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Abstract—The two-user broadcast channel (BC) with decoders
connected by cooperative links of given capacities (known as
conferencing decoders) is considered. A novel outer bound on
the capacity region is established. This outer bound is derived
using multiple applications of the Csiszár-Körner identity. A new
achievable rate region for the channel is also presented which is
derived by applying Marton’s coding as the transmission scheme,
and quantize-bin-and-forward at one receiver and decode-and-
forward at the other receiver as cooperative strategy. It is proved
that the outer bound coincides with the achievable region for a
class of semi-deterministic BCs with degraded message sets. This
is the first capacity result for the two-user BC with bidirectional
conferencing decoders. This result demonstrates that a one-round
cooperation scheme is sufficient to achieve capacity for this class
of semi-deterministic BCs with degraded message set. A capacity
result is also derived for a new class of more capable and semi-
deterministic BCs with both common and private messages and
one-sided conferencing.

Index Terms—Broadcast channel, conferencing decoders, semi-
deterministic channel, Csiszár-Körner identity

I. INTRODUCTION

This paper investigates the impact of user cooperation via
digital links of given capacities, known as conferencing links,
on the capacity region of a two-user broadcast channel (BC)
with both common and private messages. The two-user BC
with conferencing decoders is previously studied in [1]- [7].
In [1], the authors develop communication strategies for the
interactive decoding of a common message broadcast to coop-
erative users. In [2], the capacity region of physically degraded
channel is derived and also an achievable rate region is given
for the general case. In [3], the problems of communication
over physically degraded, state-dependent BCs with one-sided
conferencing decoders are investigated. In [4], the capacity
region of the semi-deterministic BC with one-sided decoder
cooperation is derived and its duality with a source coding
problem is addressed. The authors in [5] consider the BC
with one-sided cooperating users under the strong secrecy
constraints and present capacity results for semi-deterministic
and physically degraded cases. In [6], the BC with (one-sided)
unreliable cooperating decoders is studied. Lastly, in a recent
work [7], the BC with degraded message sets and one-sided
cooperation link that may be absent is considered and its
capacity region is given.

As reviewed, the existing capacity results for BC with
conferencing decoders are all for the case of one-sided coop-
eration, i.e., only one of the users is connected to the other by
a conferencing link. This is due to the lack of outer bounds for

the two-sided cooperation case. In this paper, we first establish
a novel outer bound on the capacity region of the two-user
BC with bidirectional conferencing decoders. The new outer
bound is derived using multiple applications of the Csiszár-
Körner identity [8, Lemma 7]. It is strictly tighter than the
previous outer bounds including that of [2, Prop. 1], which is
essentially the cut-set bound.

Further, we propose an achievability strategy for the chan-
nel. In [2, Th. 2] an achievable region is derived for the BC
with bidirectional cooperation by applying Marton’s coding at
the transmitter and compress-and-forward cooperative scheme
at both receivers. A second achievable region is given in
[4, App. B] for the BC with one-sided cooperation between
receivers that is derived by applying Marton’s coding at the
transmitter and decode-and-forward as cooperative protocol.
Both of these achievable schemes (which are given for the
channel with private messages only) are in general insufficient
to either derive new capacity results or approximate capacity
results for the Gaussian channel. Instead, this paper presents an
achievability scheme for the two-user BC with both common
and private messages and bidirectional conferencing receivers,
in which we apply Marton’s coding as the transmission scheme
and quantize-bin-and-forward at one receiver and decode-and-
forward at the other receiver as cooperative strategy.

We prove that the novel outer bound coincides with the
proposed achievable region for a class of semi-deterministic
BCs with degraded message sets. This capacity result is
important from two viewpoints. First, it is the first capacity
result for the two-user BC with two-sided conferencing re-
ceivers (all previously known capacity results are regarding
the channel with one-sided cooperation). Second, it is among
rare cases in network information theory for which quantize-
bin-and-forward is optimal. Our result also demonstrates that
a one-round bidirectional cooperation protocol is sufficient to
achieve capacity and multi-round strategies similar to those
devised in [1] are not needed. Finally, we derive the capacity
region of a class of more capable semi-deterministic BCs with
both common and private messages and one-sided cooperation.

