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1.1. Introduction

Reconfigurable intelligent surface (RIS) is a class of emerging devices [Di Renzo

et al., 2019, Wu et al., 2021] that are capable of intelligently reconfiguring

the wireless propagation channel by altering the phases of the reflected radio

signals in a controlled manner. The RIS is typically made of many passive

reconfigurable elements. It has very low energy consumption and can be easily

integrated into the existing wireless communication systems. It provides a low-

cost way of adaptively re-engineering the radio propagation channel and is

envisioned as a key technology for the next generation wireless communication

networks.
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Most of the literature, e.g., [Huang et al., 2019, Wu and Zhang, 2019], have

investigated the passive beamforming capability of the RIS. The idea is to re-

configure the passive elements of the RIS so that the incoming electromagnetic

radiation is refocused with a narrow beam toward the intended receiver so that

the signal-to-noise ratio (SNR) of the overall communication link is improved.

This chapter presents a new potential use of the RIS for a wireless environ-

ment with multiple transmitter-receiver pairs. The idea is to reconfigure the

passive elements of the RIS so that the interferences between these multiple

links can be reduced or even eliminated. In other words, the RIS is used to

re-engineer a multiuser wireless communication channel so that all the links

become effectively interference-free.

Consider a scenario in which K single-antenna transceiver pairs communi-

cate independently while utilizing the same set of time and frequency resources.

When the transmitters and the receivers are located close to each other, the

interferences between these independent transmissions are typically the main

channel impairments. The main insight of this chapter is that as long as the

direct channels between the transmitters and the receivers are not too strong

as compared to the reflected path through the RIS, it is possible to reconfigure

the RIS in such a way that the interferences are completely eliminated in the

overall effective channels. This is possible if the RIS has a sufficiently large

number of elements — in the order of O(K2).

In conventional wireless communication deployment scenarios, interference

is managed by scheduling nearby transmit-receive links into different time or

frequency resource blocks. This leads to traditional deployment strategies such

as frequency reuse but is not the most spectrally efficient. Modern wireless

systems are often designed with full frequency reuse. To deal with interference,
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modern wireless systems utilize spatial domain techniques based on multiple-

input multiple-output (MIMO) technology (e.g., zero-forcing beamforming) to

spatially separate the communication links. The main result of this chapter is

that instead of relying on multiple antennas either at the transmitter or at the

receiver to separate the interfering transmission pairs, it is possible to use a

sufficiently large intelligent reflector to modify the K ×K wireless channel so

that it becomes interference-free, even for the case in which all the transmitters

and the receivers are equipped with a single antenna only.

From a theoretical perspective, it is possible to show that under a rect-

angular array model of RIS, if the number of elements is sufficiently large

and if the direct channels between the transceivers are blocked and the re-

flection channels between the transceivers and the RIS have line-of-sight, then

it is always possible to tune the phase shifts of the RIS so that the effective

overall channel is interference-free. From an algorithmic perspective, when the

channel state information (CSI) is fully available, it is possible to use an alter-

nating projection algorithm to efficiently find an interference-nulling solution

numerically. Such an algorithm can be used either with or without the direct

channels between the transceivers being present. Numerical results show that

the alternating projection algorithm can find an interference-nulling solution if

the number of RIS elements is slightly greater than 2K(K − 1) and the direct

links are weak.

The above results rely on the availability of perfect CSI. However, ob-

taining an accurate estimate of the CSI in an RIS system would in general

require the number of pilots to scale with O(KN), where N is the number

of RIS elements. This is a huge overhead, because N is typically large. Poor

channel estimation can lead to a solution with high interference power. The
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second part of the chapter describes a learning-based method for finding the

RIS configuration that can be easily incorporated into the conventional chan-

nel estimation and optimization framework with much reduced pilot training

overhead. Specifically, using a few received pilots, the scheme first uses a lin-

ear minimum mean square estimator (LMMSE) to estimate the channel, then

utilizes a deep neural network (DNN) to learn an initial point for the alternat-

ing projection algorithm from the estimated channel. This proposed method is

based on the observation that the RIS optimization problem is highly noncon-

vex and different initial points can lead to solutions with different interference

power. As compared to the conventional methods using random initial points

for the alternating projection algorithm, simulations show that a DNN can

learn a better initial point that can lead to a solution with significantly lower

interference power at the same pilot length.

