is computationally challenging
because the optimization variables are high-dimensional func-
tions. Moreover, the input dimensions of the functions in F
increases with the number of rounds, so the complexity also
scales accordingly. The main idea of this paper is that an RNN
can be used to solve this optimization problem efficiently.

III. PROPOSED DEEP LEARNING FRAMEWORK

In this section, we propose a deep learning framework to
parameterize the mapping in F and to solve the optimization
problem (10). In particular, the sequential nature of the active
sensing problem motivates the use of RNN. Further, we
propose to use two LSTM cells [15], one on each side, to
automatically summarize historical observations into fixed-
dimensional state vectors, which are used for designing the
subsequent sensing vectors. This is motivated by the fact that
LSTM can capture the correlations over long sequences. It has
the ability to summarize sufficient information from historical
observations, thereby preventing the dimension of the input
from growing with the number of pilot transmission rounds.

Fig. 2 shows the architecture of the proposed active sensing
unit in the `-th pilot transmission round. In particular, the
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Fig. 3: Proposed overall active sensing framework for the two-sided beam alignment problem with L ping-pong pilot trainining rounds.

proposed active sensing unit consists of two LSTMs deployed
at agent A and agent B, respectively.

At the Rx side, given the new observation yB` at agent B,
its LSTM cell outputs the updated cell state vector cB` and
hidden state vector sB` according to the following equations
[15]:

fB
` = sigmoid(WB

f yB
` +UB

f sB`−1 + bBf ), (12a)

iB` = sigmoid(WB
i yB

` +UB
i sB`−1 + bBi ), (12b)

oB` = sigmoid(WB
o yB

` +UB
o sB`−1 + bBo ), (12c)

cB` = fB
` ◦ cB`−1 + iB` ◦ tanh(WB

c yB
` +UB

c sB`−1 + bBc ), (12d)

sB` = oB` ◦ tanh(cB` ), (12e)

where yB
` = [<(yB` ),=(yB` )]> is the concatenation of

real and imaginary parts of yB` , {WB
f ,W

B
i ,W

B
o ,W

B
c ,

UB
f ,U

B
i ,U

B
o ,U

B
c } and {bBf , bBi , bBo , bBc } are respectively the

trainable weights and biases in the LSTM network. Moreover,
the forget gate’s activation vector fB

` , input/update gate’s
activation vector iB` , and output gate’s activation vector oB

`

are intermediate vectors generated within the LSTM unit to
update the cell state vector cB` and the hidden state vector sB` .

Similarly, the Tx utilizes another LSTM with the
same architecture but with different trainable parame-
ters {WA

f ,W
A
i ,W

A
o ,W

A
c ,U

A
f ,U

A
i ,U

A
o ,U

A
c } and {bAf , bAi ,

bAo , b
A
c }. Given the new observation yA` at the Tx side, the

LSTM updates its cell state vector cA` and hidden state vector
sA` according to the following equations:

fA
` = sigmoid(WA

f yA
` +UA

f sA`−1 + bAf ), (13a)

iA` = sigmoid(WA
i yA

` +UA
i sA`−1 + bAi ), (13b)

oA` = sigmoid(WA
o yA

` +UA
o sA`−1 + bAo ), (13c)

cA` = fA
` ◦ cA`−1 + iA` ◦ tanh(WA

c yA
` +UA

c sA`−1 + bAc ), (13d)

sAt = oA` ◦ tanh(cA` ), (13e)

where yA
` = [<(yA` ),=(yA` )]> is the real representation of

the received pilot symbols at the Tx. To initialize the cell
state and hidden state vectors, we set cA−1 = cB−1 = 0 and
sA−1 = sB−1 = 0 following the convention in LSTM networks.

