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Abstract—This paper addresses an uplink localization problem
in which the base station (BS) aims to locate a remote user
with the aid of reconfigurable intelligent surface (RIS). This
paper proposes a strategy in which the user transmits pilots
over multiple time frames, and the BS adaptively adjusts the RIS
reflection coefficients based on the observations already received
so far in order to produce an accurate estimate of the user
location at the end. This is a challenging active sensing problem
for which finding an optimal solution involves a search through
a complicated functional space whose dimension increases with
the number of measurements. In this paper, we show that
the long short-term memory (LSTM) network can be used to
exploit the latent temporal correlation between measurements
to automatically construct scalable information vectors (called
hidden state) based on the measurements. Subsequently, the state
vector can be mapped to the RIS configuration for the next time
frame in a codebook-free fashion via a deep neural network
(DNN). After all the measurements have been received, a final
DNN can be used to map the LSTM cell state to the estimated
user equipment (UE) position. Numerical result shows that the
proposed active RIS design results in lower localization error as
compared to existing active and nonactive methods. The proposed
solution produces interpretable results and is generalizable to
early stopping in the sequence of sensing stages.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) is a planar surface

consisting of a large number of passive elements, with each

element capable of altering the phase of the incident electro-

magnetic wave with very low power consumption [1]. The

technology is envisioned as one of the enabling technologies

for 6G localization due to its ability to: i) establish a reliable

reflected link when the direct path between the transceivers is

weak or blocked, and ii) provide new anchor points without

needing expensive RF chains [2], [3]. In the area of RIS-aided

localization, fruitful research progress has been made in the

direction of theoretical bounds and algorithms [4]–[11].

This paper considers an uplink localization problem in the

presence of RIS, where a single user repeatedly transmits

pilot symbols and the base station (BS) receives the pilots

through the reflection at the RIS and determines the location

of the user based on the received pilots. Specifically, this

paper investigates a scenario in which the BS can control

the reflection coefficients at the RIS and tackles the problem

of designing the RIS configuration in an active manner to

minimize localization error. By active sensing, we mean that

the RIS reflection coefficients are sequentially designed as a

function of previous measurements. As a result, the RIS can

be used to focus the beam progressively to locate the user

over time as more measurements become available. This is

however a challenging problem as a solution needs to be able

to optimize over the complicated functional landscape from

the sequence of observations to the RIS reflection coefficients,

while being scalable in the number of measurements.

In the context of localization algorithms in RIS-assisted

network, the design of RIS configuration to enhance local-

ization accuracy is of great interest. The authors in [5] devise

three classes of RIS profiles and evaluated the impact of each

class on the 3D position error bound of the user equipment

(UE). Two of the three classes are heuristically designed to

produce narrow/broad beams, and the remaining class consists

of random RIS profiles. In [6], [7], the indoor localization

accuracy is improved by designing a set of RIS profiles that

enlarges the differences between the received signal strength

(RSS) values of adjacent locations. The set of RIS profiles is

designed via local and global search methods. The authors in

[8] consider joint localization and communication optimization

problem and design the appropriate RIS profiles to improve

localization accuracy and transmission throughput. In [9], the

authors consider a fingerprinting localization problem enabled

by an RIS. In particular, the authors employ machine learning

to identify a subset of RIS profiles from a codebook to generate

a more diverse set of fingerprints to improve fingerprint

matching accuracy. All of the above works have demonstrated

the importance of designing/selecting an appropriate set of RIS

configurations and the associated performance gain. However,

active design of RIS configuration, which could further im-

prove the performance, has not been considered.

In this paper, we focus on the active design of RIS reflection

coefficients based on the sequential historical measurements

of the environment to improve the localization accuracy.

