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Abstract—This paper investigates the uplink signal dimension
reduction problem for a user-centric cloud radio access network,
in which each single-antenna user communicates with the central
processor (CP) through a cluster of remote radio heads (RRHs).
To reduce the fronthaul traffic, each RRH applies a compression
matrix to reduce the dimension of the received signal before
relaying it to the CP. However, the optimal design of the com-
pression matrices requires significant communication overhead
for transmitting the high-dimensional channel state information
(CSI) matrices from the RRHs to the CP. To address this issue,
this paper proposes a deep learning framework to first learn
a sub-optimal compression matrix at each RRH based on the
local CSI, then iteratively refine the learned compression matrix
using a meta-learning-based gradient method. To reduce the
communication cost for CSI sharing and gradients transmission,
this paper proposes an efficient signaling scheme that only
requires the transmission of low-dimensional effective CSI and its
gradient between the CP and each RRH. Furthermore, a meta-
learning-based gated recurrent unit (GRU) network is proposed
to reduce the number of signaling transmission rounds. For the
sum-rate maximization problem, simulation results show that the
proposed two-stage neural network can perform closely to the
fully cooperative global CSI-based benchmark with significantly
reduced communication overhead. Moreover, using the first
stage alone can already outperform the existing local CSI-based
benchmark.

I. INTRODUCTION

Cloud radio access network (C-RAN) [1], [2], also known as
cell-free multiple-input multiple-output (MIMO) [3] network,
is envisioned as a key building block for future wireless net-
works. In an uplink C-RAN system, the user signals received
by distributed remote radio heads (RRHs) are jointly estimated
and decoded in the central processor (CP), thereby effectively
addressing the issue of inter-cell interference [4]. However,
due to the limited fronthaul capacity, it is necessary for each
RRH to compress the received high-dimensional signal vectors
before forwarding them to the CP. This is typically done by
applying a dimension reducing compression matrix followed
by a uniform quantizer [5]. In this paper, we focus on the
design of dimension reducing compression matrices at RRHs
since the uniform quantization step can be readily incorporated
into the proposed scheme afterwards. This is a challenging
problem because the optimal compression matrices need to be
designed jointly at the CP using global channel state informa-
tion (CSI), leading to significant communication overhead. To
address this issue, this paper shows that by carefully designing
a gated recurrent unit (GRU)-based meta-learning framework,

we are able to find near-optimal compression matrices with
very small communication overhead.

Assuming that the global CSI is available at the CP, the
centralized design of the compression matrices is already a
highly nontrivial problem. In [6], a heuristic channel selection-
based matched filtering scheme is proposed to maximize the
joint mutual information between all compressed signals and
original user signals. Further, block coordinate descent (BCD)-
based algorithms are developed in [7] and [8] to optimize
the estimation mean squared error (MSE) and joint mutual
information, respectively. In both of these works, the closed-
form optimal compression matrix at one RRH are derived
assuming others are fixed. However, in all these works, the
transmission of full CSI from the RRHs to the CP and the
designed compression matrices from the CP to the RRHs can
lead to significant communication overhead.

To reduce the communication overhead for CSI transmis-
sion, local CSI-based methods are proposed in [5], [9]–[11],
where compression matrices are designed at each RRH indi-
vidually using the available local CSI. Specifically, [9]–[11]
propose to design each compression matrix using the largest
eigenvectors of the covariance matrix of the received signal at
each RRH. However, this eigenvalue decomposition (EVD)-
based approach can be highly sub-optimal since it minimizes
the local reconstruction error at each RRH without taking into
account the optimization of the end-to-end system objective.
To address this problem, [5] proposes a data-driven approach
to optimize the end-to-end MSE based on local CSI. However,
although this deep learning approach outperforms the EVD-
based method, there is still a gap to the global CSI-based
benchmark.

