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Abstract: This chapter presents the theory and algorithms for a covariance-

based approach for device activity detection in a grant-free random access

protocol. We consider the device activity detection problem in massive

multi-input multi-output (MIMO) systems, where active devices transmit

their non-orthogonal signature sequences to the base stations (BSs), and the

BSs cooperatively detect the active devices based on the received signals.

The device activity detection problem can be formulated as a maximum

likelihood estimation (MLE) problem. Because the sample covariance ma-

trix of the received signals is a sufficient statistic for the device activity
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pattern in the MLE formulation, the approach based on solving the MLE

formulation is often called the covariance-based approach. In this chapter,

we study the covariance-based approach in both single-cell and multi-cell

massive MIMO systems. More specifically, we first present necessary and

sufficient conditions on the problem input parameters to ensure a vanishing

error probability as the number of antennas at the BS(s) tends to infinity.

We then show that the number of active devices that can be detected by

the covariance-based approach (in each cell) can scale quadratically as the

length of the devices’ signature sequence. In addition to the asymptotic

performance analysis, we also present efficient coordinate descent (CD)

algorithms and their accelerated variants for solving the device activity de-

tection problem. Numerical results verify the accuracy of the asymptotic

analysis results and illustrate the efficiency of the CD algorithms.

Keywords: Coordinate descent (CD), covariance-based approach, device

activity detection, massive machine-type communication (mMTC), massive

multi-input multi-output (MIMO), massive random access, phase transition

analysis

1.1. Introduction

Massive machine-type communication (mMTC) is expected to play a crucial

role in the fifth-generation (5G) cellular systems and beyond [Bockelmann

et al., 2016]. One of the main challenges in mMTC is massive random access,

in which a massive number of devices with sporadic data traffic wish to con-

nect to the network in the uplink [Chen et al., 2021]. Conventional cellular

systems provide random access for human-type communications by employing

a set of orthogonal sequences, from which every active device randomly and

independently selects one sequence to transmit as a pilot for requesting access

[Dahlman et al., 2013]. However, when the number of active devices is com-
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parable to the number of available orthogonal sequences, this uncoordinated

random access approach inevitably leads to collisions (with high probability),

which will result in a (severe) delay of the data transmission stage because

multiple rounds of retransmission signaling are required to resolve the colli-

sions. As such, the above random access scheme is generally not suitable for

mMTC.

To reduce the communication latency, grant-free random access schemes are

proposed [Liu et al., 2018], where the active devices directly transmit the data

signals after transmitting their preassigned non-orthogonal signature sequences

without first obtaining permissions from the base-stations (BSs). The BSs first

identify the active devices based on the signatures, then decode the data. In

this paradigm, no handshake is needed. However, the non-orthogonality of

the signature sequences would cause both intra-cell and inter-cell interference

which pose unique challenges in the task of device activity detection. This

chapter studies the theory and algorithms for device activity detection in the

grant-free random access protocol.

There are generally two mathematical optimization formulations of the de-

vice activity detection problem. In the first formulation, the device activity

detection problem is formulated as a compressed sensing (CS) problem, in

which the instantaneous channel state information (CSI) and the device activ-

ity are jointly recovered by exploiting the sparsity in the device activity pattern

[Senel and Larsson, 2018, Liu and Yu, 2018, Chen et al., 2018]. When the CSI

is not needed (e.g., when the data are embedded in the pilot sequence [Senel

and Larsson, 2018, Chen et al., 2019]) and the BSs are equipped with a large

number of antennas, it is also possible to jointly estimate the device activities

(and the channel large-scale fading components) by exploiting the channel sta-
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tistical information via maximum likelihood estimation (MLE). This approach

is proposed in [Haghighatshoar et al., 2018] and termed as the covariance-

based approach because the detection relies on the sample covariance matrix

of the received signal. As compared to the CS approach, this covariance-based

approach has the advantage of being able to detect many more active devices

due to its quadratic scaling law [Fengler et al., 2021, Haghighatshoar et al.,

2018, Chen et al., 2022]. It is worthwhile remarking that even in situation

where the CSI is needed, the covariance-based approach can still play an im-

portant role, e.g., in a three-phase protocol [Kang and Yu, 2022], where in

the first phase, the BSs apply the covariance-based approach to detect device

activities; in the second phase, the BSs transmit a common feedback message

to all the active devices to schedule them in orthogonal transmission slots; and

finally, in the third phase, the BSs estimate channels and detect data from

the active devices. Since the users are scheduled in orthogonal channels in the

three-phase protocol [Kang and Yu, 2022], the channel estimation performance

is expected to be better than that of the grant-free protocol [Liu et al., 2018]

based on non-orthogonal pilots.

This chapter focuses on the covariance-based approach for the device ac-

tivity detection problem. We mainly study two questions. The first question is

how many active devices can be successfully identified out of a large number

of potential devices by the covariance-based approach given a pilot sequence

length and assuming a fixed set of non-orthogonal pilot sequences. The answer

to the above question leads to a theoretical characterization of the detection

performance of the covariance-based approach. The second question is how to

efficiently and correctly identify the active devices. To answer the above ques-

tion, we present several computationally efficient algorithms for solving the
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device activity detection problem.

The rest of this chapter is organized as follows. Section 1.2 and Section 1.3

study the theory and algorithms for the covariance-based approach for the de-

vice activity detection problem in the single-cell and multi-cell massive multiple-

input multiple-output (MIMO) systems, respectively. Section 1.4 discusses

some practical issues and presents two interesting extensions. Finally, Sec-

tion 1.5 concludes this chapter and lists some possible directions for future

research.

1.2. Device Activity Detection in Single-

Cell Massive MIMO

1.2.1. System Model and Problem Formulation

In this section, we consider an uplink single-cell massive random access scenario

with N single-antenna devices communicating with a BS equipped with M

antennas. We assume a block fading channel model, i.e., the channel coefficients

remain constant for a coherence interval. We also assume that the user traffic

is sporadic, i.e., only K � N devices are active during each coherence interval.