The idea is to train the LSTM to capture the useful in-
formation in the sequence of historical observations into its
cell state. We then use the hidden state vectors sA` and sB` to
design the corresponding sensing vectors. This is achieved by
using fully connected DNNs. As shown in Fig. 2, at agent B,
the hidden state vector sB` is taken as input to two different
fully connected DNNs to output the next transmit sensing
beamforming vector wB

t,` and receive sensing beamforming
vector wB

r,`+1 as follows:

wB
t,` = fBt,DNN(s

B
` ), (14a)

wB
r,`+1 = fBr,DNN(s

B
` ). (14b)

Analogously, the next transmit and receive sensing beamform-
ers at agent A, i.e., wA

t,`+1 and wA
r,`+1, are designed by two

different fully connected DNNs with the hidden state vector
sA` as input, i.e.,

wA
t,`+1 = fAt,DNN(s

A
` ), (15a)

wA
r,`+1 = fAr,DNN(s

A
` ). (15b)

Fig. 2 illustrates the proposed active sensing unit in the `-
th pilot transmission round. To train the neural networks in
the active sensing unit, we concatenate L active sensing units
together to form a very deep neural network, corresponding
to the L rounds of pilot transmission in Fig. 1. The overall
deep active sensing architecture is shown in Fig. 3. The neural
network parameters across different pilot transmission rounds
can be tied together to reduce the training complexity. After
L rounds of pilot transmission, the state vector {cAL−1, cBL−1}
of the LSTMs at both sides are respectively mapped to the
final beamforming vectors {wt,wr} for the data transmission
phase. This is done by employing another two DNNs in the
final stage as follows:

wt = gt,DNN(c
A
L−1), (16a)

wr = gr,DNN(c
B
L−1). (16b)

The overall neural network can be trained end-to-end in
order to maximize the utility function E

[
|wH

r G
Hwt|2

]
by

employing stochastic gradient descent (SGD). In this way, the
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Fig. 4: Average beamforming gain vs. pilot training overhead.

active sensing strategies together with the final DNNs at both
sides are jointly optimized. Once trained and deployed, no
feedback is needed between the Tx and the Rx.

IV. PERFORMANCE EVALUATION

In simulations, we consider a system with Mt = 64 anten-
nas at the Tx and Mr = 32 antennas at the Rx. The number
of paths between the Tx and Rx is set to Lp = 3. For each
channel realization, the AoAs/AoDs are uniformly generated
from [−60◦, 60◦], and the complex fading coefficients are
randomly taken from the distribution CN (0, 1). In the pilot
training phase, the raw SNRs in both directions, i.e., P1/σ

2

and P2/σ
2, are set to be 0dB.

For the proposed deep active sensing unit, the dimensions
of hidden states and cell states are both set to be 512 for
the Tx side and both set to be 256 for the Rx side. The
DNNs in (15) are of size [512, 512, 2Mt], and the size of
DNN gt,DNN(·) is [1024, 1024, 2Mt]; the DNNs in (14) are
of size [512, 512, 2Mr], and the size of DNN gr,DNN(·) is
[1024, 1024, 2Mr]. We adopt the rectified linear unit (ReLU)
activation function in all the dense layers except the last layer
that outputs the beamforming vector. To meet the unit `2-norm
constraint on the beamforming vectors, the activation function
for the last dense layer is chosen to be %(·) = ·/‖ · ‖2. A
batch normalization layer is added between two dense layers in
the fully connected neural networks to accelerate the training
process [16]. The initial sensing vectors wA

t,0, wB
r,0, and wA

r,0

as shown in Fig. 1 are set as trainable parameters in the
implementation, so that they are learned from the distribution
of the training data. The parameters of the dense layers
in the active sensing unit are tied together across different
sensing stages to reduce the training complexity. The overall
deep learning framework is implemented on Tensorflow [17]
and trained by Adam optimizer [18] with a learning rate
progressively decreasing from 10−4 to 10−5. We compare the
proposed method with channel estimatation based approach
[7] using orthogonal matching pursuit (OMP) algorithm [19]
and DNN-based approach [20] where the received pilots with
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Fig. 5: Learned sensing beamforming patterns.
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Fig. 6: Learned data transmission beamforming patterns.

fixed sensing vectors are directly mapped to data transmission
beamformers by a DNN.

