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Abstract—Neural networks have been widely utilized for
wireless communication optimizations. In most of the litera-
ture, a dedicated neural network is trained for each specific
optimization problem. However, under many scenarios, several
distinct objectives are worth optimizing on the same wireless
environment. Instead of exhaustively training a new model for
every objective, it is more efficient to exploit the correlations
between these objectives to train models with shared model
parameters and feature representations. In the deep learning
literature, transfer learning has been proposed to encourage
knowledge transfer among models solving correlated problems.
Unlike a majority of transfer learning applications where the
high level features are relatively easy to locate in the neural
networks, this paper considers wireless communication problems,
in which it is much more difficult to identify high level features
transferable to correlated tasks. To address this issue, this paper
proposes to add an additional reconstruction loss when training
the model. This new loss is for reconstructing the problem
inputs starting from a selected neural network hidden layer.
This approach encourages the features learnt to be general and
descriptive about the inputs, instead of being solely responsible
for minimizing the specific task-based loss. When a new objective
is to be optimized, these features can be readily used for transfer
learning. Simulation results in device-to-device wireless network
power allocation optimization suggest that the proposed approach
is highly efficient in data and model complexity, resilient to over-
fitting, and supports competitive optimization performances.

I. INTRODUCTION

Deep learning has gained increasing popularity as a flexi-
ble, generalizable, and computationally efficient approach for
solving a great variety of wireless communication problems,
such as resource allocations [1]-[4], detection and sensing [5]-
[8], and so on. In most literature on applying deep learning
for wireless communication optimizations, a specialized neural
network is trained from scratch for solving each specific
optimization task, therefore requiring a large number of train-
ing data and model parameters just for obtaining satisfactory
performances on that task. This approach lacks scalability and
generalization ability when multiple objectives are considered.
However, in wireless communication applications, the opti-
mization problems are often based on the same transmission
environment, and they differ from each other only in terms
of their objective functions. In this paper, we exploit the
similarities between these optimization tasks, and purpose a
novel transfer learning approach to train neural networks for
different tasks in a highly efficient way, in terms of both data
and the model complexity.

In the machine learning literature, researchers have explored
the transfer of knowledge between machine learning models
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to tackle similar tasks, known as transfer learning [9]. Firstly,
a model is fully trained from scratch with abundant training
data and computation resources for one task (i.e. the source
task). Secondly, when a new task correlated to the source task
is presented (i.e. the target task) with only a small amount of
data available, the trained model is further fine tuned based
on the limited available data to solve this new task. Transfer
learning is most popular in computer vision (CV) [10]-[14],
natural language processing (NLP) [15]-[17], and so on.

To better understand transfer learning with neural networks,
we interpret the neural network input-to-output computation
flow as a two-stage process, i.e. a feature learning stage
followed by an optimization stage:

1) Feature learning stage: the stage where the input char-
acterizing features are learned.

2) Optimization stage: the stage where the final task-
specific outputs are obtained from the features.

Many transfer learning approaches can be viewed as transfer-
ring the feature learning stage across neural network models,
while each model learns its own distinct optimization stage
corresponding to its specific task. For the mainstream transfer
learning researches in the fields such as CV and NLP, the
inputs in the problems are highly structured, while the targets
are in much lower dimensions. Consequentially, it is clear
where the feature learning stage and the optimization stage
are within the neural network computation flow. However, con-
ducting transfer learning on general mathematical optimization
problems is a different story: the inputs, the outputs, and their
mappings often lack discernible structures, resulting no clear
distinction between the feature learning stage and the opti-
mization stage in neural network computations. Consequen-
tially, it is difficult to determine where within the trained model
is the transferable knowledge (in the form of internal features),
or even worse, if such transferable knowledge exists at all.
Several researches have explored transfer learning on wireless
communication problems [18]-[20]. These works achieved
promising results, through techniques based on the application
settings or objective characteristics that are problem specific.

In this paper, we propose a novel transfer learning approach
to explicitly enforce the learning of transferable features within
the neural network computation flow. Specifically, when train-
ing the model on the source task, besides the task-specific loss,
we introduce an additional reconstruction loss to be minimized
jointly: we let the neural network reconstruct the inputs using
features from a specific hidden layer (which we refer to as
the feature layer), and compute the input reconstruction loss.



