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ABSTRACT

This paper proposes a data-driven architecture for zero-delay lossy

source coding with side information (i.e., Wyner-Ziv coding) for

sources with memory. The overall architecture involves design-

ing suitable filters at the encoder and the decoder and performing

fixed-rate scalar quantization followed by one-dimensional bin-

ning of quantization indices. Unlike previous work, which uses

an exhaustive search to optimize the system parameters, this paper

proposes a lower-complexity data-driven method that does not re-

quire a priori knowledge of source and side information statistics.

The main ingredients of the proposed approach include modeling

the quantization process by an additive quantization noise process,

modeling the modulo operation by a continuous approximation, and

approximating the decoding process by a softmin function, which

makes the system amenable to training using stochastic gradient de-

scent. Experimental results on Gauss-Markov sources with different

memory orders demonstrate that our proposed system can match the

performance of systems optimized using an exhaustive search.

1. INTRODUCTION

This paper considers a source coding problem in which a source se-

quence is to be compressed in a lossy fashion at the encoder and

to be reconstructed by a decoder which has access to a side infor-

mation sequence unknown to the encoder. In this setting, known as

Wyner-Ziv coding [1], significant improvement in compression rate

is theoretically possible even though the side-information sequence

is only available at the decoder. In fact, for memoryless Gaussian

source and side information sequences, the rate-distortion function

for Wyner-Ziv coding is same as the case when the side information

is also available at the encoder. To implement Wyner-Ziv coding, Za-

mir et al [2] proposed a structured algebraic binning scheme based

on a pair of nested linear/lattice codes for binary symmetric and

quadratic Gaussian sources and demonstrated that the Wyner-Ziv

rate-distortion function is asymptotically achievable as the dimen-

sions of the lattices go to infinity. High-dimensional lattice codes

are, however, difficult to implement in practice. An alternative ap-

proach is to use low-dimensional lattices to perform quantization,

then to apply lossless source coding with side information over long

blocks of quantization indices [3]. References [4, 5] showed that if

ideal lossless coding is assumed, such methods can also come close

to Wyner-Ziv rate-distortion function for Gaussian sources.

The aforementioned works involve coding over long blocks of

source samples and are not suitable for real-time applications such

as traffic monitoring, hazard detection and intrusion surveillance,
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where decisions need to be made under strict delay constraints. This

present work considers the case of strict zero delay. In such a setting,

the theoretical Wyner-Ziv rate-distortion bound cannot be achieved.

For memoryless sources, a symbol-by-symbol coding scheme that

consists of scalar quantization followed by a one-dimensional bin-

ning is proposed in [4,6] and shown to achieve within approximately

10dB in signal-to-quantization-noise ratio (SQNR) from the ideal

Wyner-Ziv bound. Zero-delay setting when the source has mem-

ory is considered in [6, 7] and extended in [8]. The authors of [9]

propose an architecture involving predictive coding of the input, fol-

lowed by one-dimensional scalar quantization and scalar binning.

These works show significant improvement over ignoring side infor-

mation at the receiver, and are able to approach within approximately

10dB from the Wyner-Ziv bound for source and side information

with memory just as in the memoryless case. However in these prior

works, exhaustive numerical search is required for optimizing over

the suggested architecture, and the numerical experiments are lim-

ited to first-order Gauss-Markov sources.

This paper suggests a data-driven iterative optimization for zero-

delay Wyner-Ziv coding for sources with arbitrary memory. While it

builds upon the architectures in [7, 8], the proposed approach has

lower complexity as it does not require an exhaustive numerical

search. It also does not rely on the knowledge of the statistics of

the source or side-information sequences. The proposed method is

based on stochastic gradient descent (SGD) and involves simultane-

ously updating the filter coefficients and quantization parameters to

minimize the reconstruction error. Towards this end, we replace the

feedback prediction filters in [8] with feedforward filters and replace

the quantization and decoding operators with approximations that

are differentiable and amenable to training. The proposed method

demonstrates performance close to that of exhaustive search in [8].