II. PRELIMINARIES

We use the following notations. Random variables are
denoted by upper case letters (e.g. X) and lower case letter
are used to show their realization (e.g. x). The probability
distribution function (PDF) of X is denoted by PX(x) and
the conditional PDF of X given Y is denoted by PX|Y (x|y),
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Figure 1. The Two-User BC with Conferencing Decoders.

where the subscripts are omitted occasionally for brevity. The
operator {a}+ is defined as: {a}+ = max{0, a}.

Definition: The two-user BC with conferencing decoders
is a communication scenario in which a transmitter sends a
common message and two private messages to two users.
The users are able to exchange information via communi-
cation links of finite capacities called conferencing. links.
Fig. 1 illustrates the channel model. The channel is given
by (X ,Y1,Y2, P (y1, y2|x), C12, C21) where X denote input
alphabet, Y1 and Y2 denote output alphabets, P (y1, y2|x) is
the channel transition probability function, and C12, and C21

are capacities of the conferencing links.
Encoding: For the BC with conferencing decoders, a length-

n code with Γ conferencing rounds is described as follows.
The transmitter encodes independent messages M0, M1, and
M2, which are uniformly distributed over the sets [1 : 2nR0 ],
[1 : 2nR1 ], and [1 : 2nR2 ], respectively, into a codeword and
sends over the channel according to the following:

∆ : [1 : 2nR0 ]× [1 : 2nR1 ]× [1 : 2nR2 ] 7−→ Xn

Xn = ∆(M0,M1,M2)

Decoding: The receiver Yi, i = 1, 2, receives a sequence
Y ni ∈ Yni . The code consists of two sets of conferencing
functions {Ξ12,γ}Γγ=1 and {Ξ21,γ}Γγ=1 with the corresponding
output alphabets {J12,γ}Γγ=1 and {J21,γ}Γγ=1, respectively,
which are described as follows.

Ξ12,γ : Yn1 × J21,1 × ...× J21,γ−1 7−→ J12,γ

J12,γ = Ξ12,γ(Y n1 , J
γ−1
21 )

Ξ21,γ : Yn2 × J12,1 × ...× J12,γ−1 7−→ J21,γ

J21,γ = Ξ21,γ(Y n2 , J
γ−1
12 )

A conference is said to be (C12, C21)-permissible if
Γ∑
γ=1

log ‖J12,γ‖ ≤ nC12,

Γ∑
γ=1

log ‖J21,γ‖ ≤ nC21

Before decoding, the receivers exchange information by hold-
ing a (C12, C21)-permissible conference. Thus, the first re-
ceiver obtains the sequence JΓ

21 = (J21,1, J21,2, ..., J21,Γ)
and the second one obtains the sequence JΓ

12 =
(J12,1, J12,2, ..., J12,Γ). The receivers then detect their respec-
tive messages based on the following decoding functions:

∇1 : Yn1 × J Γ
21 7−→ [1 : 2nR0 ]× [1 : 2nR1 ]

(M̂0, M̂1) = ∇1(Y n1 × JΓ
21)

∇2 : Yn2 × J Γ
12 7−→ [1 : 2nR0 ]× [1 : 2nR2 ]

(M̂0, M̂2) = ∇2(Y n2 × JΓ
12)

The capacity region for the channel is defined as usual [9].
Here, we omit the details for brevity.

III. MAIN RESULTS

Theorem 1. Consider the two-user BC with conferencing
decoders shown in Fig. 1. Let Ro denote the set of all rate
triples (R0, R1, R2) such that:

R0 +R1 ≤ I(U ;Y1) + C21 (1)
R1 ≤ I(X;Y1|Y2, V ) + I(X;Y2) (2)
R1 ≤ I(X;Y2|Y1, V ) + I(X;Y1) (3)

R0 +R2 ≤ I(V ;Y2) + C12 (4)
R2 ≤ I(X;Y2|Y1, U) + I(X;Y1) (5)
R2 ≤ I(X;Y1|Y2, U) + I(X;Y2) (6)

R0 +R1 +R2 ≤ I(X;Y1|V ) + I(V ;Y2) + C12 + C21 (7)
R0 +R1 +R2 ≤ I(X;Y2|U) + I(U ;Y1) + C12 + C21 (8)
R0 +R1 +R2 ≤ I(X;Y1|Y2, V ) + I(X;Y2) + C12 (9)
R0 +R1 +R2 ≤ I(X;Y2|Y1, U) + I(X;Y1) + C21 (10)
R0 +R1 +R2 ≤ I(X;Y1, Y2) (11)

for some joint PDFs PU,V,X where U, V → X → Y1, Y2 forms
a Markov chain. The set Ro constitutes an outer bound on the
capacity region.