The interference cancelation capability of RIS has been investigated for

device-to-device (D2D) communications in the cellular network [Fu et al., 2021,

Chen et al., 2021, Ji et al., 2022, Abrardo et al., 2021]. In that setting, the RIS

is used to mitigate interference from the D2D communications to the cellular

communications. Most existing works also assume that perfect CSI is available

when designing the reflection coefficients. This chapter studies the interference-

nulling capability of RIS in a K-user interference channel and explicitly studies

the impact of imperfect CSI.

1.2. System Model

Consider an RIS-assisted K-user interference environment, in which K single-

antenna transceiver pairs communicate simultaneously using the same fre-
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Figure 1.1: System model of RIS-assisted K-user interference environment.

quency and time resources. As shown in Figure 1.1, an RIS is deployed be-

tween the transmitters and receivers. The idea is to tune the phase shifts of the

RIS to create an interference-free communication network. We assume a block

fading channel model where the channels remain constant in one coherence

block but change independently across different coherence blocks. Let tj ∈ CN

denote the channel from the j-th transmitter to the RIS, and r>k ∈ C1×N

denote the channel from the RIS to the k-th receiver. The RIS is modeled

as an array of phase shifters. Let ωi ∈ (0, 2π] be the phase shift of the i-th

element of the RIS, then the reflection coefficients of the RIS can be denoted

by θ = [ejω1 , . . . , ejωN ]> ∈ CN . The direct channel from the j-th transmitter

to the k-th receiver without the RIS reflection is denoted as dk,j ∈ C. The

received signal at the k-th receiver can be represented as

yk =

K∑
j=1

(
r>k diag(θ)tj + dk,j

)
xj + nk, (1.1)
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where xj ∈ C is the transmitted signal from the j-th transmitter and intended

to the j-th receiver, and nk ∼ CN (0, σ2) is the additive Gaussian noise. The

transmitted signal is subject to a power constraint, i.e., E
[
|xj |2

]
= pj , where

pj is the transmit power of the j-th transmitter.

With these notations, the theoretical achievable rate of the k-th transceiver

pair can now be written as

Rk = log2

(
1 +

pk|r>k diag(θ)tk + dk,k|2∑
j 6=k pj |r>k diag(θ)tj + dk,j |2 + σ2

)
. (1.2)

The chapter focuses on designing the reflection coefficients θ to create K

interference-free channels for the correspondingK transceiver pairs. This achieves

the maximum degrees-of-freedom K for the system.

1.3. Interference Nulling via RIS

To achieve the maximum degrees-of-freedom of the overall K-user system, we

need to find a configuration of the RIS reflection coefficients θ such that all

the interference is nulled and the desired links have positive effective channel

strength, i.e.,

r>k diag(θ)tj + dk,j = 0, ∀j 6= k, ∀k = 1, . . . ,K, (1.3a)

r>k diag(θ)tk + dk,k 6= 0, ∀k = 1, . . . ,K. (1.3b)
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Let ak,j , diag(tj)rk denote the cascaded channel from transmitter j to re-

ceiver k, the conditions in (1.3) can be rewritten in the following form:

a>k,jθ + dk,j = 0, ∀j 6= k, ∀k = 1, 2, . . . ,K, (1.4a)

a>k,jθ + dk,k 6= 0, ∀k = 1, 2, . . . ,K. (1.4b)

Since the channel realizations are random, the conditions in (1.4b) hold al-

most surely. Thus, we focus on seeking a feasible solution θ to the condi-

tions in (1.4a). Note that the RIS coefficients are subject to the constraint

θ = [ejω1 , . . . , ejωN ], so finding a feasible set of phase shifts {ω1, . . . , ωN} is a

highly nontrivial problem.

