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Abstract—This paper tackles the problem of precoding and
decoding matrices design for a time-division duplexing (TDD)
massive MIMO system to support Ns independent data streams.
The optimal design requires estimating the top-Ns singular
vectors of the high-dimensional channel matrix, which typically
involves significant pilot overhead if conventional channel esti-
mation methods are used. Alternatively, some prior works seek
to estimate the precoding and decoding matrices directly by
exploiting channel reciprocity and the power iteration principle,
but their performances suffer in the low SNR regime. To address
this issue, this paper proposes a novel active sensing framework,
where both transmitter and receiver send pilots alternatingly
using their sensing beamformers that are actively designed as
functions of previously received pilots. This is accomplished
by a proposed active sensing unit, which first employs recur-
rent neural networks to summarize information from historical
observations into their hidden state vectors then uses fully
connected neural networks to obtain the sensing beamformers
and precoding/decoding matrix. Simulations demonstrate that the
proposed method outperforms existing approaches significantly
and maintains superior performance even in low SNR regimes.

Index Terms—Active sensing, channel estimation, deep learn-
ing, massive MIMO, power iteration method.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technology
has been a key enabler for high spectral efficiency commu-
nication in 5G and future wireless systems [1], particularly
in mmWave bands, where a massive number of antennas can
be packed into a small volume due to the short wavelength
[2]. However, the optimal design of beamforming matrices at
the transmitter and receiver requires high-dimensional chan-
nel state information (CSI), which involves significant pilot
training overhead. In this paper, we investigate the design
of precoding and decoding beamformers for a time-division
duplexing (TDD) massive MIMO system. Inspired by recent
developments in deep learning for reducing pilot training
overhead [3], we propose an active sensing framework that
directly learns the beamformers from received pilots without
estimating the entire channel.

The conventional approach to massive MIMO system design
involves first estimating the channel then optimizing the beam-
formers based on the estimated channel. To reduce the pilot
training overhead, the knowledge of the underlying structure of
the channel, e.g., sparsity in mmWave channels, can be utilized
in the channel estimation step [4]. However, such an approach
relies heavily on the geometry of the antenna arrays and the
sparsity assumption on the channel model, which is not nec-
essarily accurate. Moreover, in conventional approaches, the
sensing beamformers for pilot transmission are often generated
randomly, but sensing in random directions is not necessarily

optimal, because typically only a low-dimensional subspace of
the channel is of interest for designing the precoders/decoders.

Recently, active sensing has demonstrated superior perfor-
mance for various applications including beam alignment [5],
[6], beam tracking [7] and localization [8]. The main idea of
active sensing is to gradually focus on the low-dimensional
part of the channel by actively designing the sensing beam-
formers based on previously received pilots. For example, [5],
[8] show that the active sensing approach can learn to probe
broader beams at the beginning and gradually narrows down
the searching range for angle-of-arrival estimation or localiza-
tion. In this paper, we propose an active sensing framework
to adaptively design the sensing beamformers to focus the
sensing energy towards the top-Ns singular vector directions
to learn the optimal precoding and decoding matrices.

The paper is most closely related to the works [6], [9],
[10] about actively learning the singular vector pairs of the
channel matrix. The paper [6] focuses on the problem of
learning the top singular vector pair of the channel where
the transmitter and receiver are equipped with only one RF
chain. In a fully digital MIMO setup, [9] proposes to send
pilots back and forth from both sides while the pilot sequences
(or equivalently, the sensing beamformers) are designed based
on the received pilots to mimic the power iteration methods.
The power iteration method is also exploited in the design of
the analog beamformers in [11]. However, the algorithm can
converge to a highly suboptimal solution in the low signal-
to-noise-ratio (SNR) regime, which is a typical scenario in
mmWave initial alignment phase. The paper [10] proposes
some techniques to address this problem, but it introduces
extra feedback overhead between both sides.

In this paper, we show that the proposed active sensing
framework can achieve superior performance in a wide range
of SNRs without introducing extra feedback overhead. This
is accomplished by a novel deep neural network architecture
consisting of parallel gated recurrent units (GRUs) to abstract
information from historical observations, and parallel fully
connected deep neural networks (DNNs) to design the sens-
ing beamformers and precoding/decoding matrix. Simulations
show that the proposed framework works effectively even in
the most challenging Rayleigh channel model scenario.

