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Abstract—This paper considers a massive random access
scenario in which a small set of k users out of a large number of
n potential users are active at any given time, and a central base-
station wishes to send a common message to the active users in
order to label them into a finite number of categories. Specifically,
given c possible categories, the base-station wishes to send label
` to a set of k` users, where ` ∈ {1, . . . , c} and

∑c
`=1 k` = k.

Assuming that n, k1, . . . , kc are fixed, we ask: what is the
minimum rate of the common message that the base-station needs
to send so that the correct label is received at each of the k active
users? This paper shows that instead of a conventional scheme
of listing the indices of the users followed by their labels, which
requires a common message rate of k

(
log(n) +H

(
k1
k
, . . . , kc

k

))
bits, it is possible to construct a fixed-length common message
code with a rate of just kH

(
k1
k
, . . . , kc

k

)
bits plus a term that

scales in n as O(log log(n)) for fixed k1, . . . , kc, where H(·) is the
entropy of a probability distribution. If a variable-length code is
permitted, the minimum common message rate is characterized
as kH

(
k1
k
, . . . , kc

k

)
+O(1) bits, with no dependence on n. Finally,

if k1, . . . , kc deviate from the values for which the common
message is designed, an additional cost per user equal to a
Kullback-Leibler divergence term would be incurred.

I. INTRODUCTION

This paper is motivated by the massive machine-type com-
munications (mMTC) scenario in which a massive number of
n devices are connected to a base-station (BS). Due to the
sporadic nature of the traffic, only a small random subset of
k � n users are typically active at any given time [1]. Given
a set of k active users, this paper considers a task in which
the BS needs to send a common message to the k active users
in order to categorize them into c categories. Specifically, the
BS needs to send label ` to k` users where ` ∈ {1, . . . , c}
and

∑c
`=1 k` = k. We ask: what is the minimum rate of the

common message that the BS needs to send so that the correct
label is received at each of the k active users?

A naive scheme of constructing such a common message
is to index each of the n users, then to transmit the indices
of each of the k active users followed by their respective
labels. Assuming that the sizes of the categories k1, . . . , kc
are fixed, since each label ` is transmitted with frequency k`

k ,
the labels can be compressed using H

(
k1

k , . . . ,
kc

k

)
bits per

label, where H(·) is the entropy of a probability distribution.
Further, indexing each one out of the n users costs log(n) bits.
Thus, this naive scheme would require a common message rate
of k

(
log(n) +H

(
k1

k , . . . ,
kc

k

))
bits.

This paper shows that the above naive scheme, which
uses k log(n) bits to explicitly identify each of the k active
users, is far from optimal. The main result of this paper

is that it is possible to construct a fixed-length common
message code to communicate the categorization to the k
active users at a rate of kH

(
k1

k , . . . ,
kc

k

)
bits plus a term

that scales in n as O(log log(n)) for fixed k. If a variable-
length code is permitted, the minimum rate is characterized to
be kH

(
k1

k , . . . ,
kc

k

)
+ O(1) bits. This implies that the labels

can be communicated to the active users using a code with an
average rate of essentially H

(
k1

k , . . . ,
kc

k

)
bits per active user,

without having to broadcast the identities of the active users
explicitly. Surprisingly, this is true regardless of n.

The main reason for the large saving in the optimal rate
of coded categorization as compared to the rate of the naive
scheme stems from the following two key observations. First,
since only k out of n users are active, it is only necessary
to design decoding functions for the k active users, and not
for all n potential users. Second, among the active users, it
is not necessary to reveal every user’s label to everyone else,
because each active user is only interested in learning its own
label. In other words, the information about the other users’
labels is superfluous. Removing this extra information results
in a significant saving in the common message rate.

These ideas have been exploited in the earlier work [2],
where it is shown that the minimum common message rate
required to schedule k active users into k slots in a collision-
free manner is approximately log(e) bits per active user, plus
an Θ(log log(n)) term for the fixed-length code case and an
O(1) term for the variable-length code case. While this paper
shares similarities with [2] in terms of how the rate bounds are
derived, the two problem settings are quite different. In [2],
the common message ensures that each user is scheduled into
a unique slot but does not control which user goes into which
slot, whereas this paper considers a problem of communicating
a specific label to each of the active users.