Proof. The proof is given in Appendix A.

The above outer bound Ro is derived using the Csiszár-
Körner identity and is clearly tighter than that of [2, Prop.
1] which is essentially the cut-set bound. As we demonstrate
later, the novel structure of the bound, specially the constraints
(9) and (10), are crucial to derive new capacity results.

As mentioned in the introduction, in [2, Th. 2] and [4, App.
B], some achievable rate regions are given for the channel.
However, those regions (which are given for the channel with
private messages only) are in general insufficient to derive new
capacity results. We next present a more effective achievable
strategy for the two-user BC with both common and private
messages and bidirectional conferencing receivers.

Theorem 2. Consider the two-user BC with conferencing
decoders shown in Fig. 1. Let R(1)

i denote the set of all rate
triples (R0, R1, R2) such that

R0 +R1 ≤ min{I(U,W ;Y1) + ζ, I(U,W ;Y1, Ŷ2)}
(12)

R0 +R2 ≤ I(V,W ;Y2) + C12 (13)

R0 +R1 +R2 ≤ min{I(U ;Y1|W ) + ζ, I(U ;Y1, Ŷ2|W )}
+ I(V,W ;Y2) + C12 − I(U ;V |W ) (14)

R0 +R1 +R2 ≤ min{I(U,W ;Y1) + ζ, I(U,W ;Y1, Ŷ2)}
+ I(V ;Y2|W )− I(U ;V |W ) (15)

2R0 +R1 +R2 ≤ min{I(U,W ;Y1) + ζ, I(U,W ;Y1, Ŷ2)}
+ I(V,W ;Y2) + C12 − I(U ;V |W ) (16)

where
ζ = {C21 − I(Ŷ2;Y2|W,U, Y1)}+, (17)
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for some joint PDFs P (u, v, w, x)P (y1, y2|x)P (ŷ2|y2). The
convex closure of the set R(1)

i is achievable.

The cooperation scheme to derive the rate region R(1)
i is to

apply Marton’s coding scheme with quantize-bin-and-forward
at the second receiver first and then decode-and-forward at
the first receiver. We omit the details of the proof of Theorem
2 due to lack of space. It is clear that a second achievable
rate region can also be derived by exchanging the cooperative
protocols at the users. Moreover, one may consider achievable
rates by applying multiple rounds of cooperation at the users.
However, we demonstrate below that the region (12) is already
sufficient to prove new capacity results for some two-user BCs
with cooperative users. Our first capacity result is regarding a
class of semi-deterministic BCs with degraded message set.

Theorem 3. Consider the two-user BC with degraded message
sets, with a common message for both users and a private
message for the first user, and bidirectional conferencing
receivers. For the case of semi-deterministic channel where
Y2 = f(X,Y1), the capacity region is given by:

R0 ≤ I(V ;Y2) + C12 (18)
R0 +R1 ≤ I(X;Y1) + C21 (19)
R0 +R1 ≤ I(X;Y1|V ) + I(V ;Y2) + C12 + C21 (20)
R0 +R1 ≤ I(X;Y1, Y2|V ) + I(V ;Y2) + C12 (21)
R0 +R1 ≤ I(X;Y1, Y2) (22)

for some joint PDFs P (v, x).

Proof. The achievability is derived by setting U ≡ X , W ≡
V , and Ŷ2 ≡ Y2 in R(1)

i . The converse is due to Ro.

Remark: By setting R0 = 0 and C12 = 0, the result of
Theorem 3 is reduced to the capacity of semi-deterministic
primitive relay channel derived in [10]. In this case, the
capacity is given by: maxP (x) I(X;Y1) + C21. Note that for
the case of R0 = 0 and C12 = 0, it is optimal to set V ≡ ∅.
In fact, the cut-set bound is exactly optimal. This capacity is
achieved by quantize-bin-and-forward as the relay strategy.

We now present two interesting examples of semi-
deterministic BC with degraded message set.

