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Abstract—This paper considers a massive connectivity scenario
in which a base-station (BS) aims to communicate k individual
sources (X1, · · · , Xk) to a random subset of k users among a
large pool of n users via a common downlink message. The
identities of the k active users are known at the BS, but each
active user only knows whether it is active itself and does not
know the identities of the other active users. The naive coding
strategy of transmitting the source messages together with the
indices of the users for which the messages are intended would
require a rate of H(X1, · · · , Xk) + k log(n) bits. This paper
shows that if the sources are jointly distributed according to
an exchangeable distribution, better coding techniques can be
used to eliminate the dependency of the overhead on log(n).
Specifically, if the sources are independently and identically
distributed (i.i.d.) or are i.i.d. mixture, then the overhead can
be reduced to O(log(H(X1, · · · , Xk))) or at most O(log(k))
bits. The overhead can be further reduced to O(1) if the source
distribution is uniform over its support. For a general exchange-
able source not necessarily i.i.d. nor i.i.d. mixture, an overhead
of O(k + log(k + H(X1, · · · , Xk))) bits is achievable; if the
source distribution has finite support, the overhead can be further
reduced to O(log(k)). Moreover, for exchangeable distributions
that are extendable, the rate can be further improved.

I. INTRODUCTION

This paper considers the problem of providing downlink
connectivity to a massive number of n users through a central
base-station (BS). The user activities are assumed to be
sporadic, so that at any given time, only k < n users are
actively listening to the BS. The BS knows the identities of the
active users and wishes to communicate sources (X1, · · · , Xk)
to these active users via a common downlink message; but
each user only knows whether it is active itself and does not
know which other users are active. We ask the question: What
is the minimum rate of the common message that allows each
active user i to learn the source Xi intended for it?

The question is trivial if every active user knows the
identities of the entire subset of active users. In this case, all
n users can each be pre-assigned an index. The BS can then
list the source messages for the k active users according to
the order in which the active users appear in the index. Such
a common message requires only H(X1, · · · , Xk) bits, but
relies on each user knowing the identities of all active users.

The question is much more interesting for the practical
scenario in which every active user only knows whether it
is active itself and does not know who else is active. In this
case, it would appear that the BS needs to send not only
H(X1, · · · , Xk) bits for the source messages, but also a header
of log(n) bits per user to describe which user each source
message is intended for, thus resulting in a k log(n) overhead.

Such a k log(n) overhead can be significant if n is large
(e.g., n = 106 means log(n) ≈ 20 bits), especially when the
payload for each user is small in comparison. The main insight
of this paper is that if the joint distribution of the sources
(X1, · · · , Xk) follows an exchangeable distribution, then the
log(n) dependency in the overhead can be eliminated!

Exchangeable distributions arise naturally in the context
of massive random access, because the user activity patterns
are typically random and symmetric across the users. Conse-
quently, no subset of users is preferred over any other subset.
More formally, we assume that the sources (X1, · · · , Xk) form
a vector of exchangeable random variables, defined by the
condition that if p(x1, . . . , xk) is the joint distribution of the
sources and π is a permutation of (1, · · · , k), then

p(x1, · · · , xk) = p(xπ(1), · · · , xπ(k)). (1)

Classical examples of exchangeable distributions include inde-
pendently and identically distributed (i.i.d.) random variables,
mixture of i.i.d. random variables, and urn distributions (sam-
pling with or without replacement from a population).

The main idea of this paper is that when (X1, · · · , Xk) is
exchangeable, it is possible to build a codebook comprised of
many possible realizations of the sources (x1, · · · , xn) over
all n users in a symmetric way, so that when the identities
of the activity users and their associated sources messages are
revealed, the BS only needs to search over the codebook and
broadcasts the index of the first codeword that matches the
actual sources intended for the k active users in their respective
locations in the codeword. The main technical contributions
of this paper are novel code constructions and analyses which
show that the entropy of the first matching codeword index
can be made to be close to H(X1, · · · , Xk) bits, without the
O(log(n)) overhead. Since a common message rate of at least
H(X1, · · · , Xk) bits is clearly required, the proposed scheme
is essentially optimal to within a small overhead term.

