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Abstract—The two-user Gaussian broadcast channel (BC) with
correlated noises and with decoders connected by cooperative
links of finite capacities (known as conferencing decoders) is
considered. A novel outer bound on the capacity region is
established. For the channel with fully correlated noises (i.e.,
the noise correlation is either 1 or -1), the new outer bound
yields exact capacity region for two cases: 1) BCs with degraded
message sets; 2) BCs with one-sided conferencing from the
weaker receiver to the stronger receiver. For these two cases,
it is also shown that the outer bound is within half bits to the
capacity region for arbitrary noise correlation. Furthermore, for
the Gaussian BC with arbitrary noise correlation λ, we show
that regardless of the capacities of conferencing links, a one-
sided cooperative scheme (from the stronger user to the weaker
one) based on decode-and-forward is sufficient to achieve the
capacity region to within 1

2
log( 2

1−|λ| ) bits.

I. INTRODUCTION

This paper investigates the impact of decoder cooperation
via digital links of finite capacities (known as conferencing
links) on the capacity region of a two-user Gaussian broadcast
channel (BC) with both common and private messages and
with correlated noises. The conferencing links can help the
decoding process by providing a quantized version of the
received signal or a part of the decoded messages from one
receiver to the other receiver. However, among the existing
results in the literature, it is rarely the case that a combination
of the quantize-and-forward and decode-and-forward strategies
can achieve the capacity region of any instances of BC
with receiver cooperation. In this paper, we take advantage
of a novel outer bound to show that in the case of fully
correlated noises, exact capacity region results can be derived
in several cases of Gaussian BC with fully correlated noises
at the receivers and conferencing decoders. Interestingly, the
conferencing links between the receivers with fully correlated
noises can allow strictly positive rates to be achieved with
near-zero transmit power when the noises are fully correlated.

The two-user BC with conferencing decoders is previously
studied in [1]- [7]. In [1], the authors develop communication
strategies for the interactive decoding of a common message
broadcast to cooperative users. In [2], the capacity region of
physically degraded channel is derived and also an achievable
rate region is given for the general case. In [3], problems
of communication over physically degraded, state-dependent
BCs with one-sided conferencing decoders are investigated.
In [4], the capacity region of the semi-deterministic BC
with one-sided decoder cooperation is derived and its duality

with a source coding problem is addressed. The authors in
[5] consider the BC with one-sided cooperating users under
strong secrecy constraints and present capacity results for
the semi-deterministic and physically degraded cases. In [6],
the BC with (one-sided) unreliable cooperating decoders is
studied. In a recent work [7], the BC with degraded message
sets and one-sided cooperation link that may be absent is
considered and its capacity region is given. As reviewed, most
of the previous capacity results on the BC with conferencing
decoders pertain to one-sided cooperation, i.e., only one of the
users is connected to the other by a conferencing link.

Following the previous work [8], in this paper, we first
present a novel outer bound on the capacity region of the two-
user Gaussian BC with bidirectional conferencing decoders.
This outer bound, which is based on multiple applications of
the Csiszár-Körner identity [9, Lemma 7] and the entropy
power inequality, is strictly tighter than the previous ones
including that of [2, Prop.1], which is essentially the cut-set
bound. Using this bound, we prove several interesting results.
For the channel with fully correlated noises (i.e., the noise
correlation is either 1 or -1), the new outer bound yields exact
capacity region for two cases: 1) Gaussian BCs with degraded
message sets; 2) Gaussian BCs with one-sided conferencing
from the weaker receiver to the stronger receiver. For these
two cases, we also show that the outer bound is within half
bits of the capacity region for Gaussian BCs with arbitrary
noise correlation. Lastly, it is shown that for the Gaussian BC,
regardless of the capacities of conferencing links, a one-sided
cooperation scheme (from the stronger user to the weaker
one) based on decode-and-forward is sufficient to achieve the
capacity region to within 1

2 log( 2
1−|λ| ) bits, where λ is the

correlation coefficient of the receiver noises.

II. PRELIMINARIES

The two-user BC with conferencing decoders is a com-
munication scenario in which a transmitter sends a common
message and two private messages to the two users. The
receivers are able to exchange information via communi-
cation links of finite capacities called conferencing links.
Fig. 1 illustrates the channel model. The channel is given
by (X ,Y1,Y2, P (y1, y2|x), C12, C21) where X denotes input
alphabet, Y1 and Y2 denote output alphabets, P (y1, y2|x) is
the channel transition probability function, and C12, and C21

are capacities of the conferencing links.