For the purpose of device identification, each device n is preassigned a unique

signature sequence sn = [s1n, s2n, . . . , sLn]T ∈ CL, where L is the sequence

length. In the pilot phase, we assume that all the active devices transmit their

signature sequences synchronously at the same time. (We consider a more

practical asynchronous scenario in Section 1.4.2.) The objective is to detect

which subset of devices are active based on the received signal at the BS.
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Let an ∈ {0, 1} denote the activity of device n in a given coherence interval,

i.e., an = 1 if the device is active and an = 0 otherwise. The channel vector

between the BS and device n is modeled as a random vector
√
gnhn, where

gn ≥ 0 is the large-scale fading component due to path-loss and shadowing, and

hn ∈ CM is the Rayleigh fading component following CN (0, I). The received

signal Y ∈ CL×M at the BS in the pilot phase can be expressed as

Y =
N∑
n=1

ansn
√
gnh

T
n + W = SΓ

1
2 H + W, (1.1)

where Γ = diag(γ1, γ2, . . . , γN ) ∈ RN×N with γn = angn is a diagonal matrix

indicating both the device activity an and the large-scale fading component

gn, S = [s1, s2, . . . , sN ] ∈ CL×N is the signature sequence matrix (which is

assumed to be known at the BS), H = [h1,h2, . . . ,hN ]T ∈ CN×M is the

channel matrix, and W ∈ CL×M is the normalized effective independent and

identically distributed (i.i.d.) Gaussian noise with variance σ2
w. We let γ =

[γ1, γ2, . . . , γN ]T ∈ RN denote the diagonal entries of Γ and use γ and Γ

interchangeably throughout this section.

Following the approach proposed in [Fengler et al., 2021, Haghighatshoar

et al., 2018], we first use MLE to estimate γ from Y, then thereafter obtain

the device activity indicator an from γ. The idea is to treat γ as a set of

deterministic but unknown parameters, and to model Y as an observation

that follows the conditional distribution p(Y |γ) based on the statistics of hn

and W. To compute the likelihood p(Y |γ), we first observe from (1.1) that

given γ, the columns of Y, denoted by ym ∈ CL, 1 ≤ m ≤M , are independent

due to the i.i.d. channel coefficients over different antennas. In particular, each

column ym follows a complex Gaussian distribution as ym ∼ CN (0,Σ) , where
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the covariance matrix is given by

Σ = E
[
ymyHm

]
= SΓSH + σ2

wI =
N∑
n=1

γnsns
H
n + σ2

wI. (1.2)

Due to the independence of the columns of Y, the likelihood function p(Y |γ)

can be computed as

p(Y |γ) =

M∏
m=1

1

|πΣ|
exp

(
−yHmΣ−1ym

)
=

1

|πΣ|M
exp

(
− tr

(
Σ−1YYH

))
, (1.3)

where |·| denotes the determinant of a matrix. The maximization of log p(Y |γ)

is equivalent to the minimization of − 1
M log p(Y |γ), so the MLE problem can

be formulated as

min
γ

log |Σ|+ tr
(
Σ−1Σ̂

)
(1.4a)

s. t. γ ≥ 0, (1.4b)

where

Σ̂ =
1

M
YYH =

1

M

M∑
m=1

ymyHm (1.5)

is the sample covariance matrix of the received signal averaged over differ-

ent antennas, and the constraint γ ≥ 0 is due to the fact that γn = angn.

Throughout this chapter, we focus on the massive MIMO regime where M is

large, which ensures that the sample covariance matrix Σ̂ in (1.5) is a good

approximation of the true covariance matrix in (1.2).

We observe from (1.4) that the MLE problem depends on Y through the

sample covariance matrix Σ̂. For this reason, the approach based on solving
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the formulation in (1.4) is termed as the covariance-based approach in the

literature. As M increases, Σ̂ tends to the true covariance matrix of Y, but

the size of the optimization problem does not change. As such, the complexity

of solving (1.4) does not scale with M . This is a desirable property especially

for the massive MIMO systems.

It is noteworthy to mention an alternative way to model the device activity

detection problem is through the following non-negative least squares (NNLS)

formulation [Fengler et al., 2021, Haghighatshoar et al., 2018]:

min
γ

∥∥∥Σ− Σ̂
∥∥∥2

F
(1.6a)

s. t. γ ≥ 0. (1.6b)

The above NNLS formulation tries to match the true covariance matrix Σ and

the sample covariance matrix Σ̂ as much as possible under the Frobenius norm

metric. The optimization problem (1.6) is convex. However, it has been shown

in [Fengler et al., 2021, Chen et al., 2022] that the detection performance of the

NNLS formulation (1.6) is much worse than that of the MLE formulation (1.4).

Therefore, we focus on the MLE formulation (1.4) in this chapter.

1.2.2. Phase Transition Analysis

In this section, we assume that the MLE problem (1.4) is solved to global op-

timality and analyze the asymptotic properties of the true MLE solution γ̂(M)

in the massive MIMO regime where M → ∞. Although the global minimizer

of (1.4) may not be easily found in practice due to its nonconvex nature, simu-

lation results show that the analysis still provides useful insights into the per-
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formance of practical algorithms for solving the problem (1.4). In Section 1.2.3,

we present efficient algorithms for solving the MLE problem (1.4).

For notational clarity, let γ0 denote the true parameter to be estimated. We

aim to answer the following theoretical question in this section: what are the

conditions on the system parameters N,K, and L such that the MLE solution

γ̂(M) can approach the true parameter γ0 as M → ∞? The answer to this

question helps identify the desired operating regime in the space of N,K, and

L for getting an accurate estimate γ̂(M) via MLE with massive MIMO. The

phase transition analysis result in this section is mainly from [Chen et al.,

2022].

Since the Fisher information matrix J(γ) plays a key role in the analysis

of MLE, we first provide an explicit expression for J(γ).