As related works, data-driven optimization for distributed source

coding has been considered in [10,11]. In these works, the optimiza-

tion of each component of the system (prediction at the encoder,

binning, prediction at the decoder) is performed separately at each

iteration while keeping the other components fixed. In contrast, the

proposed method is based on SGD and involves simultaneously up-

dating all the parameters in each iteration. Further, these papers con-

sider the problem of multi-terminal source coding [12] rather than

source coding with side information as in [8] and the present work.

2. PRACTICAL WYNER-ZIV CODING

We first introduce symbol-by-symbol Wyner-Ziv coding for memo-

ryless sources as in [2] then show how the scheme can be extended

to sources in memory following [6, 8].
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Ŭ [n] Û [n]

V [n]

Y [n]

X̂[n]

ψ(·, ·)Q

Q−1

∑

i aiZ
−i

1
1−

∑
i=1 aiZ−i

∑

i biZ
−i

mod

h1

h2

h3

Fig. 1. Wyner-Ziv Coding with Predictive Filters

2.1. Symbol-by-symbol Wyner-Ziv coding

Assume that the source, side-information pair (X,Y ) ∈ R× R has

a probability density function (pdf) that satisfies pXY (x, y) > 0
everywhere. A fixed-length symbol-by-symbol Wyner-Ziv code of

rate R consists of a function φ : R → {0, 1}R for encoding X ,

and a decoding function ψ : {0, 1}R × R → R for reconstructing

X based on the encoded symbol and the side information Y , and a

target distortion function, which is assumed to be the mean-squared

distortion D = E[(X − ψ(φ(X), Y ))2].
This paper considers a nested scalar quantization approach [5]

to Wyner-Ziv coding on a symbol-by-symbol basis. Let I∆ =
{k∆ : k ∈ Z} denote the set of representation points of a uniform

scalar quantizer where the spacing between the points is ∆. Given

any X ∈ R the quantization function x̃ = Q(x) is given by

Q(x) = arg min
x̃∈I∆

|x− x̃|. (1)

Next, apply a one-dimensional modulo operation to the quantized

output to reduce the output to one of J values. In particular, if

Q(x) = k∆ for some k ∈ Z then the output is given by φ(x) = j∆
where j = k mod J , which is in the set {0, . . . , J − 1}. The

quantization rate is given by R = log2 J .

Given the side information Y = y, and x̆ = φ(x) ∈ {0,∆, . . . ,
(J − 1)∆}, the decoding function is given by [8],

x̂ = ψ(x̆, y) = arg min
x̃∈I∆:φ(x̃)=x̆

|x̃− E[X|Y = y]|. (2)

Intuitively, the modulo operation is used to reduce the encoding rate,

while relying on the decoder to search among the reconstruction

points in I∆ whose bin index is consistent with the received x̆ to

find the one closest to the estimate provided by side information y.

Since we use a uniform scalar quantizer and a uniform modulo

operation, the decoding rule can be expressed as follows:

l⋆ = argmin
l∈Z

|x̆+ lJ∆− E[X|Y = y]| (3)

and x̂ = ψ(x̆, y) = x̆ + l⋆J∆. Intuitively l⋆ denotes index of the

coarse quantizer [13] with quantization intervals of size J∆, and

x̆ provides the offset associated with x that should be used in the

reconstruction.

The above scheme performs symbol-by-symbol coding, which

incurs zero delay. For the case of memoryless Gaussian source

and side information, the best performing symbol-by-symbol codes

achieve a signal-to-quantization-noise ratio (SQNR) of approxi-

mately 10dB from the information theoretic infinite blocklength

Wyner-Ziv limit [4, 8]. The difference in performance can be at-

tributed to the decoding error in (3), which can output incorrect

quantization index l⋆ leading to a large distortion. The advantage

of nested scalar quantization is that it is much easier to implement

than nested lattice quantization, and it already significantly improves

upon the baseline of ignoring the side information.
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Fig. 2. Scalar Wyner-Ziv for Sources with Memory