Through minimizing this reconstruction loss, we encourage
the features learned at the feature layer to be general and
descriptive of the inputs, instead of being solely responsible
for optimizing the source task. To perform transfer learning
on the target task, we take the trained model parameters up to
this feature layer as the optimized feature learning stage for the
new model, and further train the remaining model parameters.
We emphasize that with this approach, the features learned in
the feature layer of the model are highly general and are not
restricted to any specific task, and thus can be transferred for
solving multiple tasks simultaneously without any re-training.
Essentially, the proposed transfer learning approach is target-
task agnostic. This is in contract to some transfer learning
researches [17], [20]-[22] where the training is dedicated to
a given source-task-to-target-task pair. We note that several
works also explore the similar idea of encouraging input
reconstruction from model internal features, in the field of
semi-supervised learning [23], [24], and multi-task learning
(a different field from transfer learning despite certain simi-
larities) [25]. Nonetheless, as these works belong to different
fields, they focus on different scenarios and problems. For
transfer learning, we aim for high-level features that support
neural networks to quickly adapt to new tasks under limited
training and adjustments of model parameters.

For numerical simulations, we focus on a prevalent class of
mathematical optimization problems: the resource allocation
optimizations. We implement the proposed transfer learning
approach to train neural networks to perform power con-
trol utility optimization for device-to-device (D2D) wireless
networks. Specifically, we explore transfer learning between
two different yet correlated objectives: the min rate and sum
rate objectives. Optimization results suggest that our approach
achieves knowledge transfer and mitigates over-fitting on
limited target task data more effectively as compared to the
regular transfer learning method.

II. PROBLEM FORMULATION
A. General Setup: Source Task and Target Task Optimization

Among many variants of transfer learning formulations, we
focus on the transfer learning setting where the source task and
the target task share the same distribution on the inputs, and
differ by their respective objectives. Let S denote the source
task and 7 denote the target task, consider the optimization
problems summarized by the following components:

o Input parameters p summarizing all environment infor-
mation essential for optimization, which follow the same
distribution in both S and T;

o Optimization variables for S: x;

o Objective (or utility) for S: us(xs);

o Optimization variables for 7 x;;

« Objective (or utility) for 7 us(x¢).

If 7 and S are supervised learning tasks, then u,(xs) and
u¢ (%) are also dependent on the ground-truth labels, which we
omit in our notations as they are not variables to be optimized.

To optimize S and T, we utilize neural networks to compute
the optimal values for optimization variables. Specifically:

o Let Fo, with trainable parameters ©, denote the neural
network mapping for optimizing S:

Fo.(P) =% (D

o Let Fg, with trainable parameters ©; denote the neural
network mapping for optimizing 7

Fo,(p) = x4 2

Under the transfer learning setting, S and 7 are correlated,
in the sense that features extracted from p for optimizing
us(xs) and wu;(x¢) are partially similar. Nonetheless, S and
T are still two different tasks. Features exclusively learned
for one task are not optimal for the other one. Therefore, the
features still need to be relatively general for being transferable
between S and 7. Moreover, due to reasons such as the
cost and overhead of data acquisition, the data is limited for
training O, on 7. This assumption is particularly relevant for
scenarios where the target task 7 is adapted on the fly after
the model deployment. Consequentially, to effectively learn
Fo,. we need to utilize the correlation between S and 7, and
transfer over the knowledge already learned in Fg, that is also
generalizable enough for solving 7.

B. Wireless Network Utilities

For engineering applications, we study the power control
optimization for different link rate utilities in D2D wireless
networks. Consider a wireless network with N D2D links that
transmit independently over the frequency band of bandwidth
w with full frequency reuse. Let G = {gi;}; jcf1..n} denote
the channel gain from the j-th transmitter to the i-th receiver.
Let P; denote the maximum transmission power for the i-th
transmitter. The problem of power control is to find the optimal
values of the variables x = {w;};c(1...n}, Where z; € [0,1]
denote the percentage of P; that the i-th transmitter transmits
at. Under a specific power control solution x, the ¢-th link has
the following achievable rate:
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where 02 denotes the background noise power level.