Figure 1. The two-user BC with conferencing decoders.

This paper focuses on the Gaussian BC with correlated
noises defined as follows:{

Y1 = aX + Z1

Y2 = bX + Z2,
(1)

where Z1 and Z2 are correlated Gaussian random variables
with zero mean and unit variances and correlation coefficient
λ, i.e., E[Z1Z2] = λ, X is the input signal with E[X2] ≤ P ,
and a and b are real-valued channel gains. When there is no
loss of generality, we assume that |a| ≥ |b|, where | · | stands
for absolute value.

The definitions of encoding, decoding processes, and the
definition of capacity region of the two-user BC with con-
ferencing decoders can be found in [8], which is essentially
that of [2]. Throughout the paper, we use the notation ψ(x) ,
1
2 log(1 + x).

III. MAIN RESULTS

A. Converse

First of all, recall the converse theorem in the previous work
[8] for the general BC with conferencing decoders.

Theorem 1. ( [8]) Consider the two-user BC with conferenc-
ing decoders shown in Fig. 1. Let Ro denote the set of all rate
triples (R0, R1, R2) such that:

R0 +R1 ≤ I(U ;Y1) + C21 (2)
R1 ≤ I(X;Y1|Y2, V ) + I(X;Y2) (3)
R1 ≤ I(X;Y2|Y1, V ) + I(X;Y1) (4)

R0 +R2 ≤ I(V ;Y2) + C12 (5)
R2 ≤ I(X;Y2|Y1, U) + I(X;Y1) (6)
R2 ≤ I(X;Y1|Y2, U) + I(X;Y2) (7)

R0 +R1 +R2 ≤ I(X;Y1|V ) + I(V ;Y2) + C12 + C21 (8)
R0 +R1 +R2 ≤ I(X;Y2|U) + I(U ;Y1) + C12 + C21 (9)
R0 +R1 +R2 ≤ I(X;Y1|Y2, V ) + I(X;Y2) + C12 (10)
R0 +R1 +R2 ≤ I(X;Y2|Y1, U) + I(X;Y1) + C21 (11)
R0 +R1 +R2 ≤ I(X;Y1, Y2) (12)

for some joint PDFs PU,V,X where U, V → X → Y1, Y2 forms
a Markov chain. The set Ro constitutes an outer bound on the
capacity region.

A complete proof of Theorem 1 is given in [8]. It is based
on multiple applications of the Csiszár-Körner identity. In this

paper, we focus on the Gaussian BC (1). By considering the
input power constraint E[X2] ≤ P , we can optimize the
bound over its auxiliary variables U and V for the Gaussian
channel and derive an explicit characterization of the mutual
information terms in the outer bound as below.

Theorem 2. Consider the Gaussian BC (1) with conferencing
decoders. Assume that |a| ≥ |b|. Let RGo denote the set of all
rate triples (R0, R1, R2) such that for some α, β ∈ [0, 1]:

R0 +R1 ≤ ψ
(

(1− α)a2P

αa2P + 1

)
+ C21 (13)

R1 ≤ Ψ2 + ψ

(
(1− β)b2P

βb2P + 1

)
(14)

R0 +R2 ≤ ψ
(

(1− β)b2P

βb2P + 1

)
+ C12 (15)

R2 ≤ Ψ1 + ψ

(
(1− α)b2P

αb2P + 1

)
(16)

R0 +R1 +R2 ≤ ψ
(
βa2P

)
+ ψ

(
(1− β)b2P

βb2P + 1

)
+ C12 + C21 (17)

R0 +R1 +R2 ≤ Ψ2 + ψ

(
(1− β)b2P

βb2P + 1

)
+ C12 (18)

R0 +R1 +R2 ≤ Ψ1 + ψ

(
(1− α)a2P

αa2P + 1

)
+ C21 (19)

R0 +R1 +R2 ≤ ψ
((

a2 + b2 − 2λab

1− λ2

)
P

)
, (20)

where

Ψ1 = ψ

(
α

(
a2 + b2 − 2λab

1− λ2

)
P

)
Ψ2 = ψ

(
β

(
a2 + b2 − 2λab

1− λ2

)
P

)
.