1.3.1. Feasibility of Interference Nulling

The conditions in (1.4a) are not always feasible. If the RIS reflection coefficients

are treated as unconstrained variables, the number of complex variables N

should be greater than the number of complex linear equations K(K − 1)

to guarantee that the set of equations (1.4a) has a solution. This would be

the case if both the amplitude and phase can be controlled arbitrarily for

each RIS element. If only the phase of the RIS can be configured, that is,

the RIS coefficient vector is subject to the constraint θ = [ejω1 , . . . , ejωN ], the

feasibility problem becomes more complicated. By simply counting the number

of equations and the number of variables in the real field, we can see that there

are N real variables ωi in θ and 2K(K − 1) nonlinear real equations of ωi’s in

(1.4a). Therefore, intuitively we would need N ≥ 2K(K − 1) to ensure that

there exists a feasible solution to (1.4a).

However, it is not easy to establish the above results rigorously since the
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equations of the phase shifts ωi’s are nonlinear. Further, even if the existence of

the interference-nulling solutions can be guaranteed, finding a solution is still

computationally challenging. Nevertheless, later in this chapter, we show that

the intuition of requiring N ≥ 2K(K − 1) is correct and present a computa-

tionally efficient alternating projection algorithm, which can be used to find an

interference nulling solution when N is slightly larger than 2K(K − 1). Before

going into the algorithm, we first present a theoretical result that provides a suf-

ficient condition for the feasibility of (1.4a) for a specific RIS model and specific

deployment scenario. This theoretical result suggests that for an RIS-assisted

network with negligible direct channels and line-of-sight transceiver-RIS chan-

nels, the interference can be completely nulled out by a uniform rectangular

RIS with a sufficiently large number of reflective elements.

Specifically, consider an N1 × N2 uniform rectangular array RIS, which

has N1 elements per row (horizontal direction) and N2 elements per column

(vertical direction). Denote % ∈ [−π
2 ,

π
2 ], φ ∈ [−π

2 ,
π
2 ] as the azimuth angle and

the elevation angle of arrival, respectively. We can write the n-th element of

the RIS steering vector as follows [Björnson and Sanguinetti, 2021]:

[ψ(%, φ)]n = ej
2π
λ
[i1(n)b1 sin(%) cos(φ)+i2(n)b2 sin(φ)], (1.5)

where b1 and b2 are the horizontal and vertical spacings between the RIS

elements, and i1(n) = mod(n − 1, N1) and i2(n) = b(n − 1)/N2c denote the

horizontal index and vertical index of element n, respectively. The channel

vector between the RIS and the k-th transmitter can then be written as

tk = βtkψ(%tk, φ
t
k), (1.6)
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where βtk denotes the pathloss between the k-th transmitter and the RIS, and

%tk and φtk are the corresponding azimuth and elevation angles. Similarly, we

represent the channel between RIS and the k-th receiver as rk = βrkψ(%rk, φ
r
k).

When the direct channels can be ignored, the interference nulling conditions

(1.4) become

a>k,jθ = 0, ∀j 6= k, ∀k = 1, 2, . . . ,K. (1.7a)

a>k,jθ 6= 0, ∀k = 1, 2, . . . ,K, (1.7b)

where θ = [ejω1 , . . . , ejωN ]. In order to find a sufficient condition for the fea-

sibility of (1.7), we use the following lemma, which ensures the existence of a

polynomial with unit modulus coefficients for given roots on the complex unit

circle.

Lemma 1.1(Newman and Giroux [1990]): Given z1, . . . , zn on the com-

plex unit circle C = {x ∈ C : |x| = 1}, there exists a polynomial f of degree∑n
i=1 4i−1 with unit modulus coefficients such that the points z1, . . . , zn are the

only zeros of f on C.

Now, we establish the following sufficient condition for the feasibility of the

interference nulling criterion (1.7).

Theorem 1.1: For an N1×N2 rectangular RIS, assuming that the channels

between the RIS and the users are given by (1.6), there exists a feasible solution

to the interference nulling conditions in (1.7) if either N1 =
∑K(K−1)

k=1 4k−1 or

N2 =
∑K(K−1)

k=1 4k−1.