For optimization objectives, we consider two link rate utility
functions which are important under different application
scenarios:

r; = wlog <1 +

e The sum rate:

N
u= Z T “4)
i=1

e The min rate

R e ®)
Examining (4) and (5), they are correlated in the sense
that a set of higher rates over all links leads to a higher
objective value. Both objectives would benefit from proper
interference mitigation. On the other hand however, these two
objectives differ greatly in term of fairness among links: (5)



ensures complete fairness by optimizing the worst link rate;
(4) largely ignores fairness since the optimal sum rate might
be achieved through heavily utilizing strong links. With this
distinction, conducting transfer learning between (4) and (5)
is challenging, as certain features crucial in optimizing one
objective could be irrelevant or even counter-productive in
optimizing the other objective.

III. TRANSFER LEARNING WITH RECONSTRUCTION LOSS
A. Information within Neural Network Computation Flow

A neural network consists of consecutive hidden layers
of neurons computing non-linear functions (i.e. activations),
forming a computation flow as the input-to-output mapping.
For a regular neural network learning one specific input-to-
output mapping, the features computed by each hidden layer
show a general pattern: from the input to the output, the hidden
features in each layer gradually reduce the information con-
tained about the inputs, while maintaining only the information
necessary for predicting the outputs [26]-[28]. Nonetheless,
this information flow pattern might not be desirable in transfer
learning. Instead, we desire the features learned by the model
to be generalizable and retain sufficient information on inputs
for being transferable to new incoming tasks.

When using transfer learning on CV or NLP applications,
it is relatively clear which features hold sufficient information
about inputs. Specifically, with highly structured inputs, the
neural network computation flow learned under regular train-
ing is likely to be structured already: the entire flow can be
divided into a feature learning stage and an optimization stage.
Take convolutional neural networks as examples, the feature
learning stage includes the convolution layers that compute
general high-level features (such as edges, pixel intensities,
or color gradients over the input image), followed by the
optimization stage consisting of fully connected layers that
process these high-level features into task-specific features
(such as the existence of objects of interest) and compute the
outputs (e.g. classification class scores). To conduct transfer
learning over correlated CV tasks, the convolutional layers are
shared among the models as the feature learning stage, while
the fully connected layers of each model are further trained on
the per-task basis, such as the approaches in [11], [13], [14].

However, for general mathematical optimization problems,
the inputs lack structures in most cases. Under regular training
methods, the resulting neural network computation flow is
not clearly divided by stages, with internal features gradually
becoming more and more task-specific layer by layer. As the
result, it is difficult to identify or explicitly encourage the
learning of transferable features.

B. Source Task Training with Added Reconstruction Loss

To tackle the challenges of transfer learning on general
mathematical optimization problems, we propose a novel
transfer learning approach to encourage the learning of trans-
ferable features. Specifically, when training the model on the
source task, on top of the regular task-based loss, we introduce
in addition a loss term for input reconstruction.

Fig. 1 illustrates the proposed transfer learning approach.
We adopt the most general fully-connected neural network
architecture. Within the neural network, we select a hidden
layer as the feature layer where we encourage the transferable
features to be computed. There is no particular constraint on
the selection of the feature layer, as long as there is sufficient
transformation capacity (by having hidden layers) both from
inputs to the selected layer and from the selected layer to
outputs. From this feature layer, we add in a reconstruction
stage as a separate branch in the computation flow, in parallel
to the optimization stage. The reconstruction stage aims to
construct the inputs p starting from the feature layer. We
denote the corresponding reconstruction loss by L£r. Together
with the original loss associated with optimizing the source
task utility us(Xs), which we denote by Lg, the loss function
L that we use to train Fg_ is:

L=Ls+alpr 6)

where « is the relative weighting scalar between the loss terms.
With Fe, trained on £ as in (6), the feature layer computes
features that are pertinent to the source task optimization,
while still being comprehensive and informative about the
inputs. Therefore, these features are highly transferable to
different tasks that are relevant to the source task.
Corresponding to our previous discussion on the neural
network computation flow, the computation in the neural
network up to the feature layer can be regarded as the feature
learning stage, while the computation after the feature layer
can be regarded as the optimization stage. We emphasize that
our approach is target-task agnostic, since no knowledge of
the target task is needed throughout the training procedure.

