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Abstract—In this paper, we study the rate-distortion-
perception tradeoff generalizing the classical rate-distortion the-
ory by adding a perception constraint to generate visually pleas-
ing reconstructions. The perception metric measures the diver-
gence between the distributions of the input and the reconstruc-
tion when both distributions are conditioned on the encoder’s
output. This metric, originally introduced by Mentzer et al. for
the video compression setting, is called as conditional perception
measure. We characterize the rate-distortion-perception tradeoff
for a general source. In the Gaussian setting, we show that jointly
Gaussian reconstructions are indeed optimal. Interestingly, to
achieve a perceptually perfect reconstruction, comparing to the
minimum mean square error (MMSE) reconstruction, we only
need extra 0.5 bits/sample for the compression rate.

I. INTRODUCTION

The classical rate-distortion theory [1] aims at optimizing

the compression rate of a system subject to a distortion con-

straint on the reconstruction. However, through experiments,

it has been observed that satisfying a low distortion does

not necessarily lead to visually pleasing reconstructions. To

address this problem, a perception metric has been introduced

that generalizes the classical structure to a new paradigm

called as rate-distortion-perception framework [2]. Unlike

distortion, the perception metric does not involve a reference.

The perceptual quality of reconstructions has been consid-

ered in image and video compression settings in several previ-

ous works [3]–[8]. It has been observed that satisfying a high

perceptual quality comes at the cost of increased distortion. For

example, in the image compression setting, the reconstruction

corresponding to the optimal solution of the classical rate-

distortion theory (without perception constraint) may represent

a blurry image where the edges are not sharp. This is because

the distortion measure is typically the mean square error

(MSE), but a minimum MSE (MMSE) reconstruction does not

directly maximize the perception quality. In a previous work

[9], it has been shown that for a given encoder, by slightly

increasing the distortion (by no more than a factor of two), a

reconstruction with sharper edges can be obtained by adding

a perception criterion.

The perception measure considered in [2] and [9] is defined

to be the divergence between the marginal distributions of

the input and reconstruction. Recently, a different perception

measure has been considered for the video compression set-

ting [10], [11]. This measure corresponds to the divergence

between the conditional distributions of the input and recon-

struction conditioned on the output of the encoder. Through

experiments, the conditional perception measure has been

shown to correspond to a significant improvement in terms

of achieving a higher perceptual quality.

In this work, we study the conditional perception measure of

[10] from a theoretical perspective. In the image compression

setting, if the output of the encoder is the MMSE represen-

tation, the conditional perception measure has an interesting

interpretation. That is, conditioning on the MMSE representa-

tion helps the decoder improve a possibly blurry reconstruction

by adjusting the fine details of the output image to match the

conditional distributions. This would enhance the perceptual

quality of the reconstructed images, because conditioning on

the MMSE representation constrains the decoder not to deviate

too much from the general content (even blurry) of the image.

For a general source, this paper characterizes the rate-

distortion-perception (RDP) tradeoff for the conditional per-

ception measure. We further evaluate the RDP characterization

for a Gaussian source and show that the jointly Gaussian distri-

bution is indeed optimal for reconstruction. Interestingly, the

optimal operation that transforms the MMSE reconstruction

to another one that satisfies the perfect perceptual constraint

is to introduce an artificial noise. This is different from the

optimal transform of [9] for the marginal-based perception

measure where it is shown that scaling converts the MMSE

reconstruction to the one with perfect perceptual quality.

For the case of perfect perceptual quality, the RD tradeoff

has an interesting interpretation. It shows that in order to

achieve a reconstruction with a perfect perceptual quality,

as compared to the MMSE reconstruction, we only need an

extra 0.5 bits/sample in the compression rate. For the fixed

encoder setting, we show that similar to [9], the distortion of

perceptually perfect reconstructions is at most two times the

minimum distortion for the conditional perception measure.

Remarks: We follow the notation of [12]. For the distortion

measure, we use the MSE loss and for the perception metric,

we use the Wasserstein-2 distance where for two given prob-

ability distributions PX and PY over (resp.) X and Y , it is

defined as follows

W 2
2 (PX , PY ) := inf ❊[∥X − Y ∥2], (1)



where the infimum is taken over all joint probability distribu-

tions with the marginals PX and PY .