Specifically, this paper shows that for i.i.d. and mixture i.i.d.
sources, a rate of H(X1, · · · , Xk) + log(H(X1, · · · , Xk) +
1) + 1 bits is achievable, thus the overhead is at most
O(log(k)). This rate can be further reduced to O(1) if
the source distribution is close to uniform over its support.
Moreover, for any source distribution p(x1, · · · , xk), which
is exchangeable but not necessarily i.i.d. or i.i.d. mixture, a
rate of H(X1, · · · , Xk) + k log(e) + log(H(X1, · · · , Xk) +
k log(e) + 1) + 1 bits is achievable, thus the overhead for
the general exchangeable sources is at most O(k). If the
alphabet size of the source is finite, the overhead can be



further improved to O(log(k)). Finally, this paper also studies
source distributions p(x1, · · · , xk) that are extendable to an
exchangeable distribution over a vector of size d. In this case,
if d = O(k2+ϵ), the overhead can be further improved to
essentially O(log(k)). Note that in all cases, the O(log(n))
dependency is completely removed.

The intuitive reason why the coding strategy presented
in this paper outperforms the naive scheme is because the
naive scheme broadcasts too much redundant information.
Specifically, each active user needs to recover only its own
designated source message and should not care which other
users are active, nor what their source messages are. The naive
scheme broadcasts such information to everyone. In contrast,
the coding strategy used in this paper takes advantage of the
fact that each of the k active users is only interested in the
source message pertaining to itself, so that each codeword can
cover many different instances of the activity patterns and the
associated source messages.

The coding strategy used in this paper has been used in
previous work [1], [2], in which the problem of scheduling
the active users into non-colliding transmission slots and the
problem of assigning the active users into categories of fixed
sizes are considered. Both of these previous works are exam-
ples of exchangeable source distributions, but the analyses of
code rates in [1], [2] are specific to their respective problems;
they do not generalize to all exchangeable distributions, and in
particular do not apply to i.i.d. distributions. In contrast, this
paper utilizes a new technique inspired by an analysis tool
from the proof of the strong functional representation lemma
[3] to provide a much more general result than that of [1], [2].

The codebook design and the subsequent achievability
bounds of this paper can be applied to a number of interesting
practical applications. For example, consider the problem in
which the BS wishes to distribute a fixed amount of resource
C amongst k users, i.e.,

∑k
i=1 Xi = C. Assuming that each

Xi is an non-negative integer, this vector of random variables
forms an exchangeable source. As another example, suppose
the BS wishes to assign the k users into d frequency bands
with d > k and with at most one user per slot. This vector
of assignments is a sequence of random variables which are
extendable to an exchangeable distribution over a vector of
size d. The coding theorem of this paper provides a codebook
construction for these cases with an overhead of at most
O(k + log(k + H(X1, · · · , Xk))) bits. In the latter case, if
d = O(k2+ϵ), then the overhead can be further improved to
O(log(k)).

Throughout this paper, we use lowercase letters to denote
scalars, lowercase boldface letters to denote vectors, capital
letters to denote random variables, boldface capital letters
to denote random vectors, and calligraphic letters, i.e. S,
to denote sets and |S| to denote their cardinality. We let
log(·) denote the base 2 logarithm and ln(·) denote the
natural logarithm. All information measures are expressed in
bits, including entropy H(·) and Kullback-Leibler divergence
D(·∥·). Lastly, we use short-hands [n] = {1, . . . , n} and
ab = a(a− 1) · · · (a− b+ 1).