This paper aims to design near-optimal compression ma-
trices with as small communication overhead as possible.
Toward this end, we propose a novel two-stage deep learning
framework, where in the first stage, compression matrices are
derived from the local CSI at the RRHs using fully connected
deep neural networks (DNNs), and in the second stage, the
designed compression matrices are further refined iteratively
using the gradient of the system objective with respect to
beamforming matrices. To reduce the signaling dimension
for gradient transmission in each iteration, we propose an
efficient signaling strategy, which allows the gradient at each
RRH to be calculated from a low-dimensional signal from
the CP. Further, to reduce the overall refinement rounds,



we propose a meta-learning-based GRU network that can
be trained to design an efficient refinement update based on
historical and current gradients. Simulation results show that
the trained neural network with only the first stage can already
outperform the existing local CSI-based benchmark without
introducing additional communication costs. Moreover, when
a few iterations are allowed in the second stage, the proposed
network can achieve almost the same performance as the
global CSI-based benchmark but with significant reduction in
communication overhead.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a C-RAN system where N single antenna users
communicate with the CP in the uplink through B spatially
distributed RRHs, each equipped with M antennas. As shown
in Fig. 1, the b-th RRH receives signals from all users as:

yb = Hbx+ zb , (1)

where Hb = [hb1 · · ·hbN ] ∈ CM×N is the channel matrix
between RRH b and all users, x ∼ CN (0, PxI) is the
transmitted signal from all users, and zb ∼ CN

(
0, σ2

zI
)

is
the additive white Gaussian noise. We consider a quasi-static
block-fading channel model, where Hb remains constant in
each coherence block. We assume that perfect local CSI Hb

is available at RRH b for each coherence block.
To reduce the fronthaul traffic load, each RRH compresses

the received user signal vector by reducing its dimension
before forwarding it to the CP. The received signal vector after
compression for RRH b is given by:

vb = WbHbx+ Wbzb , (2)

where Wb ∈ CK×M is a full rank dimension reducing
matrix at RRH b. We denote the effective channel matrix after
compression for RRH b as:

Fb = WbHb , (3)

where the i-th column fbi ∈ CK is the effective channel vector
from user i to RRH b.

At the CP, user signals are recovered based on the com-
pressed signal vectors from the RRHs. Because estimating
each user’s signal using compressed vectors from all the
RRHs is impractical for a large network, a clustering scheme
is needed to limit the computational complexity in the CP.
We adopt a user-centric clustering scheme [12], where each
user is at the center of its serving RRH cluster, and clusters
for different users may overlap. Specifically, each user is
associated with its strongest RRHs. We use Θn to denote the
serving cluster of RRHs for user n, and use |Θn| to denote
the cluster size. Then, the collective signal model for the RRH
cluster Θn can be written as:

v̄n = F̄nx+ W̄nz̄n , (4)

where v̄n =
[
· · ·vHb · · ·

]H
b∈Θn

∈ C|Θn|K is the collective

received signal vector, F̄n =
[
· · ·FH

b · · ·
]H
b∈Θn

∈ C|Θn|K×N
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Fig. 1. Uplink C-RAN system model. The compression matrices Wb at RRH
b is designed using the proposed two-stage DNN.

is the collective effective channel matrix after compression,
W̄n ∈ C|Θn|K×|Θn|M is the collective block-diagonal com-
pression matrix whose block-diagonal entries are given by
Wb, for b ∈ Θn, and z̄n =

[
· · · zHb · · ·

]H
b∈Θn

∈ C|Θn|M

is the collective noise vector. Further, we use h
(n)
i =[

· · ·hH
bi · · ·

]H
b∈Θn

∈ C|Θn|M and f (n)
i = W̄nh

(n)
i ∈ C|Θn|K

to denote the original and effective channel vector from user
i to the RRHs in Θn, respectively.