The set RGo constitutes an outer bound on the capacity region.

The outer bound is based on applying entropy power in-
equality on the outer bound derived in Theorem 1. The details
are omitted due to space limitation.

Remark 1. For the Gaussian BC (1) if λ = b
a , the channel is

degraded and we have:

a2 + b2 − 2λab

1− λ2
= a2 +

(λa− b)2

1− λ2
= a2 (21)

In this case, the outer bound RGo can be shown to be
achievable, and it yields the capacity region (see Remark 5).

Thus, for the rest of the paper, we assume that λ 6= b
a .

B. Achievable Rate Region

In [2, Theorem 2] and [4, App. B], achievable rate regions
are given for the BC with conferencing links. However,
these regions (which are given for the channel with private
messages only) are in general insufficient for deriving new
capacity results. The achievable rate region below is for the
two-user BC with both common and private messages and



bidirectional conferencing receivers. In the proposed coding
scheme, we apply Marton’s coding as the transmission scheme,
and quantize-bin-and-froward at one receiver and decode-and-
froward at the other receiver as the cooperative strategy. This
result is from [8], and when specialized to the Gaussian case,
it can give capacity results in several cases.

Theorem 3. ( [8]) Consider the two-user BC with conferenc-
ing decoders shown in Fig. 1. Let R(1)

i denote the set of all
rate triples (R0, R1, R2) such that

R0 +R1 ≤ min
{
I(U,W ;Y1) + ζ, I(U,W ;Y1, Ŷ2)

}
R0 +R2 ≤ I(V,W ;Y2) + C12

R0 +R1 +R2 ≤ min
{
I(U ;Y1|W ) + ζ, I(U ;Y1, Ŷ2|W )

}
+ I(V,W ;Y2) + C12 − I(U ;V |W )

R0 +R1 +R2 ≤ min
{
I(U,W ;Y1) + ζ, I(U,W ;Y1, Ŷ2)

}
+ I(V ;Y2|W )− I(U ;V |W )

2R0 +R1 +R2 ≤ min
{
I(U,W ;Y1) + ζ, I(U,W ;Y1, Ŷ2)

}
+ I(V,W ;Y2) + C12 − I(U ;V |W )

ζ = {C21 − I(Ŷ2;Y2|W,U, Y1)}+
(22)

for some joint PDFs P (u, v, w, x)P (y1, y2|x)P (ŷ2|y2). The
convex closure of the set R(1)

i is achievable.

It is clear that a second achievable rate region can be derived
by exchanging the order of cooperation at the receivers.
Moreover, one may consider applying multiple rounds of
cooperation. However, we demonstrate that the region (22)
with one round is already sufficient to prove several new
capacity (and approximate capacity) results for the Gaussian
BC with conferencing receivers and with correlated noises.

Theorem 4. Consider the two-user Gaussian BC (1) with
degraded message sets (i.e., a common message for both
receivers and a private message for the first receiver) and
bidirectional conferencing receivers. Assume λ 6= b

a . For
the channel with fully correlated noises where |λ| = 1, the
capacity region is given by:

R0 ≤ ψ
(

(1− β)b2P

βb2P + 1

)
+ C12 (23)

R0 +R1 ≤ ψ
(
a2P

)
+ C21 (24)

R0 +R1 ≤ ψ
(
βa2P

)
+ ψ

(
(1− β)b2P

βb2P + 1

)
+ C12 + C21

(25)

for some β ∈ [0, 1].

Proof: The achievability is derived from R(1)
i given in

Theorem 3 by setting X ≡ U ≡ W + W̄ and V ≡ ∅, and
Ŷ2 ≡ Y2+Ẑ2, where W and W̄ are two independent Gaussian
variables with zero means and variances (1 − β)P and βP ,
respectively, and Ẑ2 is a Gaussian variable (independent of all

other variables) with zero mean and variance σ̂2. Note that by
this choice of variables, when |λ| = 1, we have:

I(Ŷ2;Y2|W,U, Y1) =
1

2
ψ

(
1− λ2

σ̂2

)
= 0

Moreover,

I(X;Y1, Ŷ2) =
1

2
ψ

((
a2 + b2 − 2λab+ σ̂2a2

1− λ2 + σ̂2

)
P

)
=

1

2
ψ

((
a2 + b2 − 2λab+ σ̂2a2

σ̂2

)
P

)
and

I(X;Y1, Ŷ2|W ) =
1

2
ψ

(
β

(
a2 + b2 − 2λab+ σ̂2a2

1− λ2 + σ̂2

)
P

)
=

1

2
ψ

(
β

(
a2 + b2 − 2λab+ σ̂2a2

σ̂2

)
P

)
.