II. SYSTEM MODEL

Assume that we have a sequence of source observations

denoted by Xn which are independently and identically dis-

tributed (i.i.d.) according to a given distribution PX . It is

compressed into a message M ∈ M by an encoding function

defined as follows

f : Xn → M, (2)

where M = f(Xn). The decoder then generates a reconstruc-

tion X̂n using a possibly stochastic function g given as follows

g : M → X̂n, (3)

where X̂n = g(M). Define the following distribution based

on the encoding and decoding functions

P
MXnX̂n(m,xn, x̂n) :=

PXn(xn)✶{m = f(xn)}✶{x̂n = g(m)},
m ∈ M, xn ∈ Xn, x̂n ∈ X̂n. (4)

and let ℓ(M) denote the length of the message M .

Definition 1: For a given (D,P ) pair, a rate R is said to

be achievable if there exist encoding and decoding functions

such that

1

n
❊[ℓ(M)] ≤ R, (5)

1

n

n
∑

i=1

❊[(Xi − X̂i)
2] ≤ D, (6)

max
m

W 2
2 (PX̂n|M=m

, PXn|M=m) ≤ P. (7)

Notice that the perception constraint in (7) conditions on the

encoder’s output. For the case of P = 0, this constraint

simplifies to the following

P
X̂i|M

= PXi|M , i = 1, . . . , n, (8)

which is the conditional perception measure studied in [10],

[11].

The function R(D,P ) denotes the infimum of all achievable

rates R and is called the Rate-Distortion-Perception (RDP)

function for conditional perception measure.

III. MAIN RESULTS

A. Asymptotic Setting

In this section, we first establish the RDP function for a

general source. Then, we specialize the setting to a Gaussian

source and show that the jointly Gaussian reconstruction is

indeed optimal. For the output to satisfy the perfect perceptual

quality (P = 0), we discuss that we only need an extra 0.5

bits/sample in compression rate R, as compared to the MMSE

reconstruction.

The following theorem provides the RDP function for a

general source.

Theorem 1: Consider a discrete memoryless source X ∈ X
distributed according to PX . For a given (D,P ) pair, the RDP

function is given by the following

R(D,P ) = min
PU|X

I(U ;X),

s.t. : ∃X̂ : X → U → X̂,

max
u

W 2
2 (PX̂|U=u

, PX|U=u) ≤ P,

❊[(X − X̂)2] ≤ D. (9)

Proof: See Section IV-A.

Now, assume that the source is Gaussian, i.e., X ∼
N (0, σ2) for some positive σ2. The RDP function of the

Gaussian source for the conditional perception measure is

given in the following theorem.

Theorem 2: Suppose that X is a Gaussian source with zero-

mean and variance σ2. We have

R(D,P ) =

{

1
2 log

2σ2

D+
√

P (2D−P )
P ≤ D,

max{0, 1
2 log

σ2

D
} D > P.

(10)

Proof: See Section IV-B.

In the following, we discuss the RDP function of The-

orem 2. For achieving a perfect perceptual quality where

P = 0, Theorem 2 suggests that the required compression

rate, denoted by R0(D), is given by the following

R0(D) := R(D, 0) =
1

2
log

2σ2

D
. (11)

Moreover, when P is large enough, i.e., P = D, the perception

constraint is not active and Theorem 2 reduces to the classical

rate-distortion tradeoff [1] where the MMSE reconstruction

is optimal and the rate, denoted by R∞(D), is given by the

following

R∞(D) := R(D,D) =
1

2
log

σ2

D
. (12)

Notice that

R0(D)−R∞(D) = 0.5, (13)

which implies that for achieving a perfect perceptual quality,

we just need 0.5 extra bits/sample comparing to the rate of

MMSE solution.