Proof. We begin with the case N2 = 1, which corresponds to the uniform
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linear array case. In this case, the channel between the RIS and transmitter j

can be written as

tj = βtj [1, . . . , e
j
2πb2(N1−1)

λ
sin(φtj)]>, (1.8)

and the channel between the RIS and receiver k can be written as

rk = βrk[1, . . . , e
j
2πb2(N1−1)

λ
sin(φrk)]>. (1.9)

Thus, we have

ak,j = βrkβ
t
j [1, . . . , e

j
2πb2(N1−1)

λ
(sin(φtj)+sin(φrk))]> (1.10a)

, βrkβ
t
j [1, zk,j , z

2
k,j , . . . , z

N1−1
k,j ]>, (1.10b)

where zk,j = ej
2πb2
λ

(sin(φtj)+sin(φrk)).

Let f(z) denote a polynomial of degree N1 with unit modulus coefficients

as follows:

f(z) = θ1 + θ2z + θ3z
2 + . . .+ θN1z

N1−1, (1.11)

where |θi| = 1, ∀i. Observe that the interference nulling conditions in (1.7a)

and (1.7b) can now be expressed as below with the coefficients of f(z) playing

the role of RIS phase shifts:

f(zk,k) 6= 0, k = 1, . . . ,K, (1.12a)

f(zk,j) = 0, k = 1, . . . ,K, ∀j 6= k. (1.12b)

Thus, the original problem of finding RIS phase shifts for interference nulling is
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now transformed into the problem of finding a polynomial with unit modulus

coefficients as in (1.11) such that zk,j ’s are the roots, while the polynomial

does not vanish at zk,k’s. By Lemma 1.1, we know such a polynomial exists if

N1 =
∑K(K−1)

k=1 4k−1.

To generalize the above result to the rectangular array case with N2 > 1,

we make the argument that a rectangular uniform array can be viewed as N2

rows of the uniform linear array of size N1×1. Thus, if we set all the rows of the

RIS to have the same reflection coefficients that null all the interference, which

can be achieved if N1 =
∑K(K−1)

k=1 4k−1, the entire rectangular array would also

achieve the interference nulling condition. Mathematically, this means that the

same reflection coefficients are used N2 times to produce a zero-forcing solution

for all N2 sub-vectors of ψ(%, φ) as in (1.5).

Finally, if we exchange the roles of N1 and N2, it is easily seen that the

interference nulling conditions are also achievable if N2 =
∑K(K−1)

k=1 4k−1. This

completes the proof.

Theorem 1.1 is a theoretical result showing that an interference nulling

solution must exist if the number of RIS elements N scales as the exponential

function of K. But in practice, we empirically find that by using an alternating

projection algorithm, a feasible solution can be found as long as the number of

RIS elements N is only slightly larger than the number of nonlinear equations

2K(K − 1).

We remark that if the direct channel dk,j is present, the feasibility condition

becomes more strict since it is necessary to have

‖ak,j‖1 ≥ |dk,j |, ∀k = 1, . . . ,K, j 6= k, (1.13)

as otherwise even aligning all the strength of the cascaded channel would not
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be sufficient to cancel out the interference in the direct channel dk,j . It can be

observed that as the strength of the direct channel increases, the number of

RIS elements N also needs to increase in order to make interference nulling

feasible.

1.3.2. Alternating Projection Algorithm

This section presents an alternating projection algorithm for finding an inter-

ference nulling solution to (1.4). The proposed algorithm is applicable regard-

less of the RIS channel model and regardless of whether the direct links are

present.

Specifically, we formulate the problem of finding an interference-nulling

solution as the following feasibility problem:

find θ (1.14a)

subject to a>k,jθ + dk,j = 0, k = 1, . . . ,K, ∀j 6= k, (1.14b)

|θi| = 1, i = 1, . . . , N. (1.14c)

For ease of presentation, let Ak ∈ CN×(K−1) denote the collection of all the

interference channels to the k-th receiver through the reflection of the RIS, i.e.,

Ak = [ak,1, . . . ,ak,k−1,ak,k+1, . . . ,ak,K ]. (1.15)

Let dk ∈ CK−1 denote all the interference channels to the k-th receiver through

the direct links, i.e.,

dk = [dk,1, . . . , dk,k−1, dk,k+1, . . . , dk,K ]>. (1.16)
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To further simplify the notation, let

A = [A1, . . . ,AK ], (1.17a)

d = [d>1 , . . . ,d
>
K ]>, (1.17b)

where A ∈ CN×(K−1)K and d ∈ C(K−1)K contain all the interference channels

through the RIS reflection and the direct link, respectively.