II. PROBLEM FORMULATION

Consider a massive random access setting in which a
random subset of k users becomes active among a total number
of n users. The identities of the active users are known to the
BS but not among the users. We are interested in the setting
in which the BS wishes to communicate a source to each of
the k active users simultaneously using a common message.
Upon receiving this common message, each active user should
recover its respective source without error.

In this paper, we consider the class of source distributions
that are exchangeable. Let X = (X1, · · · , Xk) be a sequence
of exchangeable random variables taking values in discrete set
X and let p(x) = p(x1, · · · , xk) be their joint distribution.

We let random variable A ∈ A(n,k) specify the identities
of the k active users, where

A(n,k) = {a ∈ [n]k | ai ̸= aj ,∀i ̸= j}. (2)

Here, ai ∈ [n] is the index of the ith active user. For example,
if the BS wishes to transmit a source x ∈ X k to users a ∈
A(n,k), we require that every user ai receives xi for all i ∈ [k].
While the source X describes the contents of the messages, the
activity pattern A indicates which users should receive which
message. Together, they form a message-activity tuple (X,A).
Throughout this paper we assume that n and k are fixed, X and
A are independent, and that A is distributed uniformly over
A(n,k). Notationally, we use (x,a) to represent a realization
of (X,A).

The problem of communicating the sources X to the active
users in A can now be cast as a one-shot source coding
problem consisting of a single encoder and multiple decoders.
In this paper, we pursue the following two-stage strategy for
the source coding problem. In the first stage, the BS uses
encoder f to map a message-activity pair (x,a) to a natural
number, i.e.,

f : X k ×A(n,k) → N. (3)

In the second stage, entropy coding is used to compress
f(x,a) into a variable-length prefix-free binary codeword,
which is then broadcast to all active users.

On the decoding side, assuming error-free broadcasting of
the message, each active user ai first recovers f(x,a). It then
uses its own decoder dai

: N → X to recover its intended
message. The sources are received successfully if

dai(f(x,a)) = xi, ∀(x,a) ∈ X k ×A(n,k), ∀i ∈ [k]. (4)

The rate of the encoding and decoding scheme is defined as
R = H(f(X,A)). This is a reasonable definition because
entropy coding can be used to reach the rate R to within
one bit. Lastly, we define the optimal encoding and decoding
scheme as the scheme that minimizes H(f(X,A)), while
satisfying the condition (4). We denote the optimal rate as

R∗ ≜ H (f∗(X,A)) . (5)

The goal of this paper is to establish upper bounds on R∗.



III. CODEBOOK CONSTRUCTION

In this section we propose a codebook-based encoding and
decoding scheme inspired by previous work [1], [2]. This
encoding and decoding scheme utilizes the following shared
codebook between the BS and all the users

M = (m(1),m(2), · · · ) (6)

which consists of an infinite sequence of length-n vectors
m(t) ∈ Xn. We assign a unique entry location in the code-
words to each of the n users. For a particular message-activity
tuple (x,a), the BS encodes (x,a) by finding a codeword
m(t) such that every active user has the correct message in
their designated entry in m(t), i.e., m(t)

ai = xi for all i ∈ [k].
Since the codebook is of infinite size and X is a discrete
alphabet, such a codeword always exists. The idea is to encode
(x,a) as the index of the first such codeword in the codebook.
Mathematically, the proposed encoder can be written as

fM(x,a) = min
t:m

(t)
ai

=xi,∀i∈[k]

t. (7)

The decoders for each user u ∈ [n] are defined as:

du(t) = m(t)
u . (8)

One can easily verify that this encoding and decoding scheme
satisfies the condition (4).

It remains to discuss how to generate the codewords in M.
Similar to [2], we use random codebook construction in which
the codewords are generated in an i.i.d. fashion. Moreover,
the entries of each codeword are generated according to an
i.i.d. mixture distribution. Fix a q(x|θ) where θ ∼ r(θ).
Each length-n codeword m(t) = [x1, · · · , xn]

⊤ is generated
according to

q(x1, · · ·xn) =

∫
θ

r(θ) [Πn
i=1q(xi|θ)] dθ. (9)

Operationally, each codeword is generated in a two stage-
process in which we first randomly select a θ according
to distribution r(θ), then generate the codeword entries of
the codeword in an i.i.d. fashion according to q(x|θ). Each
subsequent codeword is then generated in the same way. Once
the entire codebook is generated, it is shared amongst the BS
and all the users.