The results of this paper have potential applications to a
wide class of problems in mMTC, such as that of sending
positive and negative acknowledgements to the users following
activity detection [3]–[6]. In [7], it is shown that by allowing a
bounded probability of error, the rate of user acknowledgement
message can be reduced. While the focus of [7] is on labeling
all users yet allowing some finite false-positive errors, this
paper focuses on labeling a subset of users with zero-error
code. Our aim is to characterize the fundamental limit of the
common message rate in this lossless setting.

The notations used in this paper are as follows. We use
lowercase letters, e.g. `, to denote scalars, and lowercase
boldface letters, e.g., k, to denote vectors. Further, we use
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uppercase boldface letters, e.g., X`, to denote sets of vectors,
uppercase boldface letters with an overbar, e.g., X̄, to denote
ordered tuples of sets, and finally calligraphic letters, e.g.,
D, to denote sets of ordered tuples. We use (·)T to dentoe
transpose of a vector. We use [n] to denote {1, 2, . . . , n} and(
[n]
k

)
to denote the set of all k-element subsets of [n]. We use

log(·) for logarithm in base 2 and ln(·) for natural logarithm.
We use H(·) to denote the entropy of a discrete random
variable or a probability distribution, and D(·||·) to denote
the Kullback-Leibler divergence. We also use the shorthand
ab = a(a− 1) · · · (a− b+ 1).

II. PROBLEM FORMULATION

Consider a massive random access scenario in which a
random subset of k users out of a massive number of n users
become active, and the BS needs to send a common message
to these active users in order to categorize them into c possible
categories. Specifically, let A denote the random set of active
users with |A| = k. The BS knows the identities of active
users in A, but the active users do not know the identities of
each other. A categorization of A is defined to be an ordered
tuple of X`’s, denoted as X̄ , (X1, . . . ,Xc), that partitions
A, i.e.,

c⋃
`=1

X` = A (1)

and for `, `′ ∈ [c] we have

X`

⋂
X`′ = ∅, ∀` 6= `′. (2)

Here, X`, ` ∈ [c], is the subset of users in A who should
receive the category label `. We use k` = |X`| to denote the
size of the category `, and k , [k1 . . . kc]

T to denote the vector
of category sizes.

We assume that the values of n, k1, . . . , kc are fixed, but
the set of active users and the categorization are random. We
aim to design a code to communicate the categorization to
the active users for arbitrary realization of A and X̄. The key
observations here are that only the active users are categorized
and further each user is only interested in learning its own
category label and not necessarily the labels of other users.

To this end, the BS encodes the categorization into a com-
mon broadcast message, which is transmitted over a noiseless
downlink channel and decoded by the active users. Mathemat-
ically, define D(n,k) as the set of all possible categorizations
of all possible active user sets A of size k, where the category
sizes are given by k = [k1 . . . kc]

T, with
∑c

`=1 k` = k, i.e.,

D(n,k) =
{
X̄
∣∣ X` ∩X`′ = ∅,∀` 6= `′ ∈ [c], |X`| = k`

}
.
(3)

The problem of communicating a categorization to the active
users can be formulated as that of designing an encoding
function that maps a categorization to a common message
taking value in an index set [T ], i.e.,

f : D(n,k) → [T ], (4)

and a set of decoding functions, one for each active user, that
map the message into the appropriate category labels, i.e.,

gu : [T ]→ [c], ∀u ∈ A, (5)

so that the correct labels are recovered at their respective users,
i.e., ∀X̄ ∈ D(n,k) and ∀` ∈ [c], i.e.,

gu(f(X̄)) = `, ∀u ∈ X`. (6)

The goal of this paper is to characterize the minimum rate of
such a common message.