Then, (1.14) can be rewritten more compactly as

find θ (1.18a)

subject to A>θ + d = 0, (1.18b)

|θi| = 1, i = 1, . . . , N. (1.18c)

Problem (1.18) is computationally challenging to solve due to the nonconvex

unit modulus constraints.

To solve this problem efficiently, this chapter presents an alternating pro-

jection algorithm that transforms the feasibility problem (1.18) into a problem

of finding a point in the intersection of two sets. For ease of presentation, we

define the following two constraint sets

S1 = {θ : A>θ + d = 0}, (1.19a)

S2 = {θ : |θi| = 1, i = 1, . . . , N}, (1.19b)

and rewrite problem (1.18) equivalently as

find θ

subject to θ ∈ S1 ∩ S2.
(1.20)
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The feasibility problem (1.18) now becomes that of finding a point in the

intersection of S1 and S2. To this end, given an initial point θ(0), the alternating

projection algorithm alternatively projects onto S1 and S2 as follows:

θ̃(t) = ΠS1(θ(t)), (1.21a)

θ(t+1) = ΠS2(θ̃(t)), (1.21b)

where the operator ΠS(θ) denotes the Euclidean projection of θ onto S, defined

as the solution to the following problem:

minimize
x

‖θ − x‖22

subject to x ∈ S.
(1.22)

Fortunately, the projections onto the sets S1 and S2 both have simple analytical

expressions, as given by [Parikh and Boyd, 2014]:

ΠS1(θ) = θ −A∗(A>A∗)−1(A>θ + d), (1.23a)

ΠS2(θ) = θ/|θ|, (1.23b)

where A∗ is complex conjugate of A. In (1.23a) the channel matrix A is as-

sumed to be full column rank (otherwise the matrixA can be replaced by a new

matrix A′ constructed from the basis of the column space of A). In (1.23b), if

some elements of the vector θ are zero, these elements can be projected to any

random point on the complex unit circle. The alternating projection algorithm

for solving problem (1.20) is summarized in Algorithm 1.

The local convergence of the alternating projection algorithm is established

in [Jiang and Yu, 2022]. That is, if the intersection of the sets S1 and S2 is
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Algorithm 1: Alternating Projection for Solving (1.18)

Input: Initial point θ ∈ CN . Channel matrix A.
Initialization: θ(0) = θ
for t = 0, 1, 2, . . . do

θ̃(t) = ΠS1(θ(t))
θ(t+1) = ΠS2(θ̃(t))
if stopping criterion is satisfied then

break
end

end

Output: θ(t+1)

nonempty, Algorithm 1 is guaranteed to converge to an intersection point of

S1 and S2 from an initial point sufficiently close to the intersection point.

The computational complexity of the proposed algorithm is dominated by

the step (1.23a). This step requires time complexity O(N2K2 + K6 + K4N)

for computing A∗(A>A∗)−1A>. But, this matrix can be precalculated and

reused in each iteration, so the overall time complexity of the Algorithm 1 is

O(N2K2 +K6 +K4N + tN2), where t is the number of iterations required for

convergence.

1.3.3. Simulation Results

To illustrate the performance of the proposed algorithm, we report the simu-

lation results in [Jiang and Yu, 2022]. The results in Figure 1.2 and Figure 1.3

correspond to the scenario without direct links and the results in Figure 1.4

and Figure 1.5 correspond to the scenario with direct links.