2.2. Extension to Sources with Memory

Fig. 1 shows a natural architecture that can be used to extend the

scheme in the previous section to handle case when both the source

and side-information sequences can have memory [6, 8]. Follow-

ing the idea of differential pulse coded modulation [9], the input

source X[n] is passed through a causal prediction filter in the feed-

back loop with coefficients a = [a0 = 1, a1, . . . , aM1−1] at the

encoder to generate the sequence U [n], and an identical filter is used

to map the reconstruction Û [n] to the output X̂[n]. The side in-

formation sequence is processed using a causal feedforward predic-

tion filter with coefficients b = [b0 = 1, . . . , bM2−1] to produce

a sequence V [n]. Uniform scalar quantization and uniform one-

dimensional binning is applied to U [n] to generate Ũ [n] and Ŭ [n]
respectively, then the reconstruction function (2) is applied to gener-

ate Û [n] = ψ(Ŭ [n], V [n]) at the decoder.

In general the optimal choice of filter coefficients a and b, as

well as the choice of the quantization interval ∆ can only be found

through an exhaustive search even when the statistics of the source

and side information are known [8]. We note though that the com-

plexity of this exhaustive search scales exponentially with the filter

length, thus limit its applicability only to low-order prediction fil-

ters. For first-order Gauss-Markov source and side-information se-

quences, it is observed in [8] that the best performing scheme also

exhibits approximately a gap of 10dB in SQNR from the ideal infi-

nite blocklength Wyner-Ziv limit, suggesting that 10dB is the cost

of symbol-by-symbol coding. The goal of this paper is to achieve

the same performance as exhaustive search through a data-driven

approach with complexity which does not necessarily scales expo-

nentially with the filter length.

3. DATA-DRIVEN DESIGN FOR WYNER-ZIV CODING

We now introduce the proposed data-driven approach to designing a

zero-delay Wyner-Ziv coding system for source and side information

with memory. Fig. 2 illustrates the system used during the testing

phase, while Fig. 3 illustrates the system used in the training phase

for optimizing the parameters. The followings are the main differ-

ences as compared to the system in Fig. 1. These modifications are

made in order to make the system amenable to training using SGD.

• Prediction and Reconstruction Filters: We use a feedforward,

open-loop prediction filter with coefficients a = [a0, . . . , aL1−1]
for the input source sequence instead of the feedback system in

Fig. 1, as such a system is easier to train. In experiments we

observe that when the length of the filter L1 is much greater than

the length of the feedback filter M1, the performance loss was

negligible. We also do not force the reconstruction filter to be

identical to the source filter, but use a different set of coefficients

c = [c0, . . . , cL3−1] so that X̂[n] =
∑i=L3−1

i=0 ciÛ [n − i]. Fi-

nally we use a feed-forward filter b = [b0, . . . , bL2−1] to process

the side-information sequence.
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Fig. 3. Training Architecture

• Decoding Function: The decoding function ψ(·, ·) as defined

in (2) requires a conditional expectation which is difficult to com-

pute. We simplify (3) by replacing the conditional expectation

with just the value of the associated side information:

l⋆ = argmin
l∈Z

|Ŭ [n] + lJ∆− V [n]| (4)

then compute Û [n] = ψ(Ŭ [n], V [n]) = Ŭ [n] + l⋆J∆. This

is justified because when optimizing over the filter coefficients,

the proposed simplification would automatically force V [n] ≈
E[U [n]|V [n]] in order to minimize the reconstruction error.

• Soft Minimization The minimization (4) in the decoding function

is not differentiable thus not amenable to data-driven training. We

replace it with the following approximation:

l̂⋆ =

⌈K/2⌉
∑

k=−⌈K/2⌉

kσk (5)

where σk = e−βvk
∑

j e
−βvj

, and vk = (Ŭ [n] + kJ∆ − V [n])2. Note

that Û [n] = ψ̂(Ŭ [n], V [n]) = Ŭ [n] + l̂⋆J∆. Here 1
β

is the tem-

perature parameter [14] and the parameter K is selected to limit

the summation range during numerical computation. The intuition

behind the softmin operation in (5) is that l̂⋆ is a weighted sum

of the indices between −⌈K/2⌉ and ⌈K/2⌉, and with sufficiently

large β, we have that σk ≈ 1 for the value of k that minimizes vk
and σk ≈ 0 for all other values of k.