We consider both fixed-length and variable-length codes.
For the fixed-length case, let T ∗(n,k) be the minimum T
such that an encoding function (4) and a set of corresponding
decoding functions (5) that satisfy the successful label recov-
ery condition (6) can be found for all possible realizations of
A and X̄, assuming fixed values of n and k. The minimum
rate of the fixed-length code is defined to be

R∗f (n,k) , log(T ∗(n,k)). (7)

For the variable-length case, we take A to be uniformly
distributed over all possible sets of k active users out of n
potential users, and further take X̄ to be uniformly distributed
over all possible categorizations D(n,k) for fixed k. (These
turn out to be the worst-case distributions.) We define f∗ to
be an encoder that minimizes H(f(X̄)) under the constraint
that there exist decoders g∗i that together with f∗ satisfy the
successful label recovery condition (6). The minimum rate of
the variable-length code is given by

R∗v (n,k) , H(f∗(X̄)). (8)

The rational here is that the encoder output f∗(X̄) is now a
random variable over the set [T ]. Hence, using entropy coding,
one can achieve a rate of H(f∗(X̄)). Note that for the variable-
rate code, it is advantageous to set T to be large. In this
case, the choice of the encoder output to ensure successful
label recovery is not necessarily unique, and the encoder may
judiciously choose among these choices in order to minimize
the output entropy.

III. CATEGORIZATION CODE

In this section, we introduce a codebook-based encoding
and decoding scheme for communicating a categorization to
a subset of k out of n users. The codebook is constructed a
priori and known to the BS and all the users.

Definition 1: A categorization codebook M̄ is defined as an
ordered tuple of vectors:

M̄ = (m(1),m(2), . . . ,m(T )), (9)

where each codeword m(t) is a length-n vector whose ele-
ments take on values in [c], i.e., m(t) ∈ [c]n,∀t ∈ [T ].

The idea is that each vector m(t) = [m
(t)
1 . . .m

(t)
n ]T

represents some fixed labeling of all n users, where the label of
user u ∈ [n] is given by m(t)

u . Given a particular set of active
users and the associated categorization that the BS wishes to
communicate, the BS can simply look for t, such that the
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categorization is described by m(t), then send the index t.
Each of the active users u can then recover its label by looking
up the value of m(t)

u .
Note that because in our particular problem setting only k

out of n users are active, the same vector m(t) can represent
multiple categorizations, depending on the realizations of the
set of active users. We capture this concept in the following.

Definition 2: Given a fixed m ∈ [c]n, we define C(m) to
be the set of all categorizations represented by m, i.e.,

C(m) = {X̄ | mu = `,∀u ∈ X`,∀` ∈ [c], X̄ ∈ D(n,k)},
(10)

where m = [m1 . . .mn]T and X̄ = (X1, . . . ,Xc).
The encoding and decoding process based on the codebook

M̄ can now be described mathematically as follows. To
communicate a categorization X̄, the encoder finds a vector
m(t) in M̄ which is consistent with the categorization, i.e.,

f(X̄) = t s.t. X̄ ∈ C(m(t)). (11)

The BS then transmits the index t as the common message.
Upon receiving the common message, each of the active users
u recovers its label ` as the u-th entry of the vector m(t), i.e.,

gu(t) = m(t)
u . (12)

For this encoding and decoding scheme to work with zero
error, all possible categorizations in D(n,k) must be covered
by at least one m(t) in M̄. Thus, a valid codebook M̄ must
satisfy

T⋃
t=1

C(m(t)) = D(n,k). (13)

Note that this codebook-based construction is completely
general in the sense that any valid encoding and decoding
scheme can be described this way. Thus, it is without loss of
generality to restrict attention to this construction.

For fixed-length coding, the problem of finding the mini-
mum rate common message now becomes that of finding the
minimal T such that there exists an M̄ that satisfies (13).

For variable-length coding, we need to find an M̄ that
satisfies (13) as well as to define an encoding function that
minimizes H(f(X̄)). Note that the output f(X̄) is not neces-
sarily unique, so a judicious choice of the output may reduce
the output entropy.

IV. ACHIEVABLE RATE

We now derive achievability bounds on the rate required to
communicate a categorization to a subset of k out of n users
using either fixed-length or variable-length codes.

A. Random Code Construction

The achievability results are derived based on a random
codebook construction. In particular, we fix a distribution
q = [q1, . . . , qc]

T (i.e., q` ≥ 0 and
∑
q` = 1) over

the category labels, then construct the T codewords in the
codebook independently in the following fashion. For each
codeword m(t), the codeword elements m

(t)
1 , . . . ,m

(t)
n are

independently and identically generated according to q, i.e.,
they take on values ` ∈ [c] with probability q`. We denote
such a codebook as M̄q = (m(1), . . . ,m(T )).