If we use this codebook construction, then the distribution
of any k distinct entries of a single codeword is

q(x1, · · ·xk) =

∫
θ

r(θ)
[
Πk

i=1q(xi|θ)
]
dθ. (10)

This means that the output of k distinct entries of the code-
words can be designed according to any i.i.d. mixture.

This paper focuses attention to the encoding and decoding
functions and the codebooks generated in this way. The main
result of this paper is that for any exchangeable source distribu-
tion p(x1, · · · , xk), we can choose an appropriate i.i.d. mixture
distribution q(x|θ)r(θ) such that there exists a codebook,
M generated in an i.i.d. fashion according to (9), whose
encoder output entropy H(fM(X,A)) is upper bounded by
H(X1, · · · , Xk) plus a small overhead term.

IV. ENTROPY OF THE ENCODER OUTPUT

In this section, we provide upper bounds on the optimal
rate R∗ of the downlink message for massive random access,
defined in (5), by analyzing the entropy of the output of the
encoder for a source X = (X1, · · · , Xk) distributed according
to an exchangeable source distribution p(x1, · · · , xk) using
an i.i.d. codebook generated according to a i.i.d. mixture
distribution q(x|θ)r(θ).

Theorem 1: Consider a massive access scenario with a total
of n users and a random subset of k active users. Let sources
X = (X1, · · · , Xk) take values in a discrete set X k and be
distributed according to an exchangeable distribution p(x).
Then for any i.i.d. mixture distribution q(x), we have that
the minimum achievable rate R∗ is bounded above as

R∗ ≤ H(X)+D(p∥q)+ log(H(X)+D(p∥q)+ 1)+1 (11)

R∗ ≤ H(X) +D(p∥q) + log

(
log

(
qmax

qmin

)
+ 1

)
+ 3, (12)

where

qmax = max
x∈Xk:p(x)>0

q(x); qmin = min
x∈Xk:p(x)>0

q(x). (13)

Note that the D(p∥q) term corresponds to the cost of using a
codebook constructed according to q(x) to compress a source
with distribution p(x), just as in classical source coding.

Corollary 1: Under the setting of Theorem 1, if the source
distribution is i.i.d. p(x), then the minimum entropy of the
encoder output is bounded above by

R∗ ≤ kH(p) + log(kH(p) + 1) + 1 (14)

R∗ ≤ kH(p) + log

(
k log

(
pmax

pmin

)
+ 1

)
+ 3, (15)

where

pmax = max
x∈X :p(x)>0

p(x); pmin = min
x∈X :p(x)>0

p(x). (16)

This result follows directly from Theorem 1 by using a
codebook constructed according to q(x) = p(x). This is a
natural choice for i.i.d. sources, because it maximizes the
probability of matching codewords with the source. The result
shows that for i.i.d. sources, the proposed code construction
and encoding/decoding scheme can achieve the source entropy
to within at most an O(log(k)) overhead. The overhead can
be further reduced if the distribution is close to uniform. In
particular, for an i.i.d. uniform distribution with pmax = pmin,
the entropy can be achieved to within O(1) bits. Similar results
can be obtained for mixture of i.i.d. source distributions,
where it can be shown that a rate of H(X1, · · · , Xk) plus
an overhead at most O(log(k)) bits is achievable.

It is worth noting that in the proposed codebook construc-
tion, the distribution of the codeword entries is required to
be an i.i.d. mixture. Thus, for general exchangeable source
distributions that are not i.i.d. mixtures, one can no longer
simply set the codeword distribution to be the source distribu-
tion. We develop additional tools in Section V to construct an
appropriate codebook and to upper bound the rate for general
exchangeable sources.