Example 1: Consider the following binary channel,{
Y1 = X ⊕ Z
Y2 = Z

(23)

where Z is a binary noise and ⊕ is the XOR operator. For
this channel, we have Y2 = X ⊕ Y1, so the channel is
semi-deterministic. The capacity region of this channel with
degraded message set (R0, R1) is given below:

R0 ≤ C12 (24)
R0 +R1 ≤ I(X;Y1) + C21 (25)
R0 +R1 ≤ H(X) (26)

for some P (x). In this example, the user Y2 does not receive
information from the transmitter directly. Instead, it observes
the noise Z and relays the noise to the user Y1 by sending

a compressed version of it through the digital link C21. The
user Y1 then decodes both messages and forwards the common
message to the user Y2 through the digital link C12. Therefore,
the user Y2 can still receive information at a positive rate.

Example 2: Consider the following binary channel,{
Y1 = Z

Y2 = X ⊕ Z
(27)

where again Z is a binary noise. For this case, the capacity
region with degraded message set (R0, R1) is given as follows.

R0 ≤ I(V ;Y2) + C12 (28)
R0 +R1 ≤ C21 (29)
R0 +R1 ≤ H(X|V ) + I(V ;Y2) + C12 (30)
R0 +R1 ≤ H(X) (31)

for some P (v, x). As shown, unlike the previous case, the
capacity region is characterized based on some auxiliary
variable V . The optimal choice for this variable depends on
the values of C12 and C21.

For this channel, the optimal coding strategy is as follows.
Note that the user Y1 (which is supposed to detect both com-
mon and private messages) does not receive any information
from the transmitter directly. The optimal cooperation strategy
is that the user Y2 first sends a compressed version of its
received signal to the user Y1 through the digital link C21.
Next, the user Y1 decodes both messages using the information
received (and its own signal which is in fact channel noise)
and then forwards part of the common message (using the
variable V ) to the user Y2 through the link C12. Lastly, the
user Y2 decodes the unknown part of the common message
using its received signal.

It is worthwhile to make the following observation. For
Example 2, as the user Y1 observes the channel noise only,
one would think that a cooperative scheme in which Y1 applies
compress-and-forward and Y2 applies decode-and-forward is
the right strategy. However, it turns out that such a scheme
is not optimal when the message to Y2 is a degraded version
of the message to Y1. This is in contrast to Example 1, in
which the message set degrades in the opposite direction and
performing compress-and-forward at the receiver that observes
the noise only is the capacity-achieving strategy.

As far as we know, the above results are the first cases
where a combination of quantize-and-forward and decode-and-
forward strategies yields an optimal bidirectional cooperation
protocol. There is no previously known capacity result in the
literature for channels with bidirectional cooperation between
users. Moreover, our results demonstrate that a one-round
cooperation scheme is sufficient to achieve capacity for this
class of channels.

We also prove a capacity result for a new class of semi-
deterministic and more capable BCs with both common and
private messages and one-sided conferencing.

Theorem 4. Consider the two-user semi-deterministic BC with
both common and private messages and Y2 = f(X,Y1).
Moreover, assume that the channel is more-capable, i.e.,
I(X;Y2) ≤ I(X;Y1) for every input distribution P (x). For
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the channel with one-sided conferencing where only Y2 is
connected to Y1 by a digital link of capacity C21, the capacity
region is given by:

R0 +R2 ≤ I(V ;Y2) (32)
R0 +R1 +R2 ≤ I(X;Y1) + C21 (33)
R0 +R1 +R2 ≤ I(X;Y1|V ) + I(V ;Y2) + C21 (34)
R0 +R1 +R2 ≤ I(X;Y1, Y2|V ) + I(V ;Y2) (35)
R0 +R1 +R2 ≤ I(X;Y1, Y2) (36)

for some joint PDFs P (v, x).

Proof. The achievability is derived by setting U ≡ X , W ≡
V , and Ŷ2 ≡ Y2 in R(1)

i . The converse is given by Ro.

Note that the structure of the novel outer bound Ro given
in Theorem 1, in particular, the constraints (9) and (10), is
crucial for deriving the capacity results in Theorems 3 and
4. In ongoing work [11], we show that the bounds can also
be used to derive approximate capacity results for Gaussian
channels.

IV. CONCLUDING REMARKS

This paper shows that the Csiszár-Körner identity can be
used to derive novel outer bounds for the BC with bidirectional
conferencing receiver that are tighter than the cut-set bound.
Combining with the achievability results based on quantize-
bin-and-forward in one direction and decode-and-forward in
the other direction, it allows us to derive capacity results for
specific classes of semi-deterministic BCs with degraded mes-
sage set. Two binary channel examples are used to illustrate
the capacity-achieving coding strategy.