Furthermore, for a given rate R, if we denote the MMSE

reconstruction by X̂MMSE, we can write [1],

X = X̂MMSE + ZMMSE, (14)

where ZMMSE ∼ N (0, σ22−2R) is independent of X̂MMSE and

the minimum distortion is given by

Dmin := σ22−2R. (15)

On the other side, it will be shown in the proof of achievability

at Section IV-A that the reconstruction which satisfies the

perfect perceptual quality, denoted by X̂0, can be written as

follows

X̂0 = X̂MMSE + Z0, (16)
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Fig. 1. Distortion-Perception (DP) Tradeoff for a fixed rate R = 0.05

bits/sample.

where Z0 ∼ N (0, σ22−2R) is independent of X̂MMSE and the

corresponding distortion is given by

Dmax,cond := 2σ22−2R. (17)

From (16), we observe that X̂0 can be obtained from X̂MMSE

by simply adding a Gaussian noise of variance σ22−2R. This

transform is different from the one (scaling) proposed in [9]

for the marginal-based perception metric as will be discussed

in the following.

Next, we compare the RDP function of Theorem 2 with that

of [9] where the perception constraint of (7) is replaced by the

following

W 2
2 (PX̂n , PXn) ≤ P, (18)

which measures the distance between the marginal distribu-

tions of P
X̂n and PXn . Theorem 1 in [9] states that the

RDP function corresponding to the perception measure in (18),

denoted by Rmar(D,P ), is given by the following

Rmar(D,P ) =



























1
2 log

σ2

σ2−

(

σ2+(σ−
√

P )2−D

2(σ−
√

P )

)2 ;

√
P ≤ σ −

√

|σ2 −D|,
max{0, 1

2 log
σ2

D
};√
P > σ −

√

|σ2 −D|.
(19)

For a fixed compression rate R = 0.05, the tradeoff between

distortion and perception is shown in Fig. 1. The dashed

curve represents the DP-tradeoff for the conditional perception

measure while the other curve shows the tradeoff of the

marginal-based perception measure which is characterized in

[9] and given in (19). For large enough P , both curves yield

the same distortion Dmin which corresponds to the MMSE

reconstruction. Further, we can show that

Dmax,mar ≤ Dmax,cond ≤ 2Dmax,mar, (20)

which means that Dmax,cond is slightly larger than Dmax,mar.

However, the conditional perception measure is a more re-

stricted constraint comparing to the marginal-based perception

metric. So, the former is more capable of correcting errors in

the reconstruction which yields a higher perceptual quality.

Notice that the setting which was discussed in this section

is asymptotic where n symbols are encoded and the analysis

is studied as n → ∞. In the following section, we discuss the

one-shot setting where one symbol is encoded at a time.

B. One-Shot Setting

The one-shot setup is introduced in the following definition.

We assume that a shared key K ∈ K is available between the

encoder and decoder.

Definition 2: Consider the following encoding and decoding

functions

f 1-shot : X ×K → M, (21)

g1-shot : M×K → X̂ , (22)

where the message M ∈ M is encoded to X by the function

X = f 1-shot(M,K) and is decoded to X̂ by the function X̂ =
g1-shot(M,K). For a given (D,P ) pair, we say that rate R is

achievable if there exist encoding and decoding functions such

that

❊[ℓ(M)] ≤ R, (23)

❊[(X − X̂)2] ≤ D, (24)

max
m

W 2
2 (PX̂|M=m

, PX|M=m) ≤ P. (25)

The infimum of all achievable rates is denoted by

R1-shot(D,P ) and is called as the One-Shot RDP Function.

Using the strong functional representation lemma [13], we

can show that

R(D,P ) ≤ R1-shot(D,P ) ≤ R(D,P )+

log(R(D,P ) + 1) + 5.

(26)

In the following, we fix the encoder and let the decoder

adapt to different points on the DP-tradeoff curve. Further-

more, we consider the perfect perceptual quality where P = 0.

To that end, we introduce the universal representation in the

following.

Definition 3: Let Ur be a representation of X generated by

a random transform PUr|X . The distortion set ΦD0(PUr|X)
denotes the set of all distortions D such that there exists

P
X̂|UrX

where X → Ur → X̂ forms a Markov chain and

❊[∥X − X̂∥2] ≤ D, (27)

PUrX = P
UrX̂

. (28)

Let the MMSE reconstruction be as follows

X̃ := ❊[X|Ur]. (29)

The following theorem states that the distortion of reconstruc-

tion with perfect perceptual quality is two times the minimum

distortion.