Therefore, by letting σ̂2 → 0, one can make the above two
mutual information terms arbitrary large and thus they would
not be in effect in the characterization of the region (22). For
the case of |a| ≥ |b|, the converse proof is readily given by
RGo in Theorem 2. Note that the constraint (13) is stricter
than (24). For the case of |a| < |b|, the rate region (23)-(25)
(which is still achievable by the proposed scheme) is optimal
for β = 0 and thereby it coincides with the cut-set bound.

Remark 2. The capacity characterization given in Theorem 4
gives the following interesting observation. Even with a very
small (yet positive) amount of input power P , one can transmit
information over the channel at a rate as high as the capacities
of the conferencing links, if the noises are fully correlated. In
fact, if P → 0, the capacity region is as follows:

R0 ≤ ε1(P ) + C12

R0 +R1 ≤ ε2(P ) + C21,
(26)

for some ε1(P ) and ε2(P ), which go to zero as as P → 0.

Note that the argument presented in the proof of Theorem
4 is only valid for strictly positive values of input power P .

Remark 3. For the special case of the relay channel, i.e.,
Y2 acts as a relay for Y1, C12 = 0 and there is only
a private message for the first receiver, the capacity result
given in Theorem 4 is reduced to R1 ≤ ψ

(
a2P

)
+ C21. In

this case, using the quantize-bin-forward strategy, one can
achieve the cut-set bound. Interestingly, the capacity does
not depend on b at all. This result is an example of a
semi-deterministic primitive relay channel, because the relay
observation Y2 = bX+Z2 is a deterministic function of input
X and the receiver observation Y1 = aX + Z1 when Z1

and Z2 are fully correlated. In this case, the cut-set bound is
achievable [11].

Example 1. A special case of the Gaussian BC with |λ| = 1
is the following scenario:{

Y1 = X + Z

Y2 = X − Z,
(27)



where Z is a zero mean unit variance Gaussian noise. In this
scenario, the two receivers see exactly the same noise but
with a different sign. For this channel, the capacity result of
Theorem 4 reduces to the following:

R0 ≤ ψ(P ) + C12

R0 +R1 ≤ ψ(P ) + C21.
(28)

In fact for this channel, the cut-set bound is achievable. To
achieve this capacity, the second receiver applies quantize-bin-
and-forward and the first receiver applies decode-and-forwards
as the cooperation protocol. As already mentioned, for the
special case of R0 = 0 and C12 = 0, this result recovers the
capacity of semi-deterministic relay channel [11, Example 1].

Example 2. Consider the following Gaussian channel:{
Y1 = X + Z

Y2 = Z,
(29)

where Z is a zero mean unit variance Gaussian noise. In this
case, the user Y2 does not receive any information from the
transmitter and only observes the additive noise of the user
Y1. For this channel, the capacity region can be derived by
setting a = 1 and b = 0 in (23)-(25) and is given by:

R0 ≤ C12

R0 +R1 ≤ ψ(P ) + C21.
(30)

To achieve this capacity, first the user Y2 sends a compressed
version of the observed noise Z to the user Y1 through the
digital link C21. Next, the user Y1 decodes both common and
private messages based on the message from Y2 then forwards
the common message to Y2 through the digital link C12.

Example 3. Consider the following Gaussian channel:{
Y1 = Z

Y2 = X + Z.
(31)

In this case, the capacity region is given by:

R0 ≤ ψ(P ) + C12

R0 +R1 ≤ C21.
(32)

Note that in this channel, the user Y1 (which is supposed to
detect both common and private messages) does not receive
any information from the transmitter directly. The capacity
achieving cooperation protocol is that the user Y2 first sends
a compressed version of its received signal to the user Y1
through the digital link C21. Next, the user Y1 decodes both
messages using the information received (and its own signal,
which is in fact the channel noise) then forwards part of the
common message to the user Y2 through the link C12. Lastly,
the user Y2 decodes the unknown part of the common message
using its received signal.