C. Transfer Learning by Sharing Feature Layer

After training the neural network Fg, on the source task S
as described in Section III-B, transfer learning on the target
task 7 is straightforward. We first transfer the subset of the
neural network parameters ©g up to the feature layer to O,
and leave the remaining parameters in ©, unassigned. When
training Fg,, we freeze all the transferred parameters so they
would remain unchanged during training. With the proposed
transfer learning approach, the features computed in the feature
layer of Fg, are already valuable for optimizing 7 before
any target task training. The parameters after the feature layer
in ©; are further trained specifically for 7. We train these
parameters with the regular loss associated with the target task
utility wu:(x:), which we denote by L. With the number of
trainable parameters greatly reduced, along with the features
from the feature layer already being relevant, only a small
amount of data for 7 would already be sufficient for training
a well-performing Fo,.

IV. NUMERICAL SIMULATIONS

A. Wireless Network Settings

We simulate each wireless network containing N = 10
links randomly deployed in a 150mx150m region. We first
generate the locations of transmitters uniformly within the
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Fig. 1. Transfer Learning with Reconstruction Loss.

region, and then generate the locations of the receivers such
that the direct-channel transceiver distances follow a uniform
distribution in the interval of Sm~25m. We impose a minimum
of 5m distance between any transmitter and receiver that would
form a cross-channel. We assume each transmitter has the
maximum transmission power at 30dBm with a direct-channel
antenna gain of 6dB, while the noise level is -150dBm/Hz.
We assume 5MHz bandwidth at the mmWave frequency is
available for transmission with full frequency reuse across the
entire wireless network.
To simulate wireless channels, we assume that the channel
gain of each channel is determined by three components:
e Path-Loss: modeled by the short-range outdoor model
ITU-1411.
o Shadowing: modeled by the log-normal distribution with
8dB standard deviation.
e Fast Fading: modeled by Rayleigh fading with i.i.d
circular Gaussian distribution of unit variance.

B. Neural Network Specifications

We collect N? channel gains for each layout into a N2-
dimensional vector as the input p. We utilize the same neural
network specifications for both Fg_ and Fg,, summarized in
Table I. To train Fg,, we use o = 3 in (6) for the loss £. With
N = 10, the total numbers of trainable parameters for all three
stages (including both weights and biases) are as following:

o Feature Learning Stage: 52900 parameters;

o Optimization Stage: 5070 parameters;

e Reconstruction Stage: 40300 parameters.

TABLE I
NEURAL NETWORK ARCHITECTURE (/N: NUMBER OF LINKS)

Stages Layers Number of Neurons
2
Feature Learning Ist 15N
Stage 2nd 1.5N2
Feature Layer N2
Optimization Ist AN
Stage 2nd 2N
Output Layer N
Reconstruction Ist 2N2
Stage Reconstruct Layer N2

As the optimization stage only has a small number of param-
eters, training on 7 via transfer learning requires little data.

We introduce two neural network based benchmarks, each
with identical network architecture for the feature learning
stage and the optimization stage as in Table I:

o Conventional Transfer Learning: train Fg_ on the source
task on the loss Lg, then transfer all the parameters in
O, up to the feature layer to ©;.

e Regular Learning: train Fg_, and Fg, the same way as
regular training, without knowledge transfer in between.

In the following context, we refer our proposed transfer
learning method by Transfer Learning with Reconstruction.
In terms of existing transfer learning researches on wireless
communications [18]-[20], [18] adopts the conventional trans-
fer learning method. [19] and parts of [20] focus on the setting



TABLE 11
DATA SET SPECIFICATIONS

Task | Training Set Samples | Validation Set Samples
S 5 x 105 5000
T 1000 5000*

* A large validation set is used to ensure accurate early stopping. May not
be available in realistic scenarios when the target task data is limited.

where the inputs p come from different distributions for S
and 7. Other relevant applications in [20] focus on knowledge
transfer among models operating at different parts or locations
within the same environment. For the transfer learning setting
in Section II-A, it is sufficient to study the two above-
mentioned neural network based methods as benchmarks.

To train each neural network, we directly formulate the task-
based losses Ls and L7 as the utilities us(xs) and wug(xy).
This is accomplished by letting the neural network compute
the utility with p after x is computed at the training stage. The
model is then trained via gradient ascent on the utility value.
This loss formulation is shown to be effective in [2]-[4].