Theorem 3: The set ΦD0(PUr|X) is characterized as follows

ΦD0(PUr|X) = {D : D ≥ 2❊[∥X − X̃∥2]}. (30)

Proof: See Section IV-C.

The above result shows that Dmax,cond shown in Fig. 1 is

2Dmin.



IV. PROOFS

A. Proof of Theorem 1

Achievability: Fix a conditional distribution PU |X that at-

tains (9). Thus, according to constraints of optimization (9),

there exists a conditional distribution P
X̂|XU

such that X →
U → X̂ and

max
u

W 2
2 (PX̂|U=u

, PX|U=u) ≤ P, (31)

❊[(X − X̂)2] ≤ D. (32)

Codebook Generation: Generate 2nR codewords

un(m),m ∈ [1 : 2nR] where each sample is drawn

i.i.d. according to distribution PU .

Encoding: The encoder finds a codeword un(m) jointly

typical with xn and sends the index m to the decoder.

Decoding: Upon reception of the message m, the decoder

first finds the codeword un(m). It then generates x̂n such

that each sample is drawn i.i.d. according to the conditional

distribution P
X̂|U .

Analysis: From the covering lemma [1], the encoding is

successful if

R ≥ I(X;U). (33)

The analyses of distortion and perception constraints easily

follow from (57) and (56) and the fact that the codeword

un(m) and sequence x̂n are generated in an i.i.d. manner.

Converse: First, we state the following lemma which will

be used later in the proof.

Lemma 1: For given distributions PX1X2
and PY1Y2

over

(resp) X1 ×X2 and Y1 × Y2, we have

W 2
2 (PX1X2

, PY1Y2
) ≥ W 2

2 (PX1
, PY1

) +W 2
2 (PX2

, PY2
).

(34)

Proof: Consider the following set of inequalities:

W 2
2 (PX1X2

, PY1Y2
)

= inf
P̃X1X2Y1Y2

:

P̃X1X2
=PX1X2

P̃Y1Y2
=PY1Y2

❊[∥X1 − Y1∥2] +❊[∥X2 − Y2∥2] (35)

≥ inf
P̃X1X2Y1Y2

:

P̃X1X2
=PX1X2

P̃Y1Y2
=PY1Y2

❊[∥X1 − Y1∥2] + inf
P̃X1X2Y1Y2

:

P̃X1X2
=PX1X2

P̃Y1Y2
=PY1Y2

❊[∥X2 − Y2∥2](36)

= inf
P̃X1Y1

:

P̃X1
=PX1

P̃Y1
=PY1

❊[∥X1 − Y1∥2] + inf
P̃X2Y2

:

P̃X2
=PX2

P̃Y2
=PY2

❊[∥X2 − Y2∥2]

(37)

= W 2
2 (PX1

, PY1
) +W 2

2 (PX2
, PY2

), (38)

where (36) follows because the infimum of sums is larger than

(or equal to) the sum of infimums.

Now, we continue with the proof of the converse. Define

Ui := M. (39)

Consider the rate constraint as follows

nR ≥ E[ℓ(M)] ≥ H(M) (40)

≥ I(M ;Xn) (41)

=
n
∑

i=1

I(M ;Xi|Xi−1) (42)

=
n
∑

i=1

I(M,Xi−1;Xi) (43)

≥
n
∑

i=1

I(M ;Xi) (44)

=
n
∑

i=1

I(Ui;Xi), (45)

where (43) follows because the source is memoryless. Next,

consider the perception constraint for each m ∈ M as the

following

nP ≥ W 2
2 (PX̂n|M=m

, PXn|M=m)

≥
n
∑

i=1

W 2
2 (PX̂i|M=m

, PXi|M=m) (46)

=

n
∑

i=1

W 2
2 (PX̂i|Ui=u

, PXi|Ui=u), u ∈ U (47)

where (46) follows from Lemma 1.