In the simulations, an interference nulling solution is said to be found if

the maximum interference-to-signal ratio across all transceiver pairs is below

−36dB. In Figure 1.2, we plot the empirical probability of finding an interfer-

15



0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.2: Empirical interference nulling probability vs. number of RIS elements in

the scenario without direct links.
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Figure 1.3: Number of RIS elements vs. number of transceiver pairs K in the

scenario without direct links.
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ence nulling solution for different numbers of RIS elements N and transceiver

pairs K. It can be seen from Fig 1.2 that there is a phase transition phe-

nomenon as N increases for each fixed K. The interference nulling probability

is almost 0 if N is smaller than some threshold, while the probability increases

to 1 dramatically if N exceeds the threshold. The threshold that the phase

transition occurs is about 2K(K − 1) as K varies.

To observe the phase transition location more precisely, Figure 1.3 shows

the value ofN below which there is a “0% success” rate for finding an interference-

nulling solution and the points above which there is empirically a “95% suc-

cess” rate for finding an interference-nulling solution. We also plot the line

N = 2K(K − 1), which precisely matches the “0% success” line. This implies

that N ≥ 2K(K − 1) is a necessary condition for the feasibility of interference

nulling. Both Figure 1.2 and Figure 1.3 show that the proposed alternating pro-

jection algorithm can find an interference nulling solution with high probability

if the number of RIS elements N is slightly above the threshold 2K(K−1). It is

also observed in simulations that the phase transition location is not sensitive

to the channel model.

We present the results of the case with direct links in Figure 1.4 and Fig-

ure 1.5. In Figure 1.4, the number of transceiver pairs K = 7. The path loss of

the cascaded channels is about −122.6 dB. As the path loss of the direct link

β̃k,j becomes stronger, the phase transition location shifts towards a larger N

as shown in Figure 1.4. This implies that more RIS elements are needed to

cancel out the interference in the direct link.

From (1.13), we know that the relative strength of the cascaded channels

and the direct channels can affect the interference nulling probability. So in

Figure 1.5, we plot the empirical interference nulling probability for K = 8
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Figure 1.4: Empirical interference nulling probability vs. number of RIS elements in

the scenario with direct links for a system with K = 7 transceiver pairs.
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Figure 1.5: Empirical interference nulling probability vs. direct-to-reflective link

strength η for a system with K = 8 transceiver pairs.
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for various values of the ratio between the strength of the direct link and the

cascaded channels, i.e.,

η = max
k,j

|dk,j |
‖ak,j‖1

. (1.24)

As can be seen from Figure 1.5, the empirical interference nulling probability

decreases as the parameter η increases. To maintain high interference nulling

probability as η increases, we need to increase the number of RIS elements.

1.4. Learning to Minimize Interference

The discussions so far in this chapter all assume that the perfect CSI is avail-

able for configuring the RIS. This represents the ultimate interference-nulling

capability of the RIS system. But in practice the perfect CSI is never available;

the CSI needs to be estimated using pilots with inherent channel estimation

error. In this section, we consider the case where a pilot stage is used to obtain

the CSI. We assume that the pilots are transmitted from the transmitter to

the receiver and the received pilots are collected at a central node in order to

design the reflection coefficients of the RIS. For simplicity, We ignore the direct

links in this section but the proposed method can be readily extended to the

scenario where the direct links exist.

We assume that the pilots are sent in a time orthogonal manner. Suppose

that KL samples are reserved for the pilot stage in each coherence block. Each

transmitter occupies L samples and sends a random sequence of L pilots while

the other transmitters remain silent. More specifically, the j-th transmitter

sends a sequence of pilots xj(1), . . . , xj(L), and the received pilots at the k-th
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receiver are given by

yk,j(`) = a>k,jθ(`)xj(`) + nk,j(`), ` = 1, . . . , L, (1.25)

where θ(`) is the reflection coefficients in the `-th pilot transmission slot (typ-

ically randomly chosen), nk,j ∼ CN (0, σ22) is the additive noise and we set the

pilot symbol xj(`) = 1 without loss of generality.