Theorem 1.1: Consider the likelihood function in (1.3), where γ is the pa-

rameter to be estimated, and define P = SH
(
SΓSH + σ2

wI
)−1

S. The associated

N ×N Fisher information matrix of γ is given by

J(γ) = M (P�P∗) , (1.7)

where � is the element-wise product, and (·)∗ is the conjugate operation.

Next, we present a necessary and sufficient condition such that γ̂(M) can

approach γ0 in the large M limit.

Theorem 1.2: Consider the MLE problem (1.4) for device activity detection

with given signature sequence matrix S ∈ CL×N and noise variance σ2
w, and

let γ̂(M) be a sequence of solutions of (1.4) as M increases. Let γ0 be the true
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parameter whose N −K zero entries are indexed by I, i.e.,

I = {i | γ0
i = 0}. (1.8)

Define

N =
{
x ∈ RN | xTJ(γ0)x = 0

}
, (1.9)

C =
{
x ∈ RN | xi ≥ 0, i ∈ I

}
, (1.10)

where xi is the i-th entry of x. Then a necessary and sufficient condition for

the consistency of γ̂(M), i.e., γ̂(M) → γ0 as M → ∞, is that the intersection

of N and C is the zero vector, i.e., N ∩ C = {0}.

The sets N and C in Theorem 1.2 can be interpreted as follows: N is the

null space of J(γ0), which contains all directions x from γ0 along which the

likelihood function stays unchanged, i.e., p(Y |γ0) = p(Y |γ0 + tx) holds for

any sufficiently small positive t and any x ∈ N ; C is a cone, which contains vec-

tors whose coordinates indexed by I are always nonnegative—in other words,

directions x from γ0 along which γ0 + tx ∈ [0,+∞)N holds for any sufficiently

small positive t. The conditionN∩C = {0} guarantees that the likelihood func-

tion p(Y |γ) in the feasible neighborhood of γ0 is not identical to p(Y |γ0),

so that the true parameter γ0 is uniquely identifiable in the feasible region via

the likelihood function maximization. See [Chen et al., 2022, Fig. 1] (and the

related discussion) for an illustration of the condition N ∩ C = {0}.

Since there is generally no closed-form characterization of N ∩ C, we can-

not analytically verify the condition N ∩ C = {0} for a given γ0 and J(γ0).

However, by noting that N and C are both convex sets, we can numerically
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test whether the condition N ∩ C = {0} holds. By further exploiting the pos-

itive semidefiniteness of J(γ0), the following theorem turns the verification of

N ∩ C = {0} into a linear program (LP).

Theorem 1.3: Given S, σ2
w, and γ0, let J(γ0) be the Fisher information

matrix in (1.7); let A ∈ R(N−K)×(N−K) be a submatrix of J(γ0) indexed by

I; let C ∈ RK×K be a submatrix of J(γ0) indexed by Ic, where Ic is the

complement of I with respect to {1, 2, . . . , N}; and let B ∈ R(N−K)×K be a

submatrix of J(γ0) with rows and columns indexed by I and Ic, respectively.

Then the condition N ∩ C = {0} (in Theorem 1.2) is equivalent to: (i) C is

invertible; and (ii) the following problem is feasible

find x (1.11a)

s. t. (A−BC−1BT )x > 0, (1.11b)

where vector x ∈ RN−K .

Theorem 1.3 offers a way of identifying the phase transition of the MLE

problem numerically. More specifically, suppose that S and I are generated

randomly according to some distribution for any fixed N, L, and K (e.g., S

is Gaussian and the elements in I are uniformly selected from {1, 2, . . . , N}).

We can then use (1.11) to test the consistency of the MLE solution for each

realization of S and I. This enables us to numerically characterize the region

in the space of N, L, and K such that γ̂(M) can approach γ0 in the large M

limit. We present some simulation results on the phase transition of the MLE

problem in Section 1.2.4.

The last theorem in this section shows the quadratic scaling law of the
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covariance-based approach, i.e., the maximum number of active devices K that

can be correctly detected by the covariance-based approach increases quadrat-

ically with the length of the signature sequence L. Intuitively, the covariance-

based approach tries to match the sample covariance matrix and the true

covariance matrix (by taking the derivative of the objective in (1.4) with re-

spect to Σ), hence the number of effective observations in the covariance-based

approach is in the order of L2. The technical reason behind this quadratic scal-

ing law is that the set N defined in (1.9) is equivalent to the null space of the

matrix Ŝ = [s∗1⊗s1, . . . , s
∗
N⊗sN ] ∈ CL2×N (where ⊗ is the Kronecker product)

[Chen et al., 2022], and the matrix Ŝ enjoys the null space property under such

a scaling law.

Theorem 1.4: Let S ∈ CL×N be the signature sequence matrix whose columns

are uniformly drawn from the sphere of radius
√
L in an i.i.d. fashion. There

exist some constants c1 and c2 whose values do not depend on K, L, and N

such that if

K ≤ c1L
2/ log2(eN/L2), (1.12)

then N ∩ C = {0} (in Theorem 1.2) holds true with probability at least 1 −

exp(−c2L).

1.2.3. Coordinate Descent Algorithms

The optimization problem (1.4) is not convex due to the fact that tr(Σ−1Σ̂) is

convex whereas log |Σ| is concave in γ. However, various practical algorithms

are designed and shown to have excellent performance in terms of computa-

tional efficiency and detection error probability for solving problem (1.4). Ex-
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amples of these algorithms include coordinate descent (CD) [Haghighatshoar

et al., 2018, Chen et al., 2019] and accelerated variants [Wang et al., 2021b,

Dong et al., 2022], expectation maximization/minimization (EM) (i.e., sparse

Bayesian learning) [Wipf and Rao, 2007], gradient descent [Wang et al., 2021a],

sparse iterative covariance-based estimation (SPICE) [Stoica et al., 2011], etc.