For a codeword m(t) generated randomly according to q,
the probability that it is consistent with an arbitrary catego-
rization X̄ = (X1, . . . ,Xc) of some arbitrary fixed set of
active users A =

⋃
X` can be computed as follows. Since

the probability that m(t) assigns the correct labels to each
active user is q`, we have

Pr
(
X̄ ∈ C(m(t))

)
=

c∏
`=1

qk`

` , p. (14)

This value p is a crucial quantity and is useful in the proofs
of both the fixed-length and variable-length cases.

B. Fixed-Length Code

We now establish an achievable rate to communicate a
categorization to a subset of k out of n users using a fixed-
length code. The aim is to show that when T exceeds a
threshold, there must exist at least one codebook that covers
all categorizations in D(n,k).

The idea is to fix the generating distribution q and to con-
struct a bound on the probability that the covering condition
(13) holds for a random codebook M̄q. As long as the above
probability is nonzero for a given value of T , it follows that
there must exist one codebook with rate Rf = log T that covers
all categorizations. This rate Rf can be further minimized by
optimizing over the generating distribution. The main result
of this section is formally stated as follows.

Theorem 1: Fix the total number of users n, the number of
active users k, and the category sizes k = [k1 . . . kc]

T, with
k =

∑c
`=1 k`. The minimum rate R∗f of a fixed-length code for

communicating a categorization of k out of n users is bounded
above as

R∗f (n,k) ≤ kH
(
k1
k
, . . . ,

kc
k

)
+ log(k)

+ log

(
ln
(n
k

)
+ ln(2)H

(
k1
k
, . . . ,

kc
k

)
+ 1

)
. (15)

For fixed k, the above expression scales as O(log log(n)).
Proof: Consider a random codebook M̄q consisting of

T codewords generated independently according to q. Let X̄
be an arbitrary categorization. The probability that X̄ is not
covered by any codeword in the M̄q can be seen as

Pr

(
X̄ /∈

T⋃
t=1

C(m(t))

)
= (1− p)T , (16)

where p is defined as in (14).
Now, consider all possible categorizations in D(n,k). The

probability that the codebook fails to cover every categoriza-
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tion in D(n,k), i.e., it fails to satisfy the condition (13), can
be upper bounded using the union bound:

Pr

(
D(n,k) 6=

T⋃
t=1

C(m(t))

)

≤
∑

X̄∈D(n,k)

Pr

(
X̄ /∈

T⋃
t=1

C(m(t))

)
,

= |D(n,k)|(1− p)T ,
< |D(n,k)|e−pT , (17)

where the inequality (1−x) < e−x,∀x > 0, is used in the last
step. Now, the cardinality of D(n,k) can be computed by first
choosing k out of n active users then subsequently partitioning
the active set into subsets of sizes k1, . . . , kc, i.e.,

|D(n,k)| =
(
n

k

)(
k

k1 · · · kc

)
. (18)

Based on (17), if we let(
n

k

)(
k

k1 · · · kc

)
e−pT ≤ ε, (19)

for 0 ≤ ε < 1, then Pr
(
D(n,k) 6=

⋃T
t=1 C(m(t))

)
< ε, and

the covering condition (13) holds for M̄q with a non-vanishing
probability of at least 1 − ε. Accordingly, this implies the
existence of a codebook of size T that covers all possible
categorizations in D(n,k), as long as

T ≥ 1

p
ln

(
1

ε

(
n

k

)(
k

k1 · · · kc

))
. (20)

By taking logarithm on both sides, it follows that the rate

R ≥ − log (p) + log

(
ln

(
1

ε

(
n

k

)(
k

k1 · · · kc

)))
(21)

is achievable for any values of ε < 1 and q.
We can now minimize the right-hand side of (21) by letting

ε→ 1 and setting q = q∗ that minimizes − log p. Such a q∗

can be found by solving the optimization problem

minimize
q

− log
c∏

`=1

qk`

` (22)

subject to
c∑

`=1

q` = 1, (23)

q` ≥ 0, ∀` ∈ [c].