Designing such an adaptive sequence of RIS patterns is a chal-

lenging problem. To make the problem tractable, the authors

in [10] design a hierarchical codebook for the RIS that enables

adaptive bisection search over the angular space in a 2D

localization setting. However, a hierarchical codebook-based

method is not necessarily the best approach. For example,

in the context of angle of arrival (AoA) estimation problem,

the performance of the hierarchical codebook-based method is

severely restricted by the quality of the codebook and is far

from optimal [12]. In another work on active sensing with RIS

[11], the authors use gradient descend method to optimize RIS

configuration with a goal of minimizing the Cramér-Rao lower

bound (CRLB) in each step. However, the method is based on



first estimating the fading coefficients and AoAs instead of the

location, which results in significant pilot overhead.

This paper proposes a learning-based localization solution,

where a sequence of RIS configurations is adaptively designed

based on the historical measurements in a codebook-free

fashion. In particular, we use the long short-term memory

(LSTM) based network, for its ability to capture the temporal

relationship between different measurements over a long pe-

riod [13]. We use a chain of LSTM cells, corresponding to the

sequence of measurements. At each measurement time frame,

an LSTM cell accepts new measurement of the environments,

i.e., received pilots, and automatically uses the newly received

measurement (along with historical measurements) to update

a hidden state vector of fixed dimension. Subsequently, a

deep neural network (DNN) is used to extract a correct

representation of the knowledge of location so far from the

hidden state to design the RIS profile for the next time frame.

After multiple measurements, the cell state of the final LSTM

cell is passed through another DNN to obtain the estimated UE

position. Numerical result shows that the proposed active RIS

profile design achieves lower localization error as compared

to the existing nonactive and active RIS profile design.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a localization problem in an RIS-assisted

system with a single-antenna BS, a single-antenna UE, and

a planar RIS. The BS and RIS are placed as in Fig. 1 to

localize the potential users in the area. We assume that the

position of the BS and the RIS are known. By adopting the

Cartesian coordinate system, let pBS = [xBS, yBS, zBS]⊤ and

pRIS = [xRIS, yRIS, zRIS]⊤ denote the position of the BS and

the RIS respectively. The unknown UE position is denoted as

p = [x, y, z]⊤.

The reflection coefficients of the RIS are controlled by an

RIS controller which receives controlling signals from the BS.

Let N be the number of reflection coefficients at the RIS. Then

the RIS reflection coefficient is denoted as

θ = [ejδ1 , ejδ2 , · · · , ejδN ]⊤ ∈ C
N , (1)

with δn ∈ [0, 2π) as the phase shift of the n-th element.

We adopt a block-fading model in which the channels are

assumed to be constant across multiple time frames within

a coherence period, then change independently in subsequent

coherence periods. As shown in Fig. 1, hd ∈ C denotes the

direct channel from the BS to the UE, hr ∈ C
N denotes

the reflection channel from the RIS to the UE, and g⊤
r ∈ C

N

denotes the channel from the BS to the RIS. We further assume

that the reflection channel hr, gr and the direct channel hd
follow Rician fading model:

hr = κ
(

√

ϵ/(1 + ϵ)h̃LOS
r +

√

1/(1 + ϵ)h̃NLOS
r

)

, (2a)

gr = ξ
(

√

ϵ/(1 + ϵ)g̃LOS
r +

√

1/(1 + ϵ)g̃NLOS
r

)

, (2b)

hd = ρ
(

√

ϵ/(1 + ϵ)h̃LOS
d +

√

1/(1 + ϵ)h̃NLOS
d

)

, (2c)
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Fig. 1: RIS-assisted network.

where ρ denotes the pathloss between the BS and the UE,

and κ and ξ denote the path losses between the RIS and the

UE/BS. Here, h̃NLOS
d , h̃NLOS

r and g̃NLOS
r denote the non-line-of-

sight components and their entries are generated independently

according to CN (0, 1). The line-of-sight component of the

reflection channel contains angular information about the lo-

cation of UE. For example, h̃LOS
r is a function of UE location

and RIS location. Let ϕRIS and ψRIS denote the azimuth and

elevation angle of arrival from the UE to the RIS. The line-

of-sight component of hr can be written as

h̃LOS
r = aRIS(ϕRIS, ψRIS), (3)

where the steering vector of the n-th element of the RIS can

be expressed as [14]

[aRIS(ϕRIS, ψRIS)]n

= e
j
2πdR

λc

{v1(n,Nc)sin(φ
RIS)cos(ψRIS)+v2(n,Nc)sin(ψ

RIS)}
,

(4)

where dR is the distance between two reflective elements of the

RIS, λc is the carrier wavelength, and v1(n,Nc) = mod(n−

1, Nc) and v2(n,Nc) =
⌊

n−1
Nc

⌋

. Here, Nc is the number of

columns of the RIS.