Among the above algorithms, the CD algorithm that iteratively updates the

variable associated with each device is popular for solving the MLE problem

in the covariance-based approach. The reason for its popularity is that each of

its subproblems (i.e., the optimization of the original objective with respect to

only one of the variables) admits a closed-form solution [Haghighatshoar et al.,

2018], which makes it easily implementable. In this section, we introduce the

CD algorithm and its accelerated variant for solving problem (1.4).

1.2.3.1. Coordinate Descent Algorithm

The basic idea of the CD algorithm for solving problem (1.4) is to update each

coordinate of the unknown variable γ iteratively (while keeping the others

fixed) until convergence. In particular, fixing all the other variables except γin ,

the problem reduces to a univariate optimization problem, which admits a

closed-form solution due to its special structure [Haghighatshoar et al., 2018],

shown in lines 5 and 6 of Algorithm 1.

In addition to the coordinate update strategy (i.e., how to update the

selected variable), the coordinate selection strategy (i.e., selecting which coor-

dinate to update) also plays a vital role in the CD algorithm. Two commonly

used strategies are random permutation (which randomly permutes all coor-

dinates and then updates the coordinate one by one according to the order in

the permutation) and random selection (which randomly picks one coordinate
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Algorithm 1 Coordinate descent algorithm for solving problem (1.4)

1: Initialize γ = 0, Σ−1 = σ−2
w I;

2: repeat [one iteration]
3: Randomly select a permutation i1, i2, . . . , iN of the coordinate indices
{1, 2, . . . , N};

4: for n = 1 to N do

5: d = max
{

sHinΣ−1Σ̂Σ−1sin−sHinΣ−1sin
(sHinΣ−1sin )2

,−γin
}

;

6: γin ← γin + d;

7: Σ−1 ← Σ−1 − dΣ−1sinsHinΣ−1

1+d sHinΣ−1sin
;

8: end for
9: until ‖Proj(γ −∇f(γ))− γ‖2 < ε;

10: Output γ.

from all coordinates at a time). Note that in Algorithm 1, we adopt the ran-

dom permutation strategy; see line 3 of Algorithm 1. Based on our experience

of solving problem (1.4), CD equipped with the random permutation strat-

egy is more efficient than that equipped with the random selection strategy.

Due to the randomness in the coordinate selection strategy, the CD algorithm

sometimes is called random CD in the literature.

The dominant complexity of (random) CD Algorithm 1 is the matrix-vector

multiplications in lines 5–7, whose complexity is O(L2). Note that in line 7,

a rank-one update of Σ−1 is used to reduce the computational cost and im-

prove the computational efficiency. The overall complexity of Algorithm 1 is

O(INL2), where I is the total number of iterations. Because the complexity of

the CD algorithm is linear in N and quadratic in L, it is particularly suitable

for low-latency mMTC scenarios where N is often large and L is often small.

Once Algorithm 1 returns γ, in order to do the detection, we still need to

employ the element-wise thresholding to determine an from γn, the n-th entry

of γ, using a threshold lth, i.e., an = 1 if γn ≥ lth and an = 0 otherwise. The
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probabilities of missed detection and false alarm can be traded off by setting

different values for lth.

1.2.3.2. Active Set Coordinate Descent Algorithm

In this section, we present a computationally more efficient active set CD al-

gorithm for solving the device activity detection problem in (1.4). Note that

most of the devices are inactive (i.e., K � N). The basic idea of the active set

CD algorithm is to exploit the sparsity in the device activity pattern to avoid

unnecessary computations on the inactive devices and improve the computa-

tional efficiency of the CD algorithm (i.e., Algorithm 1). In particular, at each

iteration, the active set CD algorithm first selects a small subset of all devices,

termed as the active set, which contains a number of devices that contribute

the most to the deviation from the first-order optimality condition of the opti-

mization problem (1.4), then applies the CD algorithm to update the selected

variables in the active set.

We first present the first-order optimality condition of the optimization

problem (1.4). Let f(γ) denote the objective function of problem (1.4). Then,

for any n = 1, 2, . . . , N, the gradient of f(γ) with respect to γn is

[∇f(γ)]n = sHn Σ−1sn − sHn Σ−1Σ̂Σ−1sn.

The first-order (necessary) optimality condition of problem (1.4) is

[∇f(γ)]n


= 0, if γn > 0;

≥ 0, if γn = 0,

∀ n, (1.13)

which is equivalent to Proj(γ − ∇f(γ)) − γ = 0, where Proj(·) denotes the
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Algorithm 2 Active set CD algorithm for solving problem (1.4)

1: Initialize γ0 = 0, k = 0, δ0 > 0, and ε > 0;
2: repeat [one iteration]
3: Update δk;
4: Select the active set Ak according to (1.14);
5: Apply lines 5–7 of Algorithm 1 to update all coordinates in Ak only

once in the order of a random permutation;
6: Set k ← k + 1;
7: until ‖Proj(γk −∇fk)− γk‖2 < ε;
8: Output γk.

projection operator (onto the feasible region of the corresponding problem). It

can be shown that the complexity of computing ∇f(γ) is O(NL2).

The selection strategy of the active set Ak at a given feasible point γk

in [Wang et al., 2021a] is mainly based on the degree of the violation of the

first-order optimality condition (1.13), which is given by

Ak =
{
n
∣∣ γkn > 0 and

∣∣∣∇fkn ∣∣∣ > δkn

}
∪
{
n
∣∣ γkn = 0 and ∇fkn < −δkn

}
, (1.14)

where ∇fkn denotes
[
∇f(γk)

]
n

and δk ∈ RN+ is a threshold vector that changes

with iteration. The choice of the threshold vector δk in (1.14) is important

in balancing the competing goals of improving the objective function and re-

ducing the computational cost at the k-th iteration. A method that works

well in practice is to choose a relatively large δ0 at first and update δk by a

multiplicative factor less than one at each iteration.