The achievable rate of user n can be written as:

Rn = log

1 +
Px

∣∣∣cHnf (n)
n

∣∣∣2
Px

∑
i 6=n

∣∣∣cHnf (n)
i

∣∣∣2 + σ2
z

∥∥W̄H
ncn

∥∥2

 ,

(5)
where cn is the linear receive beamformer for user n in the
CP. Without loss of generality, we constrain Wb to be a semi-
orthogonal matrix, i.e., WbW

H
b = I. This constraint can be

satisfied by taking QR decomposition W̃H
b = QR, where Q is

a M×K matrix with orthonormal columns and R is a K×K
upper triangular matrix. We can then set the normalized Wb

as QH. This operation does not change the achievable rate Rn

since the triangular matrix R is invertable.
With the semi-orthogonal Wb as chosen above, the achiev-

able rate in (5) can now be rewritten as:

Rn = log

1 +
Px

∣∣∣cHnf (n)
n

∣∣∣2
Px

∑
i 6=n

∣∣∣cHnf (n)
i

∣∣∣2 + σ2
z ‖cn‖

2

 . (6)

We use the linear minimum mean squared error (LMMSE)
estimator to design the receive beamformer cn as [13]:

cn =
(
F̄nF̄H

n + σ2
z/PxI

)−1
f (n)
n . (7)

B. Problem Formulation
With the above system model in place, the sum rate maxi-

mization problem can now be formulated as:

maximize
{Fb(·)}Bb=1

E

[
N∑

n=1

Rn

]
(8a)

subject to Wb = Fb

(
{Hb}Bb=1

)
, b = 1, . . . , B , (8b)

WbW
H
b = I, b = 1, . . . , B , (8c)
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(a) The uplink and downlink low-dimensional signaling scheme.
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(b) The GRU block for updating the compression matrix
at RRH b in the t-th iteration.

Fig. 2. A block diagram of the proposed two-stage meta-learning algorithm for designing compression matrices.

where the expectation in the objective function is over the
distribution of channel matrices {Hb}Bb=1.

Solving the problem (8) is challenging in terms of both
communication cost and computational complexity. Specifi-
cally, the optimal compression matrices {Wb}Bb=1 need to be
designed jointly at the CP with the global CSI {Hb}Bb=1, but
this requires significant communication overhead for transmit-
ting the local CSI from the RRHs to the CP and transmitting
the designed compression matrices from the CP back to the
RRHs through the fronthaul. Moreover, given the global CSI,
this problem is also computationally difficult to solve due to its
non-convexity and the complex user-centric clustering setting.

To reduce the communication overhead, most of the existing
works [9]–[11] solve the problem (8) using the EVD method,
which optimizes the compression matrix individually at each
RRH based on the local CSI:

minimize
Wb

E
[∥∥yb −WH

b Wbyb
∥∥2

2

]
(9a)

subject to WbW
H
b = I . (9b)

However, this EVD-based approach is highly sub-optimal
since independent local metrics do not correspond to the end-
to-end system objective. In this paper, we propose a novel data-
driven approach to solve this problem. By carefully designing
the signaling scheme and the neural network structure, we can
achieve near-optimal performance with significantly reduced
communication overhead.

III. TWO-STAGE DESIGN OF DIMENSION REDUCING
MATRICES

In this section, we propose a two-stage deep learning
framework including an initialization stage and a refinement
stage to solve the problem (8), as shown in Fig. 2. Specifically,
the compression matrix at each RRH is first derived from the
local CSI using a DNN in the first stage, and then refined
iteratively using the gradient of the objective in the second
stage. To reduce the communication overhead in the refinement
stage, a low-dimensional signaling scheme is proposed for

each iteration, and a meta-learning-based GRU network is
designed to reduce the number of iteration rounds.

A. Stage One: Initialization Using Local CSI

In the first stage, each RRH uses a DNN to design its
compression matrix based on its local CSI. Mathematically,
RRH b maps its local CSI Hb to the compression matrix W

(0)
b

according to:

W
(0)
b = Pθb (Hb) , (10)

where Pθb (·) denotes the DNN parameterized by θb. As
shown in Fig. 2(a), the B DNNs in stage one are concate-
nated with the network modules in stage two and the overall
network is trained in an end-to-end manner using unsupervised
learning.

As a special case, stage one can be implemented alone
as a local CSI-based method. Specifically, at the beginning
of each channel coherence block, RRH b first designs the
compression matrix Wb using the DNN Pθb based on the
local CSI Hb, and then transmits the effective channel Fb to
the CP to design the receive beamformer in (7). This local
CSI-based deep learning method can outperform the heuristic
EVD method in [9] since the DNNs learn to optimize the end-
to-end loss function instead of the intermediary MSE loss as
in (9). As such, even though the global CSI is inaccessible
to each RRH, DNNs can implicitly learn to make use of the
statistical distribution of the global CSI through training.