Recall that pRIS = [xRIS, yRIS, zRIS]⊤ denote the position

of the RIS and p = [x, y, z]⊤ denote the position of the UE,

we have the following [14]:

sin(ϕRIS)cos(ψRIS) = (y − yRIS)/d, (5a)

sin(ψRIS) = (z − zRIS)/d, (5b)

where d is the distance between the RIS and the UE.

Let ηRIS and ϑRIS denote the azimuth and elevation angle

of departures (AoD) from the RIS to the BS. Since the BS

only has a single antenna, the line-of-sight component of gr
is given by

g̃LOS
r = aRIS(ηRIS, ϑRIS)H, (6)

where the line-of-sight component of hd is given by

h̃LOS
d = 1. (7)

B. Signal Transmission

When there is a localization request, the UE sends a

sequence of T uplink pilot symbols to the BS over T time

frames. Let xt ∈ C be the pilot symbol to be transmitted from



the UE to the BS at the t-th time frame. The BS receives a

combination of the signal from the direct path and the signal

reflected off the RIS, so the received pilots at the BS can be

expressed as

yt(θt) =
√

Pu(hd + v⊤
r θt)xt + nt, t = 0, · · · , T − 1, (8)

where Pu is the uplink transmission power, vr =
diag(hr)g

⊤
r ∈ C

N is the cascade channel between the BS and

the UE through the reflection at the RIS, and nt ∼ CN (0, σ2
u)

is the uplink additive white Gaussian noise. Here, the received

pilot is a function of the RIS configuration at the t-th time

frame θt, where the reflection coefficients can be configured

randomly or designed according to some criteria to enable a

better localization outcome.

C. Problem Formulation

The goal of the localization problem is to estimate the

unknown UE position p based on the T observations [y(t)]T−1
t=0 ,

and the known BS and RIS positions. The design of RIS

configuration is of critical interest here. It has been shown

in [6], [7], [9] that by strategically selecting a fixed set of

RIS configurations, a more favourable RSS distribution can be

obtained, which allows improvement in localization accuracy.

However, most existing works are based on the fixed sensing

framework, which passively collects all the observations of the

environment according to a fixed set of RIS configurations. In

essence, the RIS probes the search area using fixed beams

along multiple random directions. Here, we instead propose

an active sensing framework to gradually narrow down the

searching area using more directional beams.

Specifically, we consider the following active localization

setup. In the t-th time frame, the BS designs the next RIS

configuration θt+1 based on the existing observations, which

is used to make the next measurement yt+1 in the (t + 1)-th
time frame. Thus, the design of RIS configuration is a function

of historical measurements:

θt+1 = Gt({yτ}
t
τ=0), t = 0, · · · , T − 1. (9)

As no prior observation exists when t < 0, the first set of

RIS configurations θ0 is produced via function G−1(∅). The

function accepts an empty set as input and always produces

the same initialization of RIS configuration.

The estimated UE position p̂ can be written as a function

of all T historical observations.

p̂ = F({yt}
T−1
t=0 ). (10)

The location estimation problem can now be formulated as:

min
{Gt(·)}

T−1

t=0
,F(·)

E
[

∥p̂− p∥22
]

(11a)

subject to |[θt]n| = 1, ∀n, t, (11b)

θt+1 = Gt({yτ}
t
τ=0), t = 0, · · · , T − 1,

(11c)

p̂ = F({yt}
T−1
t=0 ). (11d)

Solving the optimization problem (11) is challenging, as

the problem amounts to optimizing the function expression

CC

Environment

Fig. 2: Proposed active localization framework.