The active set CD algorithm for solving problem (1.4) is summarized as

Algorithm 2. Note that in line 5 of Algorithm 2, lines 5–7 of Algorithm 1

is used to update all coordinates in the selected active set Ak. It is worth

remarking here that it is also possible to choose other algorithms. In other

words, the active set strategy can be used to accelerate any algorithm (that
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does not properly exploit the sparsity in the device activity pattern) for solving

problem (1.4), such as those mentioned at the beginning of Section 1.2.3.

1.2.4. Performance Evaluation

In this section, we present some simulation results to validate the accuracy of

the phase transition analysis, and compare the existing algorithms for solving

the activity detection problem in (1.4). We use the same system parameters

as in [Chen et al., 2022]. More specifically, we consider a single cell of ra-

dius 1000 m and the channel path-loss is modeled as 128.1 + 37.6 log10(d). We

consider the worst-case scenario that all devices are located in the cell edge

such that the large-scale fading components gn’s are the same for all devices.

The power spectrum density of the background noise is −169 dBm/Hz over

10 MHz and the transmit power of each device is set to 25 dBm. All signature

sequences of length L are uniformly drawn from the sphere of radius
√
L in an

i.i.d. fashion as required in Theorem 1.4.

We solve the LP in (1.11) to numerically test the condition N ∩ C = {0}

in Theorem 1.2 under a variety of choices of L and K, given N = 900 or

N = 3600. Fig. 1.1 plots the region of (L2/N,K/N) in which the condition

is satisfied or not. The result is obtained based on 100 random realizations of

S and γ0 for each given K and L. The error bars indicate the range beyond

which either all realizations or no realization satisfy the condition. To vali-

date the prediction by Theorem 1.2, we also run the CD algorithm to solve

the MLE problem (1.4) by replacing the sample covariance matrix with the

true covariance matrix (implying that M → ∞). We then identify the region

of (L2/N,K/N) in which the active devices can be perfectly detected, thus
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Figure 1.1: Phase transition of the covariance-based approach for device activity

detection in the single-cell scenario.

obtaining the phase transition curve empirically. We observe that the curves

obtained by Theorem 1.2 and by the CD algorithm match pretty well. We

also observe from Fig. 1.1 that K is approximately proportional to L2, which

verifies the scaling law in Theorem 1.4.

Next, we compare the efficiency of existing algorithms (including CD, ac-

tive set CD, EM [Wipf and Rao, 2007], and SPICE [Stoica et al., 2011]) for

solving problem (1.4). Fig. 1.2 plots the decrease of the probability of error

as the algorithms run with M = 128, L = 60, N = 3000, and K = 100. The

result is obtained by averaging over 1000 random realizations of S, γ0, and the

channel matrix H. For each realization, we record the variable γ and calcu-

late the corresponding probability of error when the algorithms run to a fixed

moment. We observe from Fig. 1.2 that CD can take less time to achieve a

better probability of error than EM and SPICE. It can also be observed from

Fig. 1.2 that active set CD is more efficient than CD (due to the active set se-
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Figure 1.2: Comparison of the probability of error of existing algorithms versus

running time in the single-cell scenario.

lection strategy). We also observe from Fig. 1.2 that all of these four algorithms

can achieve the same low probability of error if their running time is allowed

to be sufficiently long, implying that they converge to the same solution to

problem (1.4) (albeit the problem is generally nonconvex).

1.3. Device Activity Detection in Multi-

Cell Massive MIMO

1.3.1. System Model and Problem Formulation

In this section, we consider the multi-cell case, i.e., an uplink massive MIMO

system consisting of B cells, where each cell contains one BS equipped with M

antennas and N single-antenna devices. We assume that a cloud radio access
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network (C-RAN) architecture is used for inter-cell interference mitigation,

in which all B BSs are connected to a central unit (CU) via fronthaul links

such that the signals received at the BSs can be jointly processed at the CU.

Similar to the single-cell scenario, we also assume that only K � N devices

are active in each cell during any coherence interval. For device identification,

each device n in cell j is preassigned a unique signature sequence sjn ∈ CL

with L being the sequence length. Let ajn be a binary variable with ajn = 1

for active devices and ajn = 0 for inactive devices. The channel between device

n in cell j and BS b is denoted as
√
gbjnhbjn, where gbjn ≥ 0 is the large-scale

fading coefficient, and hbjn ∈ CM is the i.i.d. Rayleigh fading component that

follows CN (0, I).

Assume that all active devices synchronously transmit their preassigned

signature sequences to the BSs in the uplink pilot stage. Then, the received

signal at BS b can be expressed as

Yb =
N∑
n=1

abnsbng
1
2
bbnh

T
bbn +

∑
j 6=b

N∑
n=1

ajnsjng
1
2
bjnh

T
bjn + Wb

= SbAbG
1
2
bbHbb +

∑
j 6=b

SjAjG
1
2
bjHbj + Wb, (1.15)

where Sj = [sj1, sj2, . . . , sjN ] ∈ CL×N is the signature sequence matrix of

the devices in cell j, Aj = diag(aj1, aj2, . . . , ajN ) is a diagonal matrix that

indicates the activity of all devices in cell j, Gbj = diag(gbj1, gbj2, . . . , gbjN )

contains the large-scale fading components between the devices in cell j and

BS b, Hbj = [hbj1,hbj2, . . . ,hbjN ]T ∈ CN×M is the Rayleigh fading channel

between the devices in cell j and BS b, and Wb is the additive Gaussian noise

that follows CN (0, σ2
wI) with σ2

w being the variance of the background noise

normalized by the transmit power.
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For notational simplicity, let S = [S1,S2, . . . ,SB] ∈ CL×BN denote the sig-

nature matrix of all devices, and let Gb = diag(Gb1,Gb2, . . . ,GbB) ∈ RBN×BN

denote the matrix containing large-scale fading components between all devices

and BS b. Let A = diag(A1,A2, . . . ,AB) ∈ RBN×BN be a diagonal matrix

that indicates the activity of all devices, and let a ∈ RBN denote its diagonal

entries. We use A and a interchangeably throughout this section.