To solve (22), we express the objective as

− log

c∏
`=1

qk`

` =

c∑
`=1

−k` log q` = kH(p) + kD(p||q), (24)

where p =
[
k1

k . . . kc

k

]T
. Since D(p||q) ≥ 0, with equality

if and only if q = p, the optimum q∗ =
[
k1

k . . . kc

k

]T
,

and the minimum value of the objective is kH
(
k1

k , . . . ,
kc

k

)
.

Substituting this into (21), we conclude that any rate

R > kH

(
k1
k
, . . . ,

kc
k

)
+ log

(
ln

((
n

k

)(
k

k1 · · · kc

)))

is achievable. This implies that the minimum rate R∗f must be
less than the right-hand side of the above. Finally, using the
inequalities

(
n
k

)
<
(
en
k

)k
and

(
k

k1···kc

)
≤ 2kH( k1

k ,..., kc
k ), we

arrive at the desired result.

C. Variable-Length Code
We derive an achievable rate for the variable-length case

using a different strategy as compared to the fixed-length
case. Instead of finding the smallest T such that the codebook
covers every categorization, we let the codebook size be
arbitrarily large, i.e., T → ∞. Denote such a codebook as
M̄∞

q =
(
m(1),m(2), . . .

)
. In this case, a given realization

of the set of active users and a given categorization would
be covered by infinitely many codewords in the codebook.
To minimize the entropy of the encoder output, we design
the encoding function to be one that searches through the
codewords in the codebook sequentially and outputs the index
of the first codeword that covers the given categorization, i.e.,

fg(X̄) = min t s.t. X̄ ∈ C(m(t)). (25)

This greedy encoder is used in [2] to derive the achievability
bounds on the variable-length code rate of a common feedback
message for user scheduling. We use the same encoder herein
due to its ability to produce highly skewed distributions (i.e.,
toward the first few codewords), which reduces the output
entropy. Our main result for the variable-length case is:

Theorem 2: Fix the total number of users n, the number
of active users k, and the category sizes k = [k1 . . . kc]

T,
with k =

∑c
`=1 k`. The minimum rate R∗v of a variable-length

code for communicating a categorization of k out of n users
is bounded above as

R∗v (n,k) < kH

(
k1
k
, . . . ,

kc
k

)
+ log(e). (26)

Proof: Let the set of active users and their categorization
be uniform under fixed n, k1, . . . , kc, (which is the worst case
distribution). Fix a distribution q and construct an infinite-
size codebook M̄∞

q =
(
m(1),m(2), . . .

)
. We use the greedy

encoder in (25) and let fg(X̄) be a random variable denoting
the output of such encoder. It can be seen that the encoder
operation is equivalent to performing successive independent
trials, with fg(X̄) = t if and only if the first t − 1 trials are
unsuccessful and the t-th trial is successful, where the success
probability is p as given in (14).

Since the codewords in M̄∞
q are constructed independently,

it follows that the encoder output is a geometrically distributed
random variable with a success probability p, whose entropy
is given by

H (fg(X)) = − log (p)− 1− p
p

log (1− p) ,

< − log (p) + log (e), (27)

where the inequality − 1−p
p log (1− p) < log(e), for 0 ≤

p ≤ 1 is used in the last step. Note that (27) holds for any
distribution q, including q∗ =

[
k1

k , . . .
kc

k

]T
that minimizes

− log (p) as in (22). Substituting q = q∗ in − log (p) yields
the desired result.
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V. CONVERSE

We now present a converse which shows that the minimum
rate required to communicate a categorization to a subset of
k out of n users must have at least a linear scaling in k with
a scaling factor equal to the entropy of the categorization for
both the fixed-length and variable-length cases. This result is
based on the volume bound, which is used in [2] to prove
a converse for the scheduling problem. The main idea is to
characterize the maximum number of categorizations that can
be covered by a codeword and to use this to lower bound the
minimum number of codewords needed to satisfy the covering
condition (13).

Theorem 3: Fix the total number of users n, the number of
active users k, and the category sizes k = [k1 . . . kc]

T, with
k =

∑c
`=1 k`. The minimum rate R∗f of a fixed-length code for

communicating a categorization of k out of n users is bounded
below as

R∗f (n,k) ≥ kH
(
k1
k
, . . . ,

kc
k

)
− log

(
nk

nk

)
. (28)

The same bound also applies to the variable-length code, i.e.,
R∗v (n,k).