{Gt(·)}
T−1
t=0 in (9) and F(·) in (10). To make the problem

more tractable, a common approach is to select the RIS

configuration adaptively from a predefined set of RIS patterns,

namely the codebook, based on heuristics. For example, [10]

considers a 2D RIS-assisted localization problem, where the

sequence of RIS patterns is heuristically selected from hierar-

chical codebooks, based on feedback from the UE. However,

a codebook-based approach is not ideal as the freedom of

designing RIS configuration is restricted.

In this work, we propose to employ a neural network to

parameterize the function F(·) and Gt(·) to adaptively design a

sequence of RIS configurations, without restricting the design

space of RIS coefficients to a pre-defined codebook.

III. PROPOSED ACTIVE LOCALIZATION FRAMEWORK

In this section, we introduce the deep learning approach to

solving the active localization problem discussed in (11). Here

in problem (11), the next RIS configuration θt+1 is designed

based on historical measurements up to t, i.e., {yτ}
t
τ=0. The

main design challenge is that as the dimension of historical

observations increases linearly with t, it is difficult to use

the entire history of measurements to design the next RIS

configuration for large t. Thus, the key design question for the

neural network is how to extract useful information from the

historical measurements and how to map it to an information

vector of fixed dimension.

In this paper, we develop an LSTM network capable of au-

tomatically constructing information vector of fixed dimension

from existing measurements and extracting temporal features

and long-term dependencies from a sequence of temporal

input. The specific LSTM network developed here is similar to

the one in [15] in which the information vector is the hidden

state, but with modifications to the neural network architecture

tailored to the localization problem in an RIS-assisted network.

We also propose a new loss function to make the LSTM

network generalizable to the number of time frames.

A. Neural Network Architecture

The overall neural network architecture is shown in Fig. 2.

At the t-th time frame, an LSTM cell takes new feature as

input to update the hidden state vector st and the cell state

vector ct. The new feature, denoted as πt, can be the RSS

|yt|
2, or the real and imaginary component of received pilots

[R(yt), I(yt)], depending on the constraints of the detecting



hardware at the receiver. We use ◦ to denote the element-wise

product. The updating rules of the state vectors are as follows:

ct = ft ◦ ct−1 + it ◦ tanh (ucπt +wcst−1) , (12a)

st = ot ◦ tanh(ct), (12b)

where uc and wc are linear layers with a number of fully

connected units. Here, ft, it, and ot are the activation vectors

of the forget gate, input gate and output gate within the

LSTM cell respectively. The element-wise updating rules of

the different gates are as follows:

ft = σs (ufπt +wfst−1) , (13a)

it = σs (uiπt +wist−1) , (13b)

ot = σs (uoπt +wost−1) , (13c)

where σs(x) = 1/(1 + e−x) is the sigmoid function, and uf ,

ui, uo, wf , ws and wo are linear layers. As per convention,

the initial value of the cell state c0 is obtained by setting

s−1 = c−1 = 0, and y0 = 1.

We design the RIS configuration for time frame t+1 based

on the hidden state vector st. The hidden state vector is used

as the input to a fully connected neural network of L layers

to design the RIS configuration for the next time frame,

θ̄t+1 = βL(ALβL−1(· · ·β1(A1st + b1) · · ·) + bL), (14)

where βl, l ∈ {1, · · · , L} is the activation function of the l-th
layer, i.e., relu(x) = max(0, x), {Al}

L
l=1 and {bl}

L
l=1 are sets

of trainable weights and biases. Here, θ̄t+1 contains the real

and imaginary components of the RIS reflection coefficients

θ̄t+1 = [R(θt+1)
⊤, I(θt+1)

⊤]⊤. (15)

The dimensions of AL and bL are designed to ensure the

output is of correct dimension, such that θ̄t+1 ∈ R
2N . To

enforce unit modulus constraint on each element of the RIS,

an element-wise normalization is performed

[θt+1]n = [R(θt+1)]n/
√

[R(θt+1)]2n + [I(θt+1)]2n

+ j[I(θt+1)]n/
√

[R(θt+1)]2n + [I(θt+1)]2n. (16)

While the hidden state vector st is used to design the RIS

configuration for the next time frame, the cell state vector cT
is used to obtain the estimated UE position at the T -th time

frame. After T time frames, the final estimated UE position p̂T
is obtained through a fully connected neural network, based

on the final cell state cT :

p̂T = ℓpcT , (17)

where ℓp denotes a neural network with linear layers. Here,

we find that a linear network already works well as the final

DNN.