In Fig. 4, it can be seen that the data-driven approaches,
which bypass channel estimation, significantly outperform the
channel estimation based approach. The DNN-based approach
with learned sensing vectors can achieve much better perfor-
mance as compared to the DNN-based method with random
sensing vectors. This implies that designing the sensing vectors
is important for improving the quality of the received pilots.
Further, the proposed active sensing approach, which utilizes
pilot observations that are functions of instantaneous CSI,
achieves better performance than the DNN-based approach
that learns the sensing vectors based on channel statistics.
Specifically, at raw SNR of 0dB, the proposed approach using
8 pilot transmission overhead can outperform all the other
benchmarks with 20 pilot transmissions. This indicates that the
proposed deep active sensing framework can efficiently design
the sensing vectors from the observations, thereby reducing the
pilot training overhead. Moreover, the proposed method does
not need feedback and coordination between the Tx and the
Rx in the pilot training stage.

V. INTERPRETATION OF ACTIVE SENSING SOLUTION

We have shown that the proposed active sensing method
can significantly outperform the state-of-the-art benchmarks
for the two-sided beam alignment problem. It is important
to interpret the solutions learned via the LSTM based neural
networks and to understand where the gains come from. To
this end, we examine the beamforming patterns of the designed



sensing and beamforming vectors using the normalized array
response fbeam(w, θ) = |wHa(θ)|2, ∀θ ∈ [−π/2, π/2],
where w ∈ CM is the designed sensing/beamforming vector
and a(θ) = [1, · · · , ejπ(M−1) sin(θ)]>/

√
M is the normalized

steering vector.
In Fig. 5, we plot the beamforming pattern of the sensing

vectors wB
r,`, w

B
t,`, w

A
t,` and wA

r,` designed via the proposed
active sensing framework for ` = 0, · · · , 5 for a randomly
generated channel realization. The active sensing neural net-
work is trained for L = 6 ping-pong transmission rounds.
As can be seen from Fig. 5, the sensing vectors designed by
the active sensing unit have relatively uniform array response
in the first two rounds, i.e., ` = 0, 1. As the number of
observations increases, the active sensing units at both sides
gradually learn to narrow down the search directions and to
focus more energy in the optimal direction, but they also try to
explore other directions. This can be interpreted as a behavior
of systematic exploration of channel landscape, learned by
the proposed active sensing method for finding the optimal
beamformers for the eventual data transmission.

In Fig. 6, we plot the beamforming pattern of the data trans-
mission beamforming vectors {wt,wr}, which are learned
via the DNNs after the final sensing stage as in (16) for the
channel realization used in Fig. 5. It can be seen that the final
data transmission beamformers perfectly match the optimal
beamforming vectors computed from (4) assuming perfect
CSI, (i.e., the singular vectors corresponding on the largest
singular value). This means that the proposed active sensing
framework indeed learns an intelligent strategy to design the
sensing vectors to collect the received pilots so that the optimal
final data transmission beamformers can be found within a few
pilot transmission rounds.

We observe through simulations over many random channel
realizations that the proposed active sensing strategy learns
to match the singular vector corresponding to the largest
eigenvalue a majority of the time, but there are also cases in
which the learned data transmission beamformers happen to
match the second or third singular vectors. This phenomenon
accounts the gap between the proposed active sensing method
and the perfect-CSI benchmark seen in Fig. 4. This gap is
approximately 1.58dB when the number of pilot transmission
overhead is 12 (or L = 6).

VI. CONCLUSIONS

This paper proposes an active sensing framework to se-
quentially design the sensing vectors from successive observa-
tions for the two-sided beam alignment problem in mmWave
systems. The proposed approach is based on a novel ping-
pong pilot training scheme, which eliminates the need for
feedback between the Tx and the Rx at the sensing stage, and
is data driven, so that it does not rely on mathematical models
of the channel. Active sensing is a challenging problem,
because of the sequential nature of the sensing operation,
which allows successive exploration of the channel landscape,
but also requires the learning agent to succinctly summarize
the observations so far, which is a nontrivial task. To this

end, this paper proposes to use an active sensing strategy
based on LSTM neural networks to account for the sequential
dependency of the sensing task. Simulation results verify the
superior performance of the proposed method as compared
to the previous state-of-the-art methods and that the learned
beamforming patterns are meaningful and interpretable.
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