• Quantization The quantization step Ũ [n] = Q(U [n]) is also not

differentiable. To make it amendable to data-driving training, we

model it as an additive test channel: Ũ [n] = U [n] +N [n], where

following [6], N [n] is Gaussian1 with variance σ2
N = ∆2

3
2−2R.

The choice of noise variance matches the quantization error for

uniform quantization [15] as in [16, 17].

• Approximation of Modulo Function: We use the following approx-

imation for the modulo operation [18], for which differentiation

with respect to the modulo size is implemented in the software

library and found to perform reasonably well in the range of nu-

merical values in the experiments:

M(x, α) ≈
α

π
tan−1

(

tan

(

π

(

x

α
−

1

2

)))

. (6)

As shown in Fig. 4, the function M(x, α) takes in any x ∈ R as

input and folds it into the interval [0, α] by performing the contin-

uous version of the modulo operation i.e.,

M(x, α) ≈ {x+ nα, n ∈ Z} ∩ [0, α). (7)

1The uniform noise model is also a suitable choice here.
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Fig. 4. The function M(x, α) in (6) plotted for fixed range α = 1
and varying input, and for fixed input x = 3 and varying range α.

Thus to realize the modulo operation in Section 2.1 that maps

x̃ = k∆ to x̆ = (k mod J)∆, it suffices to select α = J∆.

In practice, when optimizing ∆ or equivalently α under the con-

straint α ≥ 0, we define α = eα̃ and optimize over α̃.

The proposed system performs data-driven optimization of the

prediction filters coefficients and the modulo range for the following

objective function:

L(a,b, c,∆) = E
emp

[

‖X[n]− X̂[n]‖2
]

, (8)

where E
emp[·] denotes the empirical distribution with respect to the

training samples. We optimize over the variables of interest using

SGD [19]. In particular, at each iteration t we select a vector of sam-

ple inputs at random, compute the associated loss Lt(at,bt, ct,∆t)
and update the parameters by computing the gradient with respect

to the loss function. For example, the parameters of the filter with

coefficients a are updated as at+1 ← at − ǫ∇atL
t(at,bt, ct,∆t),

where ǫ denotes the learning rate and ∇a denotes the partial gradi-

ent with respect to the vector a. We note though, that SGD might

converge to a local minimum.

4. EXPERIMENTAL RESULTS

The proposed approach is implemented using the automatic differen-

tiation of PyTorch [20]. We used Adam optimizer [21] with learning

rate of ǫ = 0.01. Throughout these experiments we performed op-

timization with 5-tap filters (L1 = L2 = L3 = 5), with K = 7
(see (5)) and temperature value of β = 20. In general, {Li}

3
i=1, K

and β should be viewed as tunable hyperparameters. The filters are

initialized as a discrete-time delta function and the initial value of ∆
is randomly chosen. To prevent overfitting, we run over epochs built

from 10 different realizations of source and side information, each

serving as input to the optimization sequentially. Finally, the testing

phase is performed on a different pair of source and side information

(which are not part of the training). Rather than plotting the distor-

tion we plot the SQNR (in dB) which is defined as 10 log10(
σ2

D
),

where σ2 denotes the variance of the input samples X[n].

4.1. First Order Gauss-Markov Source and Side Information

Let T [n] be a first-order Gauss-Markov process, T [n] = ρT (n −
1) + W [n] where W [n] is i.i.d. zero-mean Gaussian and σ2

W =
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Fig. 5. Comparison of adaptive optimization and exhaustive search

for first-order Gauss-Markov source and side information with ρ =
0.7, σU = 0.1, σV = 0.1.