B. Stage Two: Iterative Refinement Using Global Signaling

After the compression matrices are initialized at each RRH
using the local CSI, a refinement process can be implemented
to further improve the performance by exchanging some low-
dimensional global information between the RRHs and the CP
iteratively. To ensure the efficiency of the iterative algorithm,
we propose a low-dimensional signaling transmission scheme
for each iteration, and a GRU-based meta-learning framework
to accelerate the convergence speed.



TABLE I
COMMUNICATION OVERHEAD PER RRH

Methods Uplink
Transmission

Downlink
Transmission

Total
Communication
Overheads

Local CSI
(EVD/DNN) Fb – KN

Two-stage
DNN

F
(t)
b

t = 0, . . . , T

∂R
∂Fb

∣∣∣
Fb=F

(t)
b

t = 0, . . . , T − 1
(2T + 1)KN

Global CSI Hb Wb MN +KM

1) Low Dimensional Signaling Scheme: A straightforward
signaling scheme is based on gradient descent (GD). Specif-
ically, RRH b sends the compression matrix Wb to the CP;
the CP calculates the gradient ∂R/∂Wb and sends it back to
RRH b to update the compression matrix Wb using the GD
algorithm. However, computing ∂R/∂Wb requires global CSI
matrices {Hb}Bb=1, which are not available in the CP. In this
paper, we make a key observation that since the sum rate is
only a function of effective CSI matrices according to (6) and
(7), we have:

∂R

∂Wb
=

∂R

∂Fb
HH

b , (11)

which implies that the gradient with respect to Wb can be
recovered at RRH b based on the gradient with respect to
Fb plus the local CSI Hb. Therefore, we propose a signaling
scheme as shown in Fig. 2(a). Specifically, in the t-th iteration,
RRH b sends the CP its effective CSI F

(t−1)
b . After collecting

the effective CSI matrices from all the RRHs, the CP computes
the gradient ∂R/∂Fb evaluated at Fb = F

(t−1)
b and transmits

it back to RRH b. Then, RRH b recovers the gradient ∂R/∂Wb

evaluated at Wb = W
(t−1)
b according to (11) and performs the

GD update given by:

W̃
(t)
b = W

(t−1)
b + αt

∂R

∂Wb

∣∣∣∣
Wb=W

(t−1)
b

, (12)

where αt is the step size. At the end of each iteration, we

take the QR decomposition of
(
W̃

(t)
b

)H
= QR and set

the QH matrix as the orthogonalized W
(t)
b to satisfy the

constraint (8c). The final compression matrices are decided
after T iterations, i.e., Wb = W

(T )
b .

We quantify the amount of communication overhead as
the number of entries in the signaling matrices. For each
iteration of the proposed scheme, both the uplink and downlink
signaling are K × N dimensional, consuming a total of
(2T + 1)KN overhead per RRH for T refinement iterations
and one final uplink transmission. Comparatively, the global
CSI-based approach requires the transmission of the M ×N
dimensional full CSI in the uplink, and the K×M dimensional
compression matrix in the downlink for each RRH. Since the
compression dimension K is much smaller than the number of
antennas M in a C-RAN system, the amount of overhead can
be significantly reduced by the proposed low-dimensional iter-
ative signaling scheme, provided that the number of iterations
required is small. The communication overhead of different
methods is listed in Table I.

Algorithm 1 Proposed two-stage meta-learning algorithm

1: # Stage 1: Initialization using local CSI
2: Initialize W

(0)
b via (10), b = 1, . . . B

3: # Stage 2: Iterative refinement using global signaling
4: Initialize GRU hidden state vector c(0)

b

5: for t = 1 : T do
6: RRH b sends effective CSI F

(t−1)
b to CP, b = 1, . . . B

7: CP computes gradient ∂R/∂Fb|Fb=F
(t−1)
b

and sends it back to RRH b, b = 1, . . . B
8: for each RRH b = 1, . . . B do
9: Compute gradient ∂R/∂Wb|Wb=W

(t−1)
b

via (11)

10: Update hidden state vector c(t)
b via (13)

11: Compute update term ∆W
(t)
b via (14)

12: Update W
(t)
b via (15) and QR decomposition.