A. Proof of (11) in Theorem 1
Instead of analyzing the output entropy of a particular

codebook, we analyze the output entropy over an ensemble
of codebooks. Define T = fM(x,a) to be the encoder output
of first randomly choosing a codebook M ∈ M generated
according to q(x), then finding the first match according to
(7). To upper bound R∗, we first upper bound H(T ).

Since the source distribution p(x) is exchangeable and the
codewords are generated i.i.d. according to distribution q(x),
it follows that when conditioned on a source realization x,
the probability that the first match occurs at T = t is a geo-
metric distribution with parameter q(x). Therefore, the overall
distribution of T is a mixture of geometric distributions:

Pr(T = t) =
∑
x∈Xk

p(x)(1− q(x))t−1q(x). (17)

A direct entropy calculation for a mixture of geometric dis-
tributions is nontrivial. To circumvent this, we upper bound
H(T ) using the fact that

H(T ) ≤ E[log(T )] + log(E[log(T )] + 1) + 1. (18)

A proof of (18) can be found in [3], where a maximum entropy
argument is used. The problem is now reduced to bounding
E[log(T )]. To this end, we use the fact that

log(t) <
1

ln(2)

(
t∑

ℓ=1

1

ℓ
− 1

2

)
≤ 1

ln(2)

t−1∑
ℓ=1

1

ℓ
, for all t > 1

(19)
to compute the following bound for E[log(T )]:

E[ log(T )] =
∞∑
t=1

∑
x∈Xk

p(x)(1− q(x))t−1q(x)

 log(t)

=
∑

x∈Xk,p(x)>0

p(x)q(x)

∞∑
t=2

(1− q(x))t−1 log(t)

≤
∑

x∈Xk,p(x)>0

p(x)q(x)
1

ln(2)

∞∑
t=2

t−1∑
ℓ=1

(1− q(x))t−1 1

ℓ
.

(20)

The next step is to compute the inner summations. Notice that
for 0 < α < 1 we have that

∞∑
t=2

t−1∑
ℓ=1

αt−1 1

ℓ
=

∞∑
ℓ=1

1

ℓ

∞∑
t=ℓ+1

αt−1 =
1

1− α

∞∑
ℓ=1

αℓ

ℓ

=
1

1− α

∫ α

0

1

1− z
dz =

− ln(2) log(1− α)

1− α
,

(21)

where the third equality follows from the fact that

d

dα

∞∑
ℓ=1

αℓ

ℓ
=

∞∑
ℓ=1

αℓ =
1

1− α
, for 0 < α < 1. (22)

Using (21), we set α = 1− q(x) in (20) to simplify it to

E[log(T )] ≤
∑

x∈Xk,p(x)>0

p(x)q(x)
− log(q(x))

q(x)

= H(X) +D(p∥q). (23)

Combining with (18) yields

H(T ) ≤ H(X) +D(p∥q) + log(H(X) +D(p∥q) + 1) + 1.

Next, we show the existence of a single good codebook. By
Jensen’s inequality, we have that

E[H(fM(X,A))] ≤ H(fM(X,A)) = H(T ), (24)

where the expectation is taken over M ∈ M. It then follows
that there exists at least one codebook M∗ such that

H(fM∗(X,A)) ≤ E[H(fM(X,A))]. (25)

Therefore
R∗ ≤ H(fM∗(X,A)) ≤ H(T ). (26)

B. Proof of (12) in Theorem 1

Let T = fM(X,A) be defined as before. By (17), we know
that the distribution of T is a mixture of geometric distribution
with parameters q(x). We bound the entropy of T by defining
a new variable L and using the fact that

H(T ) ≤ H(T, L) = H(L) +H(T |L). (27)

The idea is to use an L that quantizes the parameters of the
possible geometric distributions induced by X. To this end,
we define L based on the following partition S1,S2 · · · ⊆ X k,
where