Now, define a time-sharing random variable Q ∈ {1, . . . , n}
independent of (Xn, Un) and notice that

I(UQ, Q;XQ) =
1

n

n
∑

i=1

I(Ui;Xi) ≤ R, (48)

W 2
2 (PX̂Q|UQ=u

, PXQ|UQ=u)

= W 2
2 (

1

n

n
∑

i=1

P
X̂i|Ui=u

,
1

n

n
∑

i=1

PXi|Ui=u)

(49)

≤ 1

n

n
∑

i=1

W 2
2 (PX̂i|Ui=u

, PXi|Ui=u) (50)

≤ P, (51)

❊[(XQ − X̂Q)
2] =

1

n

n
∑

i=1

❊[(Xi − X̂i)
2] ≤ D, (52)

where (50) follows from the convexity of Wasserstein-2 dis-

tance [14, Proposition 3.1.6]. Now, let U = (UQ, Q), X = XQ

and X̂ = X̂Q. This concludes the proof.

B. Proof of Theorem 2

Achievability: We choose the auxiliary random variable U

such that

X = U + Z, (53)

where Z ∼ N (0, ν2) is independent from U for some positive

ν2. Now, let X̂ be as follows

X̂ = U + Ẑ, (54)



where Ẑ ∼ N (0, ν̂2) is independent from U for some positive

ν̂2. The mutual information term is simplified as follows

I(U ;X) =
1

2
log

σ2

ν2
. (55)

The distortion term can be written as the following

❊[∥X − X̂∥2] = ν2 + ν̂2 ≤ D. (56)

Finally, the perception constraint is given as follows

W 2
2 (PX̂|U=u

, PX|U=u) = (ν̂ − ν)2 ≤ P, ∀u ∈ U .(57)

Considering (55), (56) and (57) together yields the following

achievable rate

R ≥ 1

2
log

2σ2

D +
√

P (2D − P )
. (58)

Converse: Let PU∗|X be the optimal solution of (9). So,

there exists P
X̂∗|U∗ such that

W 2
2 (PX̂∗|U∗=u

, PX|U∗=u) ≤ P, ∀u ∈ U∗, (59)

and

❊[∥X − X̂∗∥2] ≤ D. (60)

Then, define the following auxiliary random variable

X̂(U∗) := ❊[X|U∗]. (61)

Notice that X → U∗ → X̂(U∗) forms a Markov chain, so we

have

I(X; X̂(U∗)) ≤ I(X;U∗) ≤ R. (62)

Next, consider the distortion constraint as follows

D ≥ ❊[∥X − X̂∗∥2] (63)

= ❊[∥X − X̂(U∗) + X̂(U∗)− X̂∗∥2] (64)

= ❊[∥X − X̂(U∗)∥2] +❊[∥X̂(U∗)− X̂∗∥2], (65)

where (65) follows because

• X − X̂(U∗) is the MSE error, so it is uncorrelated with

the data which is U∗;

• X̂(U∗) is a function of U∗;

• X̂∗ is a stochastic function of U∗ so that it can be written

as X̂∗ = h(U∗, Z∗) where Z∗ is independent of U∗ and

X − X̂(U∗);
• Thus, given the above three facts, X − X̂(U∗) and

X̂(U∗)− X̂∗ are uncorrelated;

Now, consider the perception constraint for each u ∈ U as

follows

P ≥ W 2
2 (PX̂∗|U∗=u

, PX|U∗=u)

= inf
P̃

X̂∗X|U∗=u
:

P̃
X̂∗|U∗=u

=P
X̂∗|U∗=u

P̃X|U∗=u=PX|U∗=u

❊P̃ [∥X̂∗ −X∥2|U∗ = u] (66)

= inf
P̃(X̂∗−X̂(u))(X−X̂(u))|U∗=u

:

P̃
X̂∗−X̂(u)|U∗=u

=P
X̂∗−X̂(u)|U∗=u

P̃
X−X̂(u)|U∗=u

=P
X−X̂(u)|U∗=u

❊P̃ [∥(X̂∗ − X̂(u))− (X − X̂(u))∥2|U∗ = u]