II. SYSTEM MODEL

We consider a narrowband point-to-point MIMO system in
which agent A with Mt fully digital antennas communicates
with agent B with Mr fully digital antennas. The channel
matrix from agent A to agent B is denoted as G ∈ CMr×Mt . A



block fading channel model is assumed. We assume the system
operates in TDD mode and that the channel reciprocity holds,
i.e., the uplink channel can be represented as GH. The received
signal y ∈ CMr at the agent B can be written as:

y = Gx + n, (1)

where x ∈ CMt is the signal transmitted from agent A
and n ∼ CN (0, σ2

dlI) is the additive white Gaussian noise.
Moreover, the signal x can be represented as x = Wts, where
s ∈ CNs denotes the data symbol vector with E[ssH] = I and
Wt ∈ CMt×Ns is the precoding matrix at agent A. We choose
the number of independent data streams to be less than the
rank of the channel, i.e., Ns ≤ rank(G). We assume that
the transmitted signal must satisfy a power constraint, i.e.,
E[‖x‖22] = ‖Wt‖2F ≤ 1.

After receiving the signal y, agent B applies a decoding
matrix Wt ∈ CMr×Ns to obtain:

ŝ = W H
r y = W H

r GWts + W H
r n. (2)

The channel capacity of this system can be written as [12]:

R = log2 det(I + C−1W H
r GWtW

H
t GHWr), (3)

where C = σ2
dlW

H
r Wr. This paper considers the capacity

maximization problem via optimizing the precoding matrix
Wt and decoding matrix Wr.

If the channel G is known perfectly, the optimization of
Wt and Wr has an analytic solution, namely Wt and Wr

should match the singular vector pairs of the channel matrix
G corresponding to the largest Ns singular values. Let the
singular value decomposition (SVD) of G be

G = [U1,U2]

[
Σ1, 0
0, Σ2

][
V H
1

V H
2

]
, (4)

where U1 ∈ CMr×Ns and V1 ∈ CMt×Ns have orthogonal and
unit 2-norm columns, and Σ1 is a diagonal matrix with top-Ns

singular values. To achieve the channel capacity, the optimal
W ∗

t and W ∗
r are given by [12]

W ∗
t = V1D, (5a)

W ∗
r = U1, (5b)

where D is a diagonal matrix with the diagonal terms given by
water-filling power allocations scheme [12]. For simplicity, we
assume a uniform power allocation scheme, i.e., D = 1

Ns
I ,

which is near optimal in the high SNR regime.
This paper addresses the case where the channel matrix G

is unknown. A conventional technique for designing Wt and
Wr would have required first estimating the channel in a pilot
stage, followed by SVD of the estimated channel. However, the
channel estimation would require significant pilot overhead,
especially for massive MIMO systems.

To reduce pilot training overhead, this paper aims to directly
learn the precoding and decoding matrices from received
pilots. This is based on the key observation from (5) that the
optimal precoding and decoding matrices are only functions of
the top-Ns singular vectors of G instead of the entire channel
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Fig. 1: Ping-pong pilot transmission protocol of L rounds.

matrix. The proposed active sensing framework is based on a
ping-pong pilot transmission scheme, where the two agents
send pilot sequences alternatingly, and each agent actively
designs the pilots based on previous observations so that both
agents gradually discover the direction of the top-Ns singular
vectors.

III. ACTIVE SENSING VIA PING-PONG PILOTS

The proposed ping-pong pilot transmission protocol is pre-
sented in Fig. 1, which consists of L rounds of ping-pong
pilot transmission from both sides. In the `-th round of ping-
pong pilot transmission, agent A sends a sequence of pilots
WA

` ∈ CMt×Ns of length Ns, and agent B observes Y B
`

according to:

Y B
` = GWA

` + NB
` , ` = 0, . . . , L− 1, (6)

where NB
` is the additive white Gaussian noise with each

column independently distributed as CN (0, σ2
BI). The pilot

vector wA
`,i, which is the i-th column of WA

` , is subjected to
the power constraint ‖wA

`,i‖2 ≤ 1. After receiving the pilots,
agent B sends back a sequence of pilots WB

` ∈ CMr×Ns . Due
to channel reciprocity, agent A receives pilots Y A

` as follows:

Y A
` = GHWB

` + NA
` , ` = 0, . . . , L− 1, (7)

where NA
` is the additive white Gaussian noise with each

column independently distributed as CN (0, σ2
AI). The i-th

column of WB
` , denoted by wB

`,i, satisfies a power constraint
‖wB

`,i‖2 ≤ 1. The pilot vectors wA
`,i and wB

`,i can be thought
of as sensing beamformers because they are used to sense the
channel for estimating the top-Ns singular vectors of G.