APPENDIX A
PROOF OF THEOREM 1

We only derive the constraints that include the auxiliary
variable U , i.e., (1), (5), (6), (8), and (10). The constraints
that include V are derived symmetrically, and the last con-
straint is due to the cut-set bound. Consider a length-n code
with vanishing average error probability. Define new auxiliary
variables as follows:

Ut = (M0,M1, Y
t−1
2 , Y n1,t+1) t = 1, ..., n (37)

By Fano’s inequality, we have

n(R0 +R1)

≤ I(M0,M1;Y n1 , J
Γ
21) + nε(1)

n

= I(M0,M1;Y n1 ) + I(M0,M1; JΓ
21|Y n1 ) + nε(1)

n

≤
n∑
t=1

I(M0,M1;Y1,t|Y n1,t+1) +H(JΓ
21) + nε(1)

n

(a)

≤
n∑
t=1

I(M0,M1, Y
n
1,t+1, Y

t−1
2 ;Y1,t) +H(JΓ

21) + nε(1)
n

≤
n∑
t=1

I(Ut;Y1,t) + nC21 + nε(1)
n

(38)

where inequality (a) holds because conditioning does not
increase the entropy.

Next, we derive the constraints on R2. By Fano’s inequality,

nR2 ≤ I(M2;Y n2 , J
Γ
12) + nε(2)

n

≤ I(M2;Y n1 , Y
n
2 , J

Γ
12) + nε(2)

n

(a)
= I(M2;Y n1 , Y

n
2 ) + nε(2)

n

≤ I(M2;Y n1 , Y
n
2 |M0,M1) + nε(2)

n

(39)

where (a) holds because JΓ
12 is given by a deterministic

function of (Y n1 , Y
n
2 ).

Now consider the following:

I(M2;Y n1 , Y
n
2 |M0,M1)

= I(M2;Y n2 |M0,M1) + I(M2;Y n1 |Y n2 ,M0,M1)

≤ I(M0,M1,M2;Y n2 ) + I(M2;Y n1 |Y n2 ,M0,M1)

(a)

≤
n∑
t=1

I(Xt;Y2,t)

+

n∑
t=1

I(Xt;Y1,t|Y2,t,M0,M1, Y
t−1
2 , Y n2,t+1, Y

n
1,t+1)

=

n∑
t=1

I(Xt;Y2,t) +

n∑
t=1

I(Xt;Y1,t|Y2,t, Ut, Y
n
2,t+1)

(b)

≤
n∑
t=1

I(Xt;Y2,t) +

n∑
t=1

I(Xt;Y1,t|Y2,t, Ut)

(40)

where (a) holds because Xt is a deterministic function of
(M0,M1,M2) and the channel is memoryless, and (b) holds
because conditioning does not increase entropy and also given
the input signal Xt, the outputs Y1,t, Y2,t are independent of
other variables.

In the same way, one can also derive:

I(M2;Y n1 , Y
n
2 |M0,M1)

= I(M2;Y n1 |M0,M1) + I(M2;Y n2 |Y n1 ,M0,M1)

≤
n∑
t=1

I(Xt;Y1,t) +

n∑
t=1

I(Xt;Y2,t|Y1,t, Ut)

(41)

By substituting (40) and (41) in (39), we obtain the desired
bounds on R2.

Next, we derive the constraints on the sum-rate. We have

n(R0 +R1 +R2)

≤ I(M0,M1;Y n1 , J
Γ
21) + I(M2;Y n2 , J

Γ
12) + n(ε(1)

n + ε(2)
n )

≤ I(M0,M1;Y n1 ) + I(M2;Y n2 ) + I(M0,M1; JΓ
21|Y n1 )

+ I(M2; JΓ
12|Y n2 ) + n(ε(1)

n + ε(2)
n )

≤ I(M0,M1;Y n1 ) + I(M2;Y n2 |M0,M1)

+H(JΓ
21) +H(JΓ

12) + n(ε(1)
n + ε(2)

n )

≤ I(M0,M1;Y n1 ) + I(M2;Y n2 |M0,M1)