(67)

≥
(

√

❊[∥X − X̂(u)∥2|U∗ = u]

−
√

❊[∥X̂∗ − X̂(u)∥2|U∗ = u]
)2

, (68)

where

• (67) follows because conditioned on U∗ = u, the solution

of the optimization program does change by the following

change of the variables X̂∗ → (X̂∗ − X̂(u)) and X →
(X − X̂(u)) since X̂(u) is a function of u;

• (68) follows from Cauchy-Schwarz’s inequality where for

each distribution P̃ , we have

❊P̃ [(X̂
∗ − X̂(u))(X − X̂(u))|U∗ = u]

≤
√

❊P̃ [∥X̂∗ − X̂(u)∥2|U∗ = u]·
√

❊P̃ [∥X − X̂(u)∥2|U∗ = u] (69)

=

√

❊[∥X̂∗ − X̂(u)∥2|U∗ = u]·
√

❊[∥X − X̂(u)∥2|U∗ = u]. (70)

Now, notice that without loss of optimality, we can assume

that for each u ∈ U ,

❊[∥X − X̂(u)∥2|U∗ = u] ≥ ❊[∥X̂∗ − X̂(u)∥2|U∗ = u].

(71)

This is justified in the following. The inequality (68) implies

that
∣

∣

∣

∣

∣

√

❊[∥X − X̂(u)∥2|U∗ = u]

−
√

❊[∥X̂∗ − X̂(u)∥2|U∗ = u]

∣

∣

∣

∣

∣

≤
√
P . (72)

Now, if the condition (71) is violated for some u′, then we

have

❊[∥X̂∗ − X̂(u′)∥2|U∗ = u′] > ❊[∥X − X̂(u′)∥2|U∗ = u′].

(73)

Let X̂ ′ be another reconstruction such that X → U∗ → X̂ ′,

and

P
X̂′|U∗=u′ = PX|U∗=u′ , (74)

P
X̂′|U∗=u′′ = P

X̂∗|U∗=u′′ , ∀u′′ ̸= u′ ∈ U . (75)



Clearly, X̂ ′ satisfies the inequality (72). It also results in a

smaller distortion than X̂∗ which is justified as follows

❊[∥X − X̂ ′∥2]
= ❊[∥X − X̂(U∗)∥2] +❊[∥X̂ ′ − X̂(U∗)∥2] (76)

= PU∗(u′)❊[∥X − X̂(u′)∥2|U∗ = u′]

+
∑

u′′ ̸=u′

PU∗(u′′)❊[∥X − X̂(u′′)∥2|U∗ = u′′]

+PU∗(u′)❊[∥X̂ ′ − X̂(u′)∥2|U∗ = u′]

+
∑

u′′ ̸=u′

PU∗(u′′)❊[∥X̂ ′ − X̂(u′′)∥2|U∗ = u′′] (77)

≤ PU∗(u′)❊[∥X̂∗ − X̂(u′)∥2|U∗ = u′]

+
∑

u′′ ̸=u′

PU∗(u′′)❊[∥X − X̂(u′′)∥2|U∗ = u′′]

+PU∗(u′)❊[∥X̂ ′ − X̂(u′)∥2|U∗ = u′]

+
∑

u′′ ̸=u′

PU∗(u′′)❊[∥X̂ ′ − X̂(u′′)∥2|U∗ = u′′] (78)

= PU∗(u′)❊[∥X̂∗ − X̂(u′)∥2|U∗ = u′]

+
∑

u′′ ̸=u′

PU∗(u′′)❊[∥X − X̂(u′′)∥2|U∗ = u′′]

+PU∗(u′)❊[∥X̂ ′ − X̂(u′)∥2|U∗ = u′]

+
∑

u′′ ̸=u′

PU∗(u′′)❊[∥X̂∗ − X̂(u′′)∥2|U∗ = u′′] (79)

= PU∗(u′)❊[∥X̂∗ − X̂(u′)∥2|U∗ = u′]

+
∑

u′′ ̸=u′

PU∗(u′′)❊[∥X − X̂(u′′)∥2|U∗ = u′′]