Note that in Example 3, as the user Y1 observes the channel
noise only, one would think that a cooperative scheme in which
Y1 applies compress-and-forward and Y2 applies decode-and-
forward should be used. However, such a scheme is not
optimal in this particular BC with degraded message for Y2.

The capacity result in Theorem 4 is important from two
viewpoints. First, it is the first capacity result for a two-
user Gaussian BC with bidirectional cooperation between
receivers (all previously capacity results are regarding one-
sided cooperation). Second, this result is among the rare cases
in network information theory for which quantize-bin-and-
forwards strategy contributes to achieving capacity.

The previous capacity result is about BC with degraded
message sets. In the next theorem, for the Gaussian BC with
one-sided cooperation and fully correlated noises, we establish
the exact capacity region of the channel with both common
and private messages.

Theorem 5. Consider the two-user Gaussian BC (1) with
both common and private messages where |a| ≥ |b| and
only the weaker receiver is connected to the stronger one
by a conferencing link, i.e., C12 = 0. Assume λ 6= b

a . For
the channel with fully correlated noises where |λ| = 1, the
capacity region is given by:

R0 +R2 ≤ ψ
(

(1− β)b2P

βb2P + 1

)
R0 +R1 +R2 ≤ ψ

(
βa2P

)
+ ψ

(
(1− β)b2P

βb2P + 1

)
+ C21

(33)

for some β ∈ [0, 1].

The proof of Theorem 5 is similar to that of Theorem 4 and
therefore is omitted here.

For Gaussian BCs in which the noises are not fully corre-
lated, the inner and outer bounds of this paper yield approx-
imate capacity results which are presented in the following
theorems. The first approximate capacity result is on Gaussian
BC with degraded message set.

Theorem 6. Consider the two-user Gaussian BC (1) with
degraded message sets (i.e., a common message for both
receivers and a private message for the first receiver) and
bidirectional conferencing receivers. Assume that |a| ≥ |b|
and λ 6= b

a . For all channel parameters a, b, C12, C21, and
λ with |λ| < 1, the following achievable rate region is within
half bits to the capacity region:

R0 ≤ ψ
(

(1− β)b2P

βb2P + 1

)
+ C12 (34)

R0 +R1 ≤ ψ
(
a2P

)
+ {C21 − 1/2}+ (35)

R0 +R1 ≤ ψ
((

a2 + b2 − 2λab+ (1− λ2)a2

2(1− λ2)

)
P

)
(36)

R0 +R1 ≤ ψ
(
βa2P

)
+ ψ

(
(1− β)b2P

βb2P + 1

)
+ {C21 − 1/2}+ + C12 (37)

R0 +R1 ≤ ψ
(
β

(
a2 + b2 − 2λab+ (1− λ2)a2

2(1− λ2)

)
P

)
+ ψ

(
(1− β)b2P

βb2P + 1

)
+ C12 (38)

for some β ∈ [0, 1].



Proof: The above achievable rate region is derived from
R(1)
i given in Theorem 3 by setting X ≡ U ≡ W + W̄

and V ≡ ∅, and Ŷ2 ≡ Y2 + Ẑ2, where W and W̄ are
two independent Gaussian variables with zero means and
variances (1−β)P and βP , respectively, and Ẑ2 is a Gaussian
variable (independent of all other variables) with zero mean
and variance σ̂2 = 1− λ2.

By a simple comparison, one can see that the right-hand
sides of the constraints (34), (35), (36), (37) and (38) are
within half bits of (15), (13), (20), (17), and (18), respectively.

Next, we present an approximate capacity result for the
Gaussian BC with one-way conferencing.

Theorem 7. Consider the two-user Gaussian BC (1) with
both common and private messages, where |a| ≥ |b| and only
the weaker receiver has a conferencing link to the stronger
receiver, i.e., C12 = 0. Assume λ 6= b

a . For all channel
parameters a, b, C21, and λ with |λ| < 1, the following
achievable rate region is within half bits to the capacity region:

R0 +R2 ≤ ψ
(

(1− β)b2P

βb2P + 1

)
(39)

R0 +R1 +R2 ≤ ψ
((

a2 + b2 − 2λab+ (1− λ2)a2

2(1− λ2)

)
P

)
(40)

R0 +R1 +R2 ≤ ψ
(
βa2P

)
+ ψ

(
(1− β)b2P

βb2P + 1

)
+ {C21 − 1/2}+ (41)

R0 +R1 +R2 ≤ ψ
(
β

(
a2 + b2 − 2λab+ (1− λ2)a2

2(1− λ2)

)
P

)
+ ψ

(
(1− β)b2P

βb2P + 1

)
(42)

for some β ∈ [0, 1].