+ n(C12 + C21) + n(ε(1)
n + ε(2)

n )
(42)
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Now consider the following:

I(M0,M1;Y n1 ) + I(M2;Y n2 |M0,M1)

=

n∑
t=1

I(M0,M1;Y1,t|Y n1,t+1)

+

n∑
t=1

I(M2;Y2,t|M0,M1, Y
t−1
2 )

≤
n∑
t=1

I(Y t−1
2 ,M0,M1;Y1,t|Y n1,t+1)

−
n∑
t=1

I(Y t−1
2 ;Y1,t|M0,M1, Y

n
1,t+1)

+

n∑
t=1

I(Y n1,t+1,M2;Y2,t|M0,M1, Y
t−1
2 )

≤
n∑
t=1

I(Y t−1
2 ,M0,M1;Y1,t|Y n1,t+1)

−
n∑
t=1

I(Y t−1
2 ;Y1,t|M0,M1, Y

n
1,t+1)

+

n∑
t=1

I(Y n1,t+1;Y2,t|M0,M1, Y
t−1
2 )

+

n∑
t=1

I(M2;Y2,t|M0,M1, Y
t−1
2 , Y n1,t+1)

(a)

≤
n∑
t=1

I(Y t−1
2 ,M0,M1;Y1,t|Y n1,t+1)

+

n∑
t=1

I(M2;Y2,t|M0,M1, Y
t−1
2 , Y n1,t+1)

≤
n∑
t=1

I(Y t−1
2 , Y n1,t+1,M0,M1;Y1,t)

+

n∑
t=1

I(M2;Y2,t|M0,M1, Y
t−1
2 , Y n1,t+1)

≤
n∑
t=1

I(Ut;Y1,t) +

n∑
t=1

I(Xt;Y2,t|Ut)

(43)

where (a) is due to the Csiszár-Körner identity. By substituting
(43) in (42), we obtain the bound (8) on the sum-rate.

Finally, we can write:

n(R0 +R1 +R2)

≤ I(M0,M1;Y n1 , J
Γ
21) + I(M2;Y n2 , J

Γ
12) + n(ε(1)

n + ε(2)
n )

≤ I(M0,M1;Y n1 ) + I(M2;Y n1 , Y
n
2 , J

Γ
12)

+ I(M0,M1; JΓ
21|Y n1 ) + n(ε(1)

n + ε(2)
n )

≤ I(M0,M1;Y n1 ) + I(M2;Y n1 , Y
n
2 )

+H(JΓ
21) + n(ε(1)

n + ε(2)
n )

≤ I(M0,M1;Y n1 ) + I(M2;Y n1 , Y
n
2 |M0,M1)

+ nC21 + n(ε(1)
n + ε(2)

n )
(44)

Continuing with this chain of inequalities, we have

n(R0 +R1 +R2)

≤ I(M0,M1;Y n1 ) + I(M2;Y n1 , Y
n
2 |M0,M1)

+ nC21 + n(ε(1)
n + ε(2)

n )

≤ I(M0,M1;Y n1 ) + I(M2;Y n2 |M0,M1)

+ I(M2;Y n1 |Y n2 ,M0,M1) + nC21 + n(ε(1)
n + ε(2)

n )

(a)

≤
n∑
t=1

I(Ut;Y1,t) +

n∑
t=1

I(Xt;Y2,t|Ut)

+

n∑
t=1

I(Xt;Y1,t|Y2,t, Ut) + nC21 + n(ε(1)
n + ε(2)

n )

=

n∑
t=1

I(Ut;Y1,t) +

n∑
t=1

I(Xt;Y1,t, Y2,t|Ut)

+ nC21 + n(ε(1)
n + ε(2)

n )

=

n∑
t=1

I(Ut;Y1,t) +

n∑
t=1

I(Xt;Y1,t|Ut)

+

n∑
t=1

I(Xt;Y2,t|Y1,t, Ut) + nC21 + n(ε(1)
n + ε(2)

n )

=

n∑
t=1

I(Xt;Y1,t) +

n∑
t=1

I(Xt;Y2,t|Y1,t, Ut)

+ nC21 + n(ε(1)
n + ε(2)

n )
(45)

where inequality (a) is derived by following the same line
of argument as in (43). By applying a standard time-sharing
argument, we derive the desired constraint (10).

Finally, (11) is just the cut-set bound. The proof is thus
complete.
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