The device activity detection problem in the multi-cell massive MIMO

scenario is to detect the active devices from the received signals Yb, b =

1, 2, . . . , B. In this section, we assume that the large-scale fading coefficients

are known, i.e., the matrices Gb for all b are known at the BSs. This assump-

tion holds true if all devices are stationary so that their large-scale fadings are

fixed and can be obtained before the detection. In this case, the device activity

detection problem is equivalent to estimating the activity indicator vector a.

Note that for each BS b, the Rayleigh fading components and noises are

both i.i.d. Gaussian over the antennas. Therefore, for a given a, the columns

of the received signal Yb in (1.15) denoted by ybm, m = 1, 2, . . . ,M, are i.i.d.

Gaussian vectors, that is ybm ∼ CN (0,Σb), where the covariance matrix Σb is

given by

Σb =
1

M
E
[
YbY

H
b

]
= SGbASH + σ2

wI. (1.16)

Since the received signals Yb, b = 1, 2, . . . , B, are independent due to the i.i.d.

Rayleigh fading channels, the likelihood function can be computed as

p(Y1,Y2, . . . ,YB |a) =

B∏
b=1

p(Yb |a).

Hence the MLE problem is equivalent to the minimization of− 1
M

∑B
b=1 log p(Yb |a).
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Thus, the overall problem formulation [Chen et al., 2021] is

min
a

B∑
b=1

(
log |Σb|+ tr

(
Σ−1
b Σ̂b

))
(1.17a)

s. t. abn ∈ [0, 1], ∀ b, n, (1.17b)

where Σ̂b = YbY
H
b /M is the sample covariance matrix of the received signals

at BS b.

1.3.2. Phase Transition Analysis

In this section, we wish to characterize the asymptotic detection performance

of the solution to problem (1.17) as the number of antennas M tends to infinity

and in particular, reveal how the number of cells B (and the inter-cell inter-

ference) affects the detection performance. To be specific, we want to answer

the following question: given the system parameters L,B, and N, how many

active devices can be correctly detected by solving the MLE problem (1.17) as

M →∞?

We first present a necessary and sufficient condition for the consistency of

the MLE estimator via solving problem (1.17) [Chen et al., 2021], which can

be seen as an extension of Theorems 1.1 and 1.2 in the single-cell scenario to

the multi-cell scenario.

Theorem 1.5: Consider the MLE problem (1.17) with a given signature se-

quence matrix S, large-scale fading component matrices {Gb}, and noise vari-

ance σ2
w. Let â(M) be the solution to (1.17) when the number of antennas M

is given, and let a0 be the true activity indicator vector whose B(N −K) zero

entries are indexed by I, i.e., I = {i | a0
i = 0}.
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(i) The Fisher information matrix of a is given by

J(a) = M
B∑
b=1

(
Pb �P∗b

)
, (1.18)

where Pb = G
1
2
b SH

(
SGbASH + σ2

wI
)−1

SG
1
2
b .

(ii) Define

N =
{
x ∈ RBN | xTJ(a0)x = 0

}
, (1.19)

C =
{
x ∈ RBN | xi ≥ 0 if i ∈ I, xi ≤ 0 if i /∈ I

}
. (1.20)

Then a necessary and sufficient condition for â(M) → a0 as M →∞ is that

the intersection of N and C is the zero vector, i.e., N ∩ C = {0}.

Notice that in the multi-cell scenario, the large-scale fading coefficients are

involved in the definition of the Fisher information matrix in (1.18), which

is different from the single-cell scenario. Therefore, the large-scale fading co-

efficients play a central role in the phase transition analysis in the multi-cell

scenario, i.e., the feasible set of the system parameters under which the con-

dition N ∩ C = {0} (in Theorem 1.5) holds true. To establish the scaling

law result in the multi-cell scenario, we first specify the assumption on the

large-scale fading coefficients.

Assumption 1.1: The multi-cell system consists of B hexagonal cells with

radius R. The BSs are in the center of the corresponding cells. In this system,

the large-scale fading components decrease exponentially with the distance

[Rappaport, 2002], i.e.,

gbjn = P0

(
d0

dbjn

)α
, (1.21)
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where P0 is the received power at the point with distance d0 from the trans-

mitting antenna, dbjn is the BS-device distance between device n in cell j and

BS b, and α is the path-loss exponent.

Now we present an analytic scaling law result by establishing a sufficient

condition for N ∩ C = {0} (in Theorem 1.5) [Wang et al., 2023].

Theorem 1.6: Let S ∈ CL×BN be the signature sequence matrix whose

columns are uniformly drawn from the sphere of radius
√
L in an i.i.d. fash-

ion. Under Assumption 1.1 with α > 2, there exist positive constants c1 and

c2 independent of system parameters K,L,N, and B, such that if

K ≤ c1L
2/ log2(eBN/L2), (1.22)

then the condition N ∩C = {0} (in Theorem 1.5) holds with probability at least

1− exp(−c2L).

Theorem 1.6 shows that, with a sufficiently large M, the maximum num-

ber of active devices that can be correctly detected in each cell by solving the

MLE problem (1.17) scales as O(L2) as shown in (1.22). The scaling law in

(1.22) in the multi-cell scenario is approximately the same as Theorem 1.4 in

the single-cell scenario [Fengler et al., 2021, Chen et al., 2022], which provides

important insights that solving the MLE problem (1.17) can detect almost

as many active devices in each cell in the multi-cell scenario as solving prob-

lem (1.4) in the single-cell scenario. Notice that α > 2 in Assumption 1.1 holds

true for most channel models and application scenarios, see [Rappaport, 2002,

Chap. 4]. Therefore, the inter-cell interference is not a limiting factor of the

phase transition because B affects K only through log(B) in (1.22).
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1.3.3. Coordinate Descent Algorithms

We now apply the CD algorithm to the multi-cell case. CD is one of the most

efficient algorithms for solving problem (1.17) [Chen et al., 2021]. At each

iteration, the algorithm randomly permutes the indices of all variables and then

updates the variables one by one according to their order in the permutation.