Proof: Similar to Theorem 6, the above achievable rate
region is derived from R(1)

i given in Theorem 3 by setting
X ≡ U ≡ W + W̄ and V ≡ ∅, and Ŷ2 ≡ Y2 + Ẑ2, where
W and W̄ are two independent Gaussian variables with zero
means and variances (1−β)P and βP , respectively, and Ẑ2 is
a Gaussian variable (independent of all other variables) with
zero mean and variance σ̂2 = 1− λ2.

By a simple comparison, one can see that the right-hand
sides of the constraints (39), (40), (41) and (42) are within
half bits of (15), (20), (17), and (18), respectively.

Finally, we derive an approximate capacity result for the
two-user Gaussian BC (1) with both common and private
messages and with bidirectional cooperative receivers. First,
we present an achievable region for the channel using only
one-way conferencing with decode-and-forward. The other
conferencing link is not used, so the resulting achievable rate
region is a sub-region of R(1)

i (22). It turns out that this region
is already approximately optimal when the noise correlation
is small.

Corollary 1. Let RDF−Gi denote the set of all rate triples
(R0, R1, R2) such that

R0 +R2 ≤ ψ
(

(1− β)b2P

βb2P + 1

)
+ C12 (43)

R0 +R1 +R2 ≤ ψ
(
a2P

)
(44)

R0 +R1 +R2 ≤ ψ
(
βa2P

)
+ ψ

(
(1− β)b2P

βb2P + 1

)
+ C12

(45)

for some β ∈ [0, 1]. The set RDF−Gi constitutes an inner
bound on the capacity region of the Gaussian BC (1) with
conferencing decoders.

Proof: The bound RDF−Gi is derived from R(1)
i given

in Theorem 3 by setting X ≡ U ≡ W + W̄ and V ≡ Ŷ2 ≡
∅, where W and W̄ are two independent Gaussian variables
with zero means and variances βP and (1−β)P , respectively.
Note that this inner bound is in fact derived for the channel
with one-sided cooperation (i.e., it does not make use of the
conferencing link C21) using the decode-and-forward strategy
alone. Nevertheless, it is a valid inner bound for the channel
with bidirectional cooperation.

Theorem 8. Consider the two-user Gaussian BC (1) with
both common and private messages and with bidirectional
conferencing decoders. Assume that |a| ≥ |b|. For all channel
parameters a, b, C12, C21, and λ, the inner bound RDF−Gi

is within 1
2 log( 2

1−|λ| ) bits of the capacity region.

Proof: The constraint (43) is identical to (15). Moreover,
by simple algebraic computations, one can show that the
right-hand sides of the constraints (44) and (45) are within
1
2 log( 2

1−|λ| ) bits of (20) and (18), respectively.

Remark 4. For Gaussian BCs with λab ≥ 0, a better
approximate capacity bound of 1

2 log( 2
1−λ2 ) bits is possible

for the region RDF−Gi given in Corollary 1.

Theorem 8 states that if we do not use the quantize-bin-
forward part of the conferencing protocol and rely solely
on decode-and-forward, the gap to capacity would depend
on the noise correlation. This is because decode-and-forward
cannot exploit the noise correlation, so while it achieves
within constant gap to the capacity region when the noises
are uncorrelated, it cannot do so when the noises are highly
correlated. Nevertheless, there is one special case for which
decode-and-forward is optimal.

Remark 5. For the Gaussian BC (1) with λ = b
a , considering

(21), one can verify that the decode-and-forward achievable
region RDF−Gi of Corollary 1 coincides with the outer bound
RGo given in Theorem 2. Thus, it yields the capacity region.

As concluding remark, the novel structure of the outer
bound given in Theorem 2, in particular, the constraint (18),
is crucial for deriving the exact capacity results in Theorems 4
and 5, and also the approximate capacity results in Theorems
6, 7, and 8.
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