Let Yj ∈ CK×L denote the matrix whose entry in the k-th row and `-th

column is yk,j(`), we have

Yj = Ã>j Θ +Nj , (1.26)

where Ãj = [a1,j , . . . ,aK,j ] contains the cascaded channel from transmitter

j to all the K receivers and Θ = [θ(1), . . . ,θ(L)]. Concatenating Yj ’s into a

matrix Y = [Y >1 , . . . ,Y
>
K ]>, we can write

Y = Ã>Θ +N , (1.27)

where Ã = [Ã1, . . . , ÃK ] and N = [N>1 , . . . ,N
>
K ]>. Given the received pilots

Y and the RIS reflection coefficients matrix Θ, a linear minimum mean square

error (LMMSE) estimator for Ã takes the following form [Jiang et al., 2021]:

Â = (Y − E[Y ])E
[
(Y − E[Y ])H (Y − E[Y ])

]−1
E
[
(Y − E[Y ])H(A− E[A])

]
+ E[A]. (1.28)

Using the estimated channel Â, we can run the alternating projection algo-

rithm (i.e., Algorithm 1) to obtain an interference nulling solution. The overall

algorithmic framework is illustrated in Figure 1.6.
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Obtaining a good interference nulling solution, however, requires a very ac-

curate estimate of the channel, which in turn requires significant pilot overhead.

If the estimated channel is not sufficiently accurate, the alternating projection

algorithm often returns an interference-nulling solution that still results in a

relatively high level of interference. This is because the alternating projection

algorithm is very sensitive to the channel estimation error.

To reduce the pilots training overhead, it is possible to use machine-learning

approaches to directly map the received pilots to the reflection coefficients

[Özdoğan and Björnson, 2020, Jiang et al., 2021, Zhang et al., 2022, Sohrabi

et al., 2022]. Through end-to-end learning, the neural network can be trained to

exploit the received pilots more efficiently for optimizing the final task objective

[Yu et al., early access, 2022]. However, applying such an idea to the considered

interference-nulling problem is suitable only if the target interference power is

not too close to zero. If the target interference power level is too low, an

enormous amount of training data and a huge DNN would be required to

obtain an accurate zero-forcing solution.

For the task of learning a highly accurate solution to an optimization prob-

lem, algorithm unfolding-based neural network architecture can often be used

to achieve good performance with reasonably sized training sets [Monga et al.,

2021, Chen et al., 2022]. In the algorithm unfolding-based DNN, each layer

mimics an iteration of an particular algorithm with some parameters being

made trainable. This ensures that the DNN is capable of achieving at least as

good performance as the original algorithm and can potentially obtain perfor-

mance gain by tuning the trainable parameters to make the algorithm tailored

to the specific data distribution in the training stage.

In this section, we propose an unfolding-based DNN architecture to learn
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the interference-nulling solution from received pilots. But the alternating pro-

jection algorithm described earlier in the chapter is actually parameter-free, so

we propose to include trainable parameters before the alternating projection

algorithm for producing the initial point (instead of having trainable parame-

ters within each iteration). This is also justified by the fact that the considered

optimization problem is highly nonconvex, so different initial points lead to

solutions with different performances. The hope is that the DNN can learn a

better initial point from the training instances of the problem than the tradi-

tional random initialization strategy.

1.4.1. Learning to Initialize

To reduce the pilot training overhead and make the algorithm robust in the

imperfect CSI scenario, this chapter proposes a learning approach that can find

a better interference-nulling solution than the conventional approach. This

is achieved by using a neural network to learn a good initial point for the

subsequent alternating projection algorithm.

The overall framework of the proposed learning method is illustrated in

Figure 1.7. The central node first collects the received pilots in the pilot stage

and uses an LMMSE layer described in (1.28) to extract an estimation of the

interference channel matrix Â. The matrix Â is used to form the alternating

projection steps and as the input to the DNN initialization layer. The DNN

initialization layer then outputs an initial point θ(0) as the input to the subse-

quent alternating projection algorithm, which consists of T layers. The neural

network is trained end-to-end to minimize the loss function −E[‖A>θ(T )‖22],

where θ(T ) is the solution after T layer iterations. In the training stage, the

22



… … θ(T )

Figure 1.6: Conventional method runs the alternating projection algorithm from a

random initial point.