13: end for
14: end for
15: Set Wb = W

(T )
b

2) Reducing Signaling Rounds via Meta-Learning : To
reduce the number of communication rounds T , we need
an algorithm that can converge quickly. However, GD in
general has a slow convergence rate since it only uses the
gradient information in each time-step, and the optimal step
size for each iteration is difficult to choose, especially since the
RRHs do not have access to the full CSI. To accelerate the
convergence speed, we propose a meta-learning-based GRU
network to learn the update step based on the current and
historical gradient information [14], [15]. Specifically, in the
t-th refinement iteration of RRH b, the GRU cell takes the
previous hidden state vector c(t−1)

b and the gradient ∂R/∂Wb

evaluated at the previous compression matrix W
(t−1)
b as

inputs, and outputs the new hidden state vector c(t)
b according

to:

c
(t)
b = Gθg

(
c

(t−1)
b ,

∂R

∂Wb

∣∣∣∣
Wb=W

(t−1)
b

)
, (13)

where Gθg (·) denotes the GRU hidden state update function
parameterized by θg . Using another DNN Fθf (·) parameter-
ized by θf , the update term ∆W

(t)
b is mapped from the hidden

state vector c(t)
b according to:

∆W
(t)
b = Fθf

(
c

(t)
b

)
. (14)

Finally, the compression matrix for RRH b at iteration t is
updated as:

W̃
(t)
b = W

(t−1)
b +∆W

(t)
b , (15)

followed by the QR decomposition step. The above GRU block
is concatenated for T iterations, as shown in Fig. 2(a). The
overall two-stage network is trained in an end-to-end manner
using the loss function −

∑T
t=0R

(
W

(t−1)
b

)
to optimize the

network parameters
{
{θb}Bb=1 ,θg,θf

}
. The overall algorithm

is summarized in Algorithm 1.



We remark that the proposed meta-learning-based approach
can converge much faster than GD because the GRU can learn
an efficient update rule for this specific problem from training
data rather than using manually designed general update rules.

IV. SIMULATION RESULTS

A. System Setup

In this section, we evaluate the performances of the pro-
posed scheme with 19-cell wrap-around cellular network sim-
ulation topology. We consider a dense urban network, where
the distance between two neighbouring RRHs is 150m and
the height of an RRH is 30m. During each scheduling time
slot, 2 users are uniformly generated in each cell, and the
transmit power of each user is 23dBm. The system bandwidth
is 20MHz and background noise level is −169dBm/Hz. A
signal-to-interference-plus-noise ratio (SINR) gap of 6dB is
considered to account for the coding and modulation scheme
used in practice. We assume that the carrier frequency is
2.9GHz and the channel follows Rayleigh fading with the
distance dependent path loss 41.74 + 29 log 10 (d) [16]. Sim-
ulations are performed in the real field for simplicity.

We perform simulations for two scenarios: the number of
antennas M = 8 and M = 32, respectively. In both cases, we
set the compression dimension K = 2. To make sure that the
C-RAN system is operating in the correct regime, the cluster
size |Θn| should satisfy K |Θn| > M so that the number
of effective antennas in a cluster is greater than the number
of antennas M at a single RRH. In our simulation, we set
|Θn| = 7 for M = 8, and |Θn| = 17 for M = 32.

We compare the performance of proposed data-driven
scheme with the following benchmarks:
• Single-cell processing. This corresponds to the setting of

traditional cellular MIMO network without cooperation,
where each base station employs the LMMSE beam-
former [13] for users in its own cell using the local CSI.

• EVD using local CSI [9]. The rows of the compression
matrix for RRH b are derived by taking the eigenvectors
corresponding to the K largest eigenvalues of the received
signal’s covariance matrix Σybyb

= PxHbH
H
b +σ2

zI. The
effective channel Fb = WbHb is forwarded to the CP for
designing receive beamformers.