For any particularly given coordinate (b, n), the CD algorithm needs to solve

the following one-dimensional subproblem

min
d

B∑
j=1

(
log
(

1 + d gjbns
H
bnΣ

−1
j sbn

)
−
d gjbns

H
bnΣ

−1
j Σ̂jΣ

−1
j sbn

1 + d gjbns
H
bnΣ

−1
j sbn

)
(1.23a)

s. t. d ∈ [−abn, 1− abn] (1.23b)

in order to possibly update the variable abn. The closed-form solution for the

above problem generally does not exist, which is different from the single-cell

case. Fortunately, problem (1.23) can be transformed into a polynomial root-

finding problem of degree 2B − 1, which can further be solved by computing

the eigenvalues of the companion matrix formed using the coefficients of the

corresponding polynomial function [McNamee, 2007, Chapter 6]. The compu-

tational complexity of this approach to solve problem (1.23) is O(B3). The CD

algorithm is summarized in Algorithm 3. The overall complexity of Algorithm 3

is O
(
IBN

(
BL2 +B3

))
, where I is the total number of iterations.

Below we briefly mention two ways of further accelerating Algorithm 3.

Notice that, at each iteration, Algorithm 3 treats all coordinates equally and

tries to update all of them. However, due to the sparsity of the solution to

problem (1.17), there are a lot of coordinates (b, n) for which problem (1.23)

has to be solved but abn does not change, i.e., the corresponding solution to

problem (1.23) will be zero. Such computations are unnecessary and slow down
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Algorithm 3 Coordinate descent algorithm for solving problem (1.17)

1: Initialize a = 0, Σ−1
b = σ−2

w I, b = 1, 2, . . . B, and ε > 0;
2: repeat [one iteration]
3: Randomly select a permutation {i1, i2, . . . , iBN} of the coordinate in-

dices {1, 2, . . . , BN};
4: for n = 1 to BN do
5: Solve problem (1.23) to obtain d;
6: ain ← ain + d;

7: Σ−1
b ← Σ−1

b −
d gbinΣ−1

b sinsHinΣ−1
b

1+d gbinsHinΣ−1
b sin

, b = 1, . . . , B;

8: end for
9: until ‖Proj(a−∇f(a))− a‖2 < ε;

10: Output a.

Algorithm 3. The active set selection strategy can be used to reduce this kind

of unnecessary computations and further improve the computational efficiency

of Algorithm 3. This accelerated version of Algorithm 3 is called active set CD

in Section 1.3.4. More details along this direction can be found in [Wang et al.,

2021b].

Another way of accelerating Algorithm 3 is to inexactly or approximately

solve the subproblem in (1.23). More specifically, for a given cell b, instead

of considering all B cells as in (1.23), it is reasonable (and desirable) to only

consider a cluster of cells that are close to cell b (and neglect those that are

far away from cell b). In this case, the degree of the polynomial function as-

sociated with the derivative of the objective function of (1.23) will be much

smaller, which improves the efficiency of solving the corresponding subprob-

lem. This accelerated version of Algorithm 3 is called clustering-based CD in

Section 1.3.4. More details along this direction can be found in [Ganesan et al.,

2021].
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1.3.4. Performance Evaluation

In this section, we present some simulation results to validate the accuracy of

the phase transition analysis, and compare the existing CD types of algorithms

for solving the multi-cell device activity detection problem in (1.17). We use

the same system parameters as in [Chen et al., 2021]. More specifically, we

consider a multi-cell system consisting of hexagonal cells and all potential

devices within each cell are uniformly distributed. In the simulations, the radius

of each cell is 500 m; the channel path-loss is modeled as 128.1 + 37.6 log10(d)

as in Assumption 1.1, where d is the corresponding BS-device distance in km;

the transmit power of each device is set to 23 dBm, and the background noise

power is −169 dBm/Hz over 10 MHz. All signature sequences of length L are

uniformly drawn from the sphere of radius
√
L in an i.i.d. fashion.
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Figure 1.3: Phase transition of the covariance-based approach for device activity

detection in the multi-cell scenario with B cells.

We numerically test the condition N ∩ C = {0} in Theorem 1.5 under
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a variety of choices for L and K, given N = 240 and B = 1, 2, 7. Fig. 1.3

plots the region of (L2/N,K/N) in which the condition is satisfied or not.

The result is obtained based on 100 random realizations of S and a0 for each

given K and L. We observe from Fig. 1.3 that: (i) the curves with different B’s

overlap with each other, implying that the phase transition for N ∩C = {0} is

almost independent of B (under Assumption 1.1 with the path-loss exponent

α > 2); the maximum number of identifiable active devices K is approximately

proportional to L2. These observations are consistent with the phase transition

analysis in Theorem 1.6.
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Figure 1.4: Comparison of the probability of error of existing algorithms versus

running time in the multi-cell scenario.

Next, we compare the efficiency of CD and its accelerated versions (i.e.,

active set CD [Wang et al., 2021b] and clustering-based CD [Ganesan et al.,

2021]). Fig. 1.4 plots the decrease in the probability of error as the algorithms

run with B = 7, M = 128, L = 50, N = 1000, and K = 50. The result is
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obtained by averaging over 1000 Monte-Carlo runs, and the number of clusters

of clustering-based CD is chosen to be 2. It can be observed from Fig. 1.4 that

active set CD and clustering-based CD are significantly more efficient than

CD. It can also be observed from Fig. 1.4 that CD and active set CD can

achieve the same low probability of error if their running time is allowed to

be sufficiently long, but the probability of error of clustering-based CD (due

to the coarse approximation) is slightly worse than those of CD and active set

CD. The simulation results show that active set CD has the best efficiency and

detection performance among the compared algorithms.