… … θ(T )

Figure 1.7: Proposed approach uses a deep neural network to learn a good initial

point.
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DNN aims to learn to produce an initial point that leads to a solution with

lower interference power when evaluated on the true channel matrix A.

As shown in Figure 1.7, the proposed learning-based method is quite simi-

lar to the conventional approach in Figure 1.6 except that an additional DNN

layer outputs the initial points for the subsequently alternating projection al-

gorithm. So the complexities of these two approaches are almost the same.

In the following simulations, we can see that the DNN initialization layer can

learn a more robust initial point than the conventional scheme with random

initialization.

1.4.2. Simulation Results

To illustrate the performance of the proposed DNN, we use a simulation setting

with the number of RIS elements N = 64 and the number of transceivers

K = 4. The channels between the RIS and the transceivers are assumed to be

multipath channels of the form t = 1√
Lp

∑Lp
i=1 αiψ(%i, φi), where Lp = 3 is the

number of paths, αi ∼ CN (0, 1) is the fading coefficient and ψ(%i, φi) is the

steering vector of RIS with azimuth and elevation angles of arrival (%i, φi). The

SNR in the pilot stage is 25dB. The number of iterations of the alternating

projection algorithm is 30.

In Figure 1.8, we compare the performance between the conventional chan-

nel estimation method followed by alternating projection (AP) with random

initialization and the proposed method with DNN initialization. Assuming a

transmit power of 23 dBm and a pathloss of −108 dB for all K = 4 links,

the total interference power across the 4 users is plotted for the two cases. As

can be seen from Figure 1.8, the interference powers of both methods decrease
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Figure 1.8: Performance comparison for a system with N = 64 RIS elements and

K = 4 transceiver pairs.

as the pilot length L increases, but the proposed approach achieves a much

lower interference level than the conventional method with random initializa-

tion. This implies that the neural network learns a better initial point for the

downstream alternating projection algorithm.

To investigate where the performance gain comes from, we conduct a sim-

ulation where many random initial points are used to run the alternating pro-

jection algorithm based on the estimated interference channel Â. The system

setting is as follows,N = 64,K = 4, and L = 70. After the algorithm converges,

we compute the interference power based on the true interference channel A.

We report the minimum total interference power across the solutions obtained

from different initial points in Figure 1.9. It can be seen that as the number of

random initial points increases, the total interference power for the alternat-
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Figure 1.9: Performance comparison for a system with N = 64 RIS elements,

K = 4 transceiver pairs and L = 70 pilots.

ing projection algorithm decreases rapidly. This is because the optimization

problem (1.20) is highly nonconvex and the alternating projection algorithm

starting from different initial points can converge to different solutions, some

of which have lower interference power than others. Interestingly, the proposed

learning-based approach can make use of the training data to learn a better ini-

tial point. From Figure 1.9, we can see that the learning approach can achieve

similar performance as the alternating projection algorithm with 30 different

random initial points.
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1.5. Conclusions

This chapter shows that the RIS can be used not only to adaptively reflect

the signals thereby enhancing the direct channels, but also to reduce interfer-

ence in a multiuser transmission environment. From a theoretical perspective,

it can be shown that a rectangular-array RIS is capable of nulling all the in-

terference of a K-user interference channel if the number of RIS elements is

sufficiently large when the channels between the RIS and the transceivers are

line-of-sight and the direct links can be ignored. From an algorithmic per-

spective, this chapter presents an alternating projection algorithm that can

efficiently find an interference-nulling solution for the general channel models

with direct links. Numerically, it is found that the alternating projection al-

gorithm can produce an interference-nulling solution as long as the number of

RIS elements is slightly greater than 2K(K − 1) and the direct links are not

too strong. Moreover, for the scenario where CSI needs to be estimated using

pilots, unlike the traditional approach of using random initial points for the

alternating projection algorithm, the chapter shows that a deep neural network

can be trained to learn a better initial point from the estimated CSI. This new

approach can result in a much lower interference level at the same number of

pilots. In summary, the chapter shows that reducing or nulling interference is

a promising use case for RIS in future generation wireless networks.
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