• GD using global CSI. To reap full cooperation gain,
each RRH forwards its local CSI to the CP, which
jointly optimizes the compression matrices for all RRHs
using the global CSI with GD. The designed compression
matrices are then transmitted back to each RRH.

• DNN using local CSI (first stage) + GD. The second
stage of the proposed network is replaced with generic
GD, which has the same signaling scheme as in Sec.
III-B but uses the update rule in (12). The constant step
size is tuned manually so that GD can achieve the best
performance within the number of iterations allowed.

B. Neural Network Implementation Details

In the first stage of the proposed framework, a common
3-layer fully connected DNN with hidden layers of width
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[2048, 512] and tanh nonlinearity is used at all RRHs. Since the
distance between RRH b and the i-th scheduled user dbi may
change drastically in different scheduling timeslots, the 2-norm
of the input feature hbi varies significantly during the neural
network training stage, which causes severe training difficul-
ties. Therefore, we sort the columns {hbi}Ni=1 according to the
distance dbi before Hb is flattened and fed into the input layer.
We add a normalization layer after the output layer where QR
decomposition is adopted to guarantee WbW

H
b = I. In the

second stage of the proposed framework, the GRU and DNN
in each iteration block are reused for every iteration and every
RRH to save memory. The hidden unit of GRU has size of
2KM , and the DNN has one hidden layer of size 2KM . We
implement the deep learning models in PyTorch [17] and train
them using the Adam optimizer [18].

C. Simulation Results

We first illustrate the benefit of using the local CSI-based
DNN method. That is, the compression matrices are designed
using only the first stage of the proposed two-stage DNN.
As shown in Fig. 3 and Fig. 4, the local CSI-based DNN
methods can achieve better performance compared to the EVD
method. Note that this gain is obtained without introducing
any additional communication cost; it comes from the use of
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an end-to-end loss function instead of a heuristic local loss
function and the implicit utilization of the distribution of the
global CSI learned by the DNN through training.

We remark that uniform quantization can be readily incor-
porated into the proposed framework. That is, after applying
dimension reducing matrices, we uniformly quantize each
dimension with 7 bits and model the quantization error as ad-
ditive Gaussian noise [9]. As shown in Fig. 3, the performance
degradation caused by quantization is negligible.

Even though the local CSI-based DNN can significantly
outperform EVD, there is still a large gap from the global
CSI-based GD method. For a system equipped with small
number of antennas, e.g., M = 8, the dimension of the
global CSI may not be very large; thus, it is feasible to
send all the CSI matrices from the RRHs to the CP and
use the GD method to design the compression matrices based
on the global CSI. However, for large-scale antenna systems,
e.g., M = 32, the significant overhead requirement makes
the global CSI-based approach impractical. In this case, the
proposed iterative refinement scheme can provide an efficient
trade-off between performance and communication overhead.
Specifically, as shown in Fig. 5, the gap between the local
CSI-based DNN and the global CSI-based GD method can
be closed by 85% with only 4 refinement iterations, which
corresponds to only 50% of overhead required by the global
CSI-based approach. Moreover, it can be observed that the
GRU-based meta-learning method converges much faster than
GD due to the use of the optimized update rule for this
specific problem learned from training data. This significantly
reduces communication rounds for CSI sharing and gradient
transmission.

V. CONCLUSION

This paper investigates the problem of designing compres-
sion matrices in an uplink C-RAN system. A two-stage deep
learning framework is proposed to optimize the end-to-end
sum rate objective, where the compression matrices are derived
from the local CSI using fully connected neural networks in
the first stage and further refined iteratively using the downlink

signaling from the CP in the second stage. To reduce the
communication overhead, a low-dimensional signaling scheme
is proposed to reduce the overhead for each iteration, and
a novel GRU-based meta-learning framework is proposed
to accelerate convergence speed of the refinement process.
Simulation results show that the performance of the proposed
neural network can quickly converge to that of the global CSI-
based benchmark with significantly smaller overhead, and that
using the first stage alone can already outperform the local
CSI-based EVD benchmark.
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