Sℓ =

{
x ∈ X k

∣∣∣∣ 12ℓ ≤ q(x) <
1

2ℓ−1
, p(x) > 0

}
, (28)

and let L be the index of the set Sℓ that contains X. It follows
that for any x ∈ X k and p(x) > 0, the index of the set that
x belongs to is ℓ = ⌈log

(
1

q(x)

)
⌉. This means that L takes on

at most ⌈log
(

1
qmin

)
⌉ − ⌈log

(
1

qmax

)
⌉ values, and therefore has

an entropy bounded above as

H(L) ≤ log

(⌈
log

(
1

qmin

)⌉
−
⌈
log

(
1

qmax

)⌉)
≤ log

(
log

(
qmax

qmin

)
+ 1

)
. (29)

It now remains to bound H(T |L) in (27). Recall that the
codebook is constructed according to q(x). So, given L = ℓ,
sources x in Sℓ would induce a distribution of T close to
a geometric distribution with parameter q(x), where q(x) is
within the interval for each ℓ as defined in (28).

Now, the entropy of a geometric distribution with parameter
q(x) is essentially − log(q(x)). Thus, after averaging over
ℓ, which can be written equivalently as averaging over x,
H(T |L) essentially becomes −

∑
x p(x) log q(x). This gives

rise to the H(X) +D(p∥q) term. This analysis can be made
precise by carefully bounding all the approximation errors. We
omit the details here and only state the final result:

H(T |L) ≤ −
∑
x

p(x) (log (q(x)) + log(e)) + 1, (30)

which together with (29) gives the desired result (12):

R∗ ≤ H(X) +D(p∥q) + log

(
log

(
qmax

qmin

)
+ 1

)
+ 3. (31)



V. CODING FOR EXCHANGEABLE SOURCES

We now aim to generalize the result of Corollary 1 from
i.i.d. sources to exchangeable sources with distribution p(x).
The challenge lies in constructing length-n codewords whose
arbitrary subsequences of length k all “look like” x. Recall
from Theorem 1 that the achievable rate for communicating a
general exchangeable source X = (X1, · · · , Xk) distributed as
p(x) is H(X) plus an overhead term that depends on D(p||q),
where q is an i.i.d. mixture distribution used for codebook
construction. The natural question is then: how should we
design an i.i.d. mixture q(x) such that D(p||q) is small?

Definition 1 (Urn Codebook): Given an exchangeable
source X with distribution p(x), an urn codebook MURN =(
m(1),m(2), · · · ,

)
is a codebook consisting of codewords

m(j) generated in the following fashion:
1) Sample a realization of x = (x1, · · · , xk) using p(x).
2) Generate each entry m of m(j) in an i.i.d. fashion

according to p̂x, where p̂x is the empirical distribution
of x:

p̂x(m) =
1

k

k∑
i=1

1{m}xi. (32)

It is easy to see that the urn codebook is constructed from a
mixture of i.i.d. distributions. In particular, the mixture weights
are given by the probability that the sampled realization is
of a particular type. Further, we argue that this i.i.d mixture
is close to the source distribution. To see this, note that this
codebook generation process can be alternatively viewed as
repeatedly sampling with replacement from an urn containing
the elements of x. On the other hand, if the k entries of a
codeword are sampled without replacement from the entries
of x, then the k entries will look as if they are distributed
according to p(x). Thus, the difference between the source
distribution and the i.i.d. mixture is precisely the difference
between sampling with and without replacement.

Lemma 1: Let p(x) be an exchangeable distribution. Let
q(x) be the distribution generated by choosing k distinct
entries from the codewords in the urn codebook as described
in Definition 1, then D(p||q) ≤ min{k log(e), |X | log(k+1)}.