1.4. Practical Issues and Extensions

In this section, we discuss two practical issues in the previous system models

and problem formulations and present two interesting extensions.

1.4.1. Joint Device Data and Activity Detec-

tion

This section considers a grant-free massive random access scenario for mMTC

with very small data payloads as first investigated in [Senel and Larsson, 2018],

in which each device maintains a unique set of preassigned 2J signature se-

quences. When a device is active, it sends J bits of data by transmitting one

sequence from the set. By detecting which sequences are received, the BS ac-

quires both the identity of the active devices as well as the J-bit messages from

each of the active devices.

The joint device data and activity detection problem can be formulated as
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the MLE problem in both the single-cell and multi-cell scenarios. We illustrate

the problem formulation in the single-cell scenario. The considered scenario is

the same as that in Section 1.2, except that each device n now has a unique

signature sequence set Sn = {sn,1, sn,2, . . . , sn,Q} , where sn,q ∈ CL, 1 ≤ q ≤

Q , 2J , and L is the signature sequence length. When device n is active and

needs to send J bits of data, it selects one sequence from Sn to transmit.

Using the same technique as in Section 1.2.1, the joint device data and

activity detection problem can be formulated as [Chen et al., 2019]

min
γ

log
∣∣SΓSH + σ2

wI
∣∣+ tr

((
SΓSH + σ2

wI
)−1

Σ̂
)

(1.24a)

s. t. γ ≥ 0, (1.24b)

where S = [S1,S2, . . . ,SN ] ∈ CL×NQ with Sn = [sn,1, sn,2, . . . , sn,Q] ∈ CL×Q

and γ = [γT1 ,γ
T
2 , . . . ,γ

T
N ]T ∈ CNQ with γn = [γn,1, γn,2, . . . , γn,Q]T ∈ CQ.

Problem (1.24) takes the same form as problem (1.4) and hence it can be

efficiently solved by the CD algorithm and its accelerated active set variant,

i.e., Algorithms 1 and 2.

1.4.2. Device Activity Detection in Asynchronous

Systems

This section considers a more practical grant-free massive random access sce-

nario where all active devices asynchronously transmit their preassigned signa-

ture sequences to the BS [Liu and Liu, 2021]. We adopt the same notations as

in Section 1.2. We introduce a new notation τn ∈ {0, 1, . . . , τmax} to denote the

delay of the transmitted packet of each active device n ∈ K, which means that
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each active device n ∈ K starts to transmit its signature sequence sn at the be-

ginning of the (τn+1)-th time slot. In the above, τmax is the maximum allowed

delay for all the devices and is assumed to be known at the BS. However, the

delay of each active device is unknown and needs to be estimated.

Given the delay τn, define the effective signature sequence of device n as

s̄n,τn = [0, . . . , 0︸ ︷︷ ︸
τn

, sn, 0, . . . , 0︸ ︷︷ ︸
τmax−τn

]T , n = 1, . . . , N. (1.25)

In this case, the received signal Y ∈ C(L+τmax)×M from time slot 1 to time slot

L+ τmax is expressed as

Y =
N∑
n=1

ans̄n,τn
√
gnh

T
n + W. (1.26)

Then, the joint device and delay detection problem of estimating K and associ-

ated {τk}k∈K boils down to the sequence detection problem where the sequences

are given in (1.25).

Using the same technique as in Section 1.2.1, the joint activity and delay

detection problem can be formulated as [Wang et al., 2022]

min
γ

log |Σ|+ tr
(
Σ−1Σ̂

)
(1.27a)

s. t. γ ≥ 0, (1.27b)

‖γn‖0 ≤ 1, n = 1, 2, . . . , N, (1.27c)

where Σ̂ = 1
MYYH is the sample covariance of the received signal in (1.26),

Σ = SΓSH + σ2
wI, and Γ = diag(γ), where γ = [γT1 ,γ

T
2 , . . . ,γ

T
N ]T , and

γn = [γn,0, γn,1, . . . , γn,τmax ]T .
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In (1.27c), ‖γn‖0 denotes the number of nonzero elements in the vector γn

and the constraint is because there is at most one possible delay for each

device. Although {s̄n,τn} are no longer i.i.d., so a phase transition analysis

would be challenging, problem (1.27) can still be efficiently solved by the CD

algorithm with constraint (1.27c) explicitly enforced during the CD iterations

[Wang et al., 2022] and by the penalty based algorithm [Li et al., 2022] which

penalizes constraint (1.27c) and solves an equivalent penalty formulation.

1.5. Conclusions

This chapter studies the device activity detection problem for grant-free mas-

sive random access with massive MIMO. The covariance-based approach is

employed to formulate the device activity detection problem as an MLE prob-

lem in both single-cell and multi-cell scenarios. In this chapter, we analyze

the asymptotic detection performance of the covariance-based approach as the

number of antennas at the BS(s) goes to infinity, including a phase transi-

tion analysis. We also present efficient CD types of algorithms for solving the

nonconvex detection problem. Finally, we discuss some practical issues in the

device activity detection problem and present two extensions of practical in-

terest.

We conclude this chapter with a brief discussion of two future research

directions. First, most of the existing phase transition analysis (e.g., Theo-

rems 1.4 and 1.6) crucially relies on the assumption that the signature/pilot

sequences of devices are uniformly and randomly drawn from a sphere in an

i.i.d. fashion. It would be interesting to extend the current phase transition

analysis to more practical ways of generating the signature sequences, for in-
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stance, each entry of the device’s signature sequence is uniformly drawn from

the discrete {±1 ± j}, where j is the imaginary unit. Second, the chapter fo-

cuses on the massive MIMO system. However, low-resolution ADCs are often

employed in the massive MIMO system to reduce hardware cost and power con-

sumption. In this case, the BSs can only observe a coarsely quantized version

of the received signals in (1.1) or (1.15). The extension of the covariance-based

approach to the massive MIMO system with low-resolution ADCs and the

study on how the quantization errors affect the detection performance would

be of great interest.
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