Proof: To construct a volume bound, we need to char-
acterize the maximum number of categorizations that can be
covered by a single codeword m ∈ [c]n. We let dmax denote
this maximum number. We also let a = [a1, . . . , ac]

T, where
a` denotes the number of entries in m that are equal to ` and∑c

`=1 a` = n. We can explicitly compute dmax as follows

dmax = max
a

c∏
`=1

(
a`
k`

)
≤ max

a

c∏
`=1

ak`

`

k`!
. (29)

Next, we find the optimal a∗ that maximizes the upper
bound on dmax. Note that the optimization of the above upper
bound has the same form as (22), so the optimal a∗` = nk`

k .
Thus, dmax can be upper bounded as follows

dmax ≤
c∏

`=1

(
nk`

k

)k`

k`!
. (30)

To complete the volume bound, we divide |D(n,k)| by
dmax to obtain a lower bound on the minimum number of
codewords needed to satisfy the condition that the codebook
covers |D(n,k)|, i.e., (13),

T ∗(n,k) ≥
(
n

k

)(
k

k1 · · · kc

)
1

dmax
. (31)

Taking the logarithm and applying (30), after some algebra,
we derive a lower bound on R∗f (n,k) as

R∗f (n,k) ≥ kH
(
k1
k
, . . . ,

kc
k

)
− log

(
nk

nk

)
. (32)

For the variable-length case, consider the optimal encoder
f∗. Let r∗ = [r∗1 , . . . , r

∗
∞]

T denote the distribution of the
output of encoder f∗ given that the input categorizations are
distributed uniformly over D(n,k) (which can be shown to
maximize the lower bound of the encoder output entropy),

i.e., r∗t denotes the probability that the encoder f∗ outputs
t. Since each codeword can only cover up to dmax different
categorizations, we have

r∗t ≤
dmax(

n
k

)(
k

k1···kc

) . (33)

This gives a lower bound on the entropy of the output of
encoder f∗ as follows:

H(r∗) = −
∑
t

r∗t log(r∗t ) ≥ −
∑
t

r∗t log

(
dmax(

n
k

)(
k

k1···kc

))

= log

((
n

k

)(
k

k1 · · · kc

)
1

dmax

)
. (34)

The term inside the logarithm on the right-hand side of (34) is
identical to the right-hand side of (31). Therefore the converse
for R∗f (n,k) also holds for R∗v (n,k).

Comparing the upper bounds (15) and (26) with the lower
bound (28), we see that the minimum rate for communicating
a categorization is essentially H

(
k1

k , . . . ,
kc

k

)
bits per active

user. The scaling coefficients in the leading terms in the upper
and lower bounds match exactly. Note that for the lower
bound, in the regime of n→∞ with fixed k, log

(
nk

nk

)
→ 0.

VI. CONCLUDING REMARKS

In a conventional multiuser system, categorizing k users into
c categories with k1, . . . , kc users in each category requires the
transmission of k labels. We can compress the labels according
to their frequencies of occurrences, resulting in an overall
rate of kH

(
k1

k , . . . ,
kc

k

)
bits. We refer to this quantity as the

categorization entropy.
The main result of this paper is that in a massive random

access scenario, where a random subset of k active users
among a massive number of n potential users are to be
categorized, a BS can communicate the categorization to the
active users using a code of essentially the same rate, plus
an overhead of O(log log(n)) bits for the fixed-length code
case and log(e) bits for the variable-length code case. In
other words, an arbitrary categorization of the active users
can be communicated without having to explicitly broadcast
the identities of the active users, which would have incurred
a cost of k log(n) bits. This result can be thought of as a
counterpart to coded scheduling result in [2], which shows
that scheduling k out of n users into k distinct slots requires
essentially only k log(e) bits, also without the k log(n) cost.

As a final remark, the development of this paper assumes
that the sizes of the categorization k1, . . . , kc are known and
the codebook is generated to match this distribution. What
if the codebook is designed according to q, while the true
category sizes are p? An examination of the proofs reveals
that it would incur an extra kD(p||q) cost, as evident in
(24). Interestingly, this is exactly the same extra cost as in
the classical data compression theory when the true source
distribution is p, while the compression codebook is designed
according to a different distribution q.
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