B. Loss Functions

To train the LSTM network, we employ Adam optimizer

[16] to minimize the average mean squared error between the

estimated position p̂T and the true position as follows

E
[

∥p̂T − p∥22
]

. (18)

TABLE I: Parameters of the LSTM Network.

Label Dimension

uc,uf ,ui,uo

wc,wf ,wi,wo
512

A1 {Al}
L−1

l=2
AL 512× 1024 1024× 1024 1024× 2N

{bl}
L−1

l=1
bL 1024 2N

ℓp 512× 3

Here, the choice of loss function in (18) encourages the LSTM

network to design a series of T RIS configurations to minimize

localization error at the final time frame. We note that this loss

function only accounts for the estimation error at the final

stage. This is a good choice since it gives the neural network

freedom to design the sensing strategy across the entire T
measurement stages.

In some cases, we may need to have earlier stopping in

the sequence of sensing stages, e.g., due to some latency

constraints. This requires the neural network to output the best

estimates of the location before the final stage, but this is not

considered in the loss function (18). For this scenario, we

propose an alternative loss function as follows:

E

[

1

T

T
∑

t=1

∥p̂t − p∥22

]

, (19)

where p̂t = ℓpct. By minimizing the average localization

error across t, we can encourage the LSTM network to design

RIS reflection coefficients to reduce estimation error at each

time frame. The new loss function in (19) helps the learning

framework to achieve good generalizability with respect to the

number of stages.

IV. NUMERICAL RESULTS

A. Simulation Environment

In simulations, the BS is located at pBS =
(40m,−40m,−10m) and an 8 × 8 RIS is located at

pRIS = (0m, 0m, 0m). The unknown user locations p are

uniformly generated within a rectangular area on the x-y
plane (20± 15m, 0± 35m,−20m). In subsequent simulation,

the Rician factor ϵ is set to 10, and 2πdR/λc = 1 without

loss of generality. The path-loss models of the direct and

reflected paths are 32.6 + 36.7 log(d1) and 30 + 22 log(d2),
respectively, where d1 and d2 denote the corresponding link

distance.

B. Baseline Schemes

The proposed LSTM network for adaptive RIS-assisted

localization is implemented using parameters in Table I. We

set L = 4 and develop the model using Tensorflow [17].

The model samples a total of 2,048,000 training data in

2000 epochs. We compare the localization performance of the

proposed algorithm against the following baseline schemes.

Fingerprint based localization with random RIS configu-

rations [9]: In this scheme, the sequence of T uplink RIS

configurations is non-adaptive and random. Every 1m × 1m
block within the 30m × 70m area is associated with a
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Fig. 3: Localization accuracy vs. raw SNR, N = 64, T = 6.

vector of RSS as its fingerprint, i.e.,
[

|y1|
2, · · · , |yT |

2
]

. The

fingerprints are stored in an offline database. A weighted k-

nearest neighbour (wKNN) classifier is used to match online

and offline measurements. Here, we set k = 5.

DNN with random or learned RIS configurations: The

sequence of T uplink RIS configurations is non-adaptive.