C. Data Set Specifications

We first specify the training and validation datasets. For
Fo,, the entire model including all three stages need to be
trained from scratch. Meanwhile for Fg,, only the optimiza-
tion stage needs to be trained. Correspondingly, we utilize the
data set sizes listed in Table II. Each sample of a D2D wireless
network is generated according to Section IV-A. We note that
the data set sizes in Table II are smaller than the number of
trainable neural network parameters, especially for the training
data on 7. We select these small data sets to illustrate that new
target tasks can be adapted on-the-fly with minimal training
overhead, as well as to show that the proposed transfer learning
approach is effective in training and is robust to over-fitting.
We use large validation sets to ensure accurate early-stopping
[29] when training under each approach. However, realistically
we may not have sufficient data for validation on 7. Therefore,
in Section IV-E, we also include numerical results where no
early-stopping is performed during target task training.

For the test data set (on which both utilities are evaluated),
we generate 2000 new samples according to Section IV-A to
obtain performance statistics over all the methods.

D. Evaluation Settings

Besides the two neural network based benchmarks, we also
include the following traditional mathematical optimization al-
gorithms serving as performance upper-bound baselines (with
the cost of having much higher computational complexities):

o Geometric Programming (GP) [30]: mathematical algo-

rithm for solving the min-rate optimization.

e Fractional Programming (FP) [31]: mathematical algo-

rithm for solving the sum-rate optimization.

We train and evaluate each neural network based method
under the transfer learning direction: Sum Rate S — Min
Rate 7, while only evaluating FP on S and GP on 7.
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Fig. 2. Training Curves for Transfer Learning (the top two figures provide
training and validation curves for the source task; the bottom two figures
provide training and validation curves for the target task).

E. Numerical Results and Analysis

We present both S and 7 performances, averaged over all
2000 test wireless networks, in Table III. We first examine
the results with early stopping, which requires additional data
reserved as the validation set. Shown by the numerical results,
the transfer learning-with-reconstruction approach achieves
the best target-task performance among the neural network
based methods, with a 11% improvement over the regular
learning approach, and a 17% improvement over the conven-
tional transfer learning approach. Our approach achieves these
improvements with the trade-off of a 1% reduction on the
sum-rate results as compared to both neural network based
benchmarks. This slight performance loss on S is expected
since our approach utilizes the training loss (6) that does not
exclusively target to optimizing the source-task utility.

To better understand the results, we provide the training
curves on S and 7 for all the methods in Fig. 2. Note that for
our proposed approach, we have plotted two losses on S: the
source task based loss shown by the solid line (Ls in (6)), and
the total loss shown by the dotted line (£ in (6)). As evident
by the validation curves on 7 (in the bottom-right figure),
while both the conventional transfer learning and the regular
learning approaches plateau early in validation loss and then
regress due to over-fitting, our approach enables the model to
learn at a much more sustainable pace from the very limited
training data, without any noticeable over-fitting.

The effects of over-fitting are better shown when no early-
stopping is performed in training each model on 7. Shown by
the results without early stopping in Table III, our approach
maintains its performance (indicating the model does not over-
fit throughout training) and achieves even larger margins on
T, with 13% and 25% improvements over the regular learning
and conventional transfer learning approach respectively.

V. CONCLUSION

Transfer learning has great potential and wide applicability
in general mathematical optimizations such as wireless com-
munication problems. However, as the inputs and computation
in such optimizations often lack structures, it is challenging
to identify within the neural network the transferable features.



TABLE III
TRANSFER LEARNING PERFORMANCES

Task Method Result with Early Stopping (Mbps) | Result without Early Stopping (Mbps)

Regular Learning 155.69

S: Sum-Rate Conventional Transfer Learning 155.67 N/A
Transfer Learning with Reconstruction 153.96
FP 157.45

Regular Learning 5.39 5.32

7T Min-Rate Conventional Transfer Learning 5.13 4.80

Transfer Learning with Reconstruction 6.00 6.00

GP 9.16 N/A

This paper proposes a novel transfer learning approach for [14] S. Tammina, “Transfer learning using VGG-16 with deep convolutional

learning general and transferable features at specified locations
in neural networks. Specifically, we introduce a reconstruction
stage to the neural network starting from a pre-specified hidden
layer, i.e., the feature layer. By enforcing input reconstruction
from the feature layer, the learned features are descriptive of
the inputs, and therefore transferable to target tasks. Simula-
tion results on wireless network utility optimizations suggest
that the proposed approach outperforms the conventional trans-
fer learning and is robust against over-fitting. We hope this
work could open up further exploration on bridging transfer
learning with general mathematical optimizations.
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