1 − ρ2, hence σ2
T = 1. We assume T (1) is zero mean and has

unit variance, so that the process is stationary. The source X[n] and

side information Y [n] are defined as X[n] = T [n] + Nx[n] and

Y [n] = T [n] +Ny[n], where Nx[n] and Ny[n] are i.i.d. zero-mean

Gaussians independent of each other.

Prediction filters of order one are assumed in the benchmark

scheme. The filter coefficients are found via exhaustive search while

assuming −1 < a1, b1 < 1, along with an exhaustive search over

the modulo range as in [8]. Note that exhaustive search for higher-

order filters becomes increasingly difficult, because its complexity is

exponential in the order of the filters. We have verified consistency

with the values reported in [8]. In Fig. 5, we show the results of

exhaustive search and also illustrate the infinite-blocklength infor-

mation theoretic limit by a solid black line.

We note that the output of the data-driven approach is very close

to exhaustive search. Both have about 10dB gap with respect to the

ideal Wyner-Ziv limit which is described in Theorem 1 of [8] for

this particular source and side-information pair. We also plot the

performance of ignoring the side information (thus not performing

binning but rather optimize the tradeoff between granular and over-

load distortion). It can be seen that except at low rates, taking side

information into account provides better performance.

4.2. Higher Order Gauss-Markov Source and Side Information

Next, we consider an M -th order Gauss-Markov source: TM [n] =
∑M

l=1 ρlT (n − l) + W [n], where W [n] is i.i.d. zero-mean Gaus-

sian, and T (1) is zero mean and has unit variance. By varying

M at the source and side information we can have different order

Gauss-Markov processes, i.e.,X[n] = TM1 [n]+Nx[n] and Y [n] =
TM2 [n]+Ny[n], whereNx[n] andNy[n] are i.i.d. zero-mean Gaus-

sians independent of each other and TM1 [n] =
∑M1

l=1 ρx,lT (n−l)+

W [n] and TM2 [n] =
∑M2

l=1 ρy,lT (n− l) +W [n].

In Fig. 6 we consider the case ofM1 = 1,M2 = 2, ρx,1 = 0.51,

ρy,1 = 0.05, ρy,2 = 0.5, σ2
W = 0.74 and σ2

U = σ2
V = 0.01. To

perform exhaustive search, we use a coarse grid for the prediction

filters as in [8] over −1 < a1, b1, b2 < 1,2.5 < ∆ < 6. As can be

seen in Fig. 6, the SGD performs close to exhaustive search despite

having much lower complexity. As reference, we show the distortion

when ignoring side information and with zero prediction filter.

Finally, in Fig. 7 we consider the case where M1 = 3, M2 = 2,
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Fig. 6. Adaptive optimization vs. exhaustive search for first-order

Gauss-Markov source and second-order side information sequence.
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Gauss-Markov source and second-order side information sequence.

ρx,1 = 0.05, ρx,2 = 0.5, ρx,3 = 0.25, ρy,1 = 0.3, ρy,2 = 0.6,

and σ2
W = 0.8485. Further, σ2

U = σ2
V = 0.01. We do not present

outcome of the grid search since its complexity is too high. As ref-

erence, we show the distortion when ignoring side information and

with zero prediction filter. The SGD based approach improves over

all other baseline schemes. Finally, we compare the performance in

Fig. 6 and Fig. 7 with the ideal Wyner-Ziv limit, which we conjecture

is achievable at infinite blocklength by re-deriving Theorem 1 of [8]

for the higher-order Gauss-Markov source and side information, and

confirm the 10dB gap due to the zero-delay scalar quantization.

5. CONCLUSION

This paper advocates a data-driven approach to optimizing the en-

coding and decoding schemes for zero-delay Wyner-Ziv coding for

source and side information with memory. Whereas exhaustive

numerical search is required in prior work, this paper shows that

a lower-complexity data-driven approach which does not require

source and side information statistics is feasible. Towards this end,

we propose modifications in filter design, the quantization process,

and the reconstruction function to make the overall model amenable

to training using SGD. Numerical results demonstrate negligible

loss as compared to the exhaustive search based approach.
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