Here, we can have two different possibilities: i) the RIS

configurations are randomly chosen, or ii) the sequence of RIS

configurations is learned from training data, but are not adap-

tive as a function of previous measurements. A fully connected

neural network is used to map the received pilot symbols over

T time frames {R(yt), I(yt)}
T−1
t=0 or RSS values over T time

frames to an estimated UE position. The dimension of the

neural network is [200, 200, 200, 3].
Optimizing CRLB using gradient descent (GD) [11]: Here,

we test the idea of designing an active sensing strategy based

on minimizing CRLB in every time step. This is an adaptive

scheme based on estimation theory rather than machine learn-

ing. In each time frame, based on received measurements, we

use maximum a posterior (MAP) estimator to estimate the UE

location, which is used to update the CRLB of the location

error. Here, the CRLB is calculated by replacing the unknown

true location of UE with the estimated one. Subsequently,

the RIS reflection coefficients are designed using the GD

algorithm to minimize the approximated CRLB for the next

pilot transmission.

C. Simulation Results

We first examine the localization performance versus raw

SNR, i.e., Pu = 10SNR/10, when T = 6. In Fig. 3, whether the

input is the pilot symbols or RSS value, the proposed adaptive

RIS design is seen to have the highest localization accuracy

across different SNRs as compared to other benchmarks with

non-adaptive RIS design. This implies that the proposed

algorithm is effectively utilizing the current and historical

measurements to design a more suitable RIS configuration for

future time frames to minimize localization error.
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Fig. 4: Localization accuracy vs. pilot length, N = 64, SNR= 20dB.

Here, we point out that CRLB-minimization based adaptive

RIS design does not serve as an optimal RIS design in reducing

the location MSE for the following reasons: i) an active

sensing solution to (11) should design a series of sensing

configuration jointly across t to minimize the location MSE,

i.e., {Gt(·)}
T−1
t=0 as in (11). However, the CRLB-based ap-

proach greedily treats the active sensing problem by designing

individual Gt(·) at each time frame, ii) the CRLB can be a

loose lower bound of the MSE, especially when SNR is low

and/or the number of observations is limited [18], [19] iii)

using the estimated UE location in computing the CRLB can

introduce errors, iv) finally, the optimization of CRLB is a

nonconvex optimization problem; it is difficult to find its true

optimal solution.

We point out that the fingerprinting based approach along

with wKNN classifier is seen to experience poor performance

in this simulation setup. This is due to the randomness in

the non-line-of sight Rician channel model which adversely

influences the fingerprint matching accuracy.

We next examine the localization performance with varying

numbers of time frames. From Fig. 4, we observe that the

proposed algorithm demonstrates a robust performance over

other benchmarks. Moreover, the LSTM based neural network

with the proposed training algorithm generalizes well to early

stopping in the sequence of time frames. The model is trained

to adaptively design RIS configurations to minimize loss

function (19) when T = 14. We test the trained model when

the number of time frames is fewer than T without retraining,

and find the localization accuracy to be as good as if the LSTM

is trained for each specific T .

D. Interpretation

We visually interpret the RIS design obtained from the

proposed LSTM based network. Here, we test the neural

network for one single user and use the RSS distribution

(or radio map) as a means to illustrate the beamforming

pattern produced by the adaptively designed RIS reflection
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Fig. 5: RSS distribution from time frame 1 to 6, T = 6, SNR = 25dB.

coefficients. To do so, at each time frame, we record the

designed RIS configuration and plot the RSS obtained at every

1m × 1m block in the area of interest across the x − y
plane as shown in Fig. 5. The red dot denotes the true UE

position. From Fig. 5(a), it is clear that the RIS is probing

broader beams at the first several time frames to search for

the user, then gradually focusing the beam towards the UE as

t increases. This implies that the proposed neural network is

indeed designing meaningful RIS configurations based on the

measurements.

V. CONCLUSION

This paper shows that active sensing can significantly im-

prove the performance of an uplink RIS-assisted localization

task in which the BS adaptively designs the sequence of RIS

reflection coefficients based on the received pilots from the

user so far to enhance the localization accuracy. By employing

an LSTM based neural network, the proposed solution can

effectively utilize historical measurements to design RIS con-

figurations for subsequent measurements in a codeboook-free

fashion for the purpose of minimizing localization error. Nu-

merical results indicate a lower localization error as compared

to existing active and nonactive benchmarks. The proposed

solution demonstrates interpretable results and is generalizable

to early stopping in the sequence of sensing stages.
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