Proof: From the urn codebook construction, any k distinct
entries in a codeword can be represented by a tuple Y =
(XW1 , · · · , XWk

), where W = (W1, · · · ,Wk) is i.i.d. over
[k]. Now, if the sampling pattern were collision-free, it would
have generated sequences that are distributed according to the
original p(x). Define the set of all collision-free w as: F =
{w ∈ [k]k | wi ̸= wj for all i ̸= j}. We have

q(x) =
∑

w∈[k]k

Pr(W = w)Pr(Y = x|W = w)

≥
∑
w∈F

Pr(W = w)Pr(Y = x|W = w)

=
∑
w∈F

1

kk
p(x) =

k!

kk
p(x). (33)

where in the third line we used the fact that Pr(W = w) = 1
kk

since all sampling patterns are equally likely.

Noting that k! > kke−k, we have k!
kk < k log(e). This

implies that D(p||q) =
∑

p(x) log p(x)
q(x) ≤ k log(e).

Next, we show that D(p||q) ≤ |X | log(k + 1). This bound
is a consequence of the method of types and its relation to ex-
changeability. For vector x ∈ X k, let T (k)

x = {s ∈ X k | p̂s =
p̂x} denote its type class. Due to the exchangeability of p(x),
if x(1),x(2) ∈ T (k)

x then p(x(1)) = p(x(2)). The idea is to
lower bound q(x) by restricting attention to the sequences
within T (k)

x = {s ∈ X k | p̂s = p̂x}:

q(x) =
∑
s∈Xk

p(s)
[
Πk

i=1p̂s(xi)
]

=
∑
s∈Xk

p(s)2−k(H(p̂x)+D(p̂x∥p̂s)) ≥
∑

s∈T (k)
x

p(x)2−kH(p̂x)

= |T (k)
x |p(x)2−kH(p̂x) ≥ 1

(k + 1)|X | p(x), (34)

where the second line follows from theorem 11.1.2 in [4] and
the last line follows from the fact that |Tx| ≥ 1

(k+1)|X| 2
kH(p̂x)

[4]. This implies that D(p||q) ≤ |X | log(k + 1).
Corollary 2: Consider a massive access scenario with a

total of n users and a random subset of k active users. Let
sources X = (X1, · · · , Xk) take values in a discrete set X k

and be distributed according to an exchangeable distribution
p(x). Then the minimum achievable rate R∗ is bounded above
as

R∗ ≤ H(X)+k log(e)+ log(H(X)+k log(e)+1)+1 (35)

R∗ ≤ H(X) + |X | log(k + 1)

+ log(H(X) + |X | log(k + 1) + 1) + 1.
(36)

Corollary 2 follows immediately from Lemma 1 and
Theorem 1. The implication here is that for any ex-
changeable source, the overhead beyond H(X) is at most
min{k log e, |X | log(k + 1)}+ log(k +H(X)).

VI. CONCLUDING REMARKS

This paper shows that exchangeable sources can be effi-
ciently communicated to a random subset of users in massive
random access with at most constant overhead per user. This is
achieved through a clever code construction that exploits the
relationship between exchangeable distributions and mixture
of i.i.d. distributions.

In fact, if we consider the case in which the exchangeable
source (X1, · · · , Xk) is extendable to a longer exchangeable
sequence (X1, · · · , Xk, · · · , Xd), code rates with even lower
overheads are achievable. This can be done by modifying the
codebook construction in Definition 1 to sample from realiza-
tions of (x1, · · · , xd) instead of (x1, · · · , xk). The same argu-
ments used to prove Lemma 1 can be used to show that if the
codeword is generated through the sampling of this extended
sequence, then D(p||q) ≤ log

(
dk

dk

)
≤ − log

(
1− k(k−1)

2d

)
.

This means that if d = O(k2+ϵ), then D(p||q) essentially
vanishes, which removes the k log(e) term in Corollary 2. It is
worth mentioning that this result is similar to results found in
the literature pertaining to exchangeable sequences and finite
de Finetti theorems [5]–[7].
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