+PU∗(u′)❊[∥X − X̂(u′)∥2|U∗ = u′]

+
∑

u′′ ̸=u′

PU∗(u′′)❊[∥X̂∗ − X̂(u′′)∥2|U∗ = u′′] (80)

= ❊[∥X̂∗ − X̂(U∗)∥2] +❊[∥X − X̂(U∗)∥2] (81)

= ❊[∥X − X̂∗∥2], (82)

where

• (78) follows from inequality (73);

• (79) follows from (75);

• (80) follows from (74);

• (81) follows from re-arranging the terms.

However, this contradicts the fact that X̂∗ is the optimal

solution. Thus, without loss of optimality, we can assume (71)

in the rest of the proof.

Next, considering (68) and (71), we have the following

❊[∥X̂∗ − X̂(u)∥2|U∗ = u] ≥
(

❊[∥X − X̂(u)∥2|U∗ = u]−
√
P
)2

. (83)

Now, taking an average of the above expression over all u ∈ U ,

we get

❊[∥X̂∗ − X̂(U∗)∥2]
≥

∑

u

PU∗(u)
(

√

❊[∥X − X̂(u)∥2|U∗ = u]−
√
P
)2

(84)

= ❊[∥X − X̂(U∗)∥2]
−2

√
P
∑

u

PU∗(u)

√

❊[∥X − X̂(u)∥2|U∗ = u] + P

(85)

≥ ❊[∥X − X̂(U∗)∥2]− 2
√
P

√

❊[∥X − X̂(U∗)∥2] + P

(86)

=
(

√

❊[∥X − X̂(U∗)∥2]−
√
P
)2

, (87)

where (86) follows because the mapping x 7→ √
x is a concave

function. Now, combining (87) with (65) gives the following

inequality

D ≥ ❊[∥X − X̂(U∗)∥2] +
(

√

❊[∥X − X̂(U∗)∥2]−
√
P
)2

,

(88)

which is equivalent to the following

❊[∥X − X̂(U∗)∥2] ≤
√
P +

√
2D − P

2
. (89)

Now, notice that the rate constraint in (62) implies the follow-

ing set of inequalities

R ≥ I(X; X̂(U∗)) (90)

= H(X)−H(X|X̂(U∗)) (91)

≥ H(X)−H(X − X̂(U∗)|X̂(U∗)) (92)

≥ H(X)−H(X − X̂(U∗)) (93)

≥ H(X)− 1

2
log 2πe(❊[∥X − X̂(U∗)∥2]) (94)

≥ H(X)− 1

2
log 2πe

2D + 2
√

P (2D − P )

4
(95)

=
1

2
log

2σ2

D +
√

P (2D − P )
, (96)

where (93) follows because conditioning does not increase the

entropy; (94) follows because 2H(X−X̂(U∗)) ≥ 2πe❊[∥X −
X̂(U∗)∥2]; (95) follows from (89). This concludes the proof.

C. Proof of Theorem 3

For a given representation Ur, the distortion set

ΦD0(PUr|X) is the set of all distortions D such that the

conditions in Definition 3 are satisfied. Now, consider the

distortion constraint as follows

D ≥ ❊[∥X − X̂∥2] = ❊[∥X − X̃ + X̃ − X̂∥2] (97)

= ❊[∥X − X̃∥2] +❊[∥X̃ − X̂∥2](98)

= 2❊[∥X − X̃∥2], (99)

where (98) follows because

• X − X̃ is the MMSE;

• X̃ − X̂ is a function of data Ur and a noise independent

of X − X̃; so, X − X̃ and X̃ − X̂ are uncorrelated;

(99) follows because

• P
X̂|Ur

= PX|Ur
;

• X̃ which is the MMSE reconstruction and it is a function

of Ur.



V. CONCLUSION

In this paper, we studied the RDP tradeoff based on con-

ditional perception measure. We showed that in the Gaussian

setting, the optimal operation that converts the MMSE recon-

struction to the one satisfying the perfect perceptual quality is

inserting corrections by an artificial noise.
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