The conventional channel estimation based approach of-
ten generates the sensing beamformers (i.e., pilot sequence)
randomly and estimates the entire channel matrix, which is
not the most efficient way to probe the low-dimensional part
of the channel matrix corresponding to the top-Ns singular
vectors. In this paper, we propose to actively design the
sensing beamformers based on the pilots received so far, so
that the sensing beamformers learn to focus energy towards
the directions of the top-Ns singular vectors.

Specifically, the sensing beamformers WA
` and WB

` are
designed based on the past received pilots on each side as
follows:

WA
` = fA` (Y A

0 , . . . ,Y
A
` ), ` = 0, . . . , L− 2, (8a)

WB
` = fB` (Y B

0 , . . . ,Y
B
` ), ` = 0, . . . , L− 1, (8b)



where fA` and fB` are the sensing strategies of the `-th rounds
of transmission at agent A and agent B, respectively. After L
rounds of ping-pong pilot transmission, each agent utilizes all
the received pilots on each side to design the data transmission
precoding matrix and decoding matrix as follows:

Wt = gA(Y A
0 , . . . ,Y

A
L−1), (9a)

Wr = gB(Y B
0 , . . . ,Y

B
L−1), (9b)

where gA and gB are functions to map all the received pilots
to the desired solutions.

The goal of this paper is to find the mappings {fA` }L−2
`=0 ,

{fB` }L−1
`=0 , gA and gB such that the final precoding and

decoding matrices, Wt and Wr, closely match V1 and U1,
respectively. This is a highly nontrivial problem because it
involves searching for solutions in a high-dimensional func-
tional space. To address this problem, we propose a deep active
sensing framework that parameterizes the functional mappings
by a set of carefully designed deep neural networks.

IV. CONVENTIONAL POWER ITERATION METHOD

To motivate the proposed deep learning approach, we review
a method proposed in [9] for designing the sensing beamform-
ers based on power iteration in the ping-pong pilot training
stage. We use the example of estimating the top singular vector
(i.e., Ns = 1) in the noiseless scenario to illustrate the idea.

In the `-th ping-pong round, each agent sends a pilot symbol
and simply sets the next sensing vectors as the current received
pilot vector, which means wA

`+1 = yA
` and wB

` = yB
` . Starting

for a random vector wA
0 , we obtain the following equations

after ` rounds of transmission:

yA
` = (GHG)`wA

0 =
∑
i

σ2`
i βivi, (10a)

yB
` = (GGH)`−1GwA

0 =
∑
i

σ2`−1
i βiui, (10b)

where we use the fact that wA
0 can be expressed as wA

0 =∑rank(G)
i=1 βivi+v̄t,0, with v̄t,0 being a vector in the null space

of G. As ` increases, the vectors yA
` and yB

` in (10) will be
dominated by the top singular vectors v1 and u1, respectively,
with a linear convergence rate [9]. Furthermore, the power
normalization in each iteration wB

` = yB
` /‖yB

` ‖2 and wA
`+1 =

yA
` /‖yA

` ‖2 does not alter the direction of yA
` and yB

` . The fast
convergence rate implies a significant pilot overhead reduction
as compared to estimating the entire channel matrix.

The power iteration method can be extended to the Ns > 1
scenario. Specifically, agent B performs QR decomposition on
the received pilots Y B

` in (6), i.e., Y B
` = QB

` R
B
` , then sends

back Ns pilots to agent A by setting WB
` = QB

` . Similarly,
agent A performs QR decomposition on the received pilots
Y A
` in (7), i.e., Y A

` = QA
` R

A
` , and sets WA

`+1 = QA for the
next transmission.

The primary impediment to the practical implementation
of such a power iteration method is that the algorithm can
converge to a highly suboptimal solution in the presence
of noise. In this paper, we leverage a data driven approach
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Fig. 2: Proposed active sensing unit in the `-th pilot round.

Algorithm 1 Proposed active sensing framework.

1: Initial WA
0 ∈ CMt×Ns , hB

−1,i ∈ CNB
h , hA

−1,i ∈ CNA
h .

2: for ` = 0, . . . , L− 1 do
3: A→ B: Y B

` = GWA
` + NB

`

4: for i = 1, . . . , Ns do
5: hB

`,i = GRUCellB(hB
`−1,i,y

B
`,i)

6: w̃B
`,i = DNNB(hB

`,i)
7: end for
8: W̃B

` = [w̃B
`,1, . . . , w̃

B
`,Ns

]

9: QR decomposition: (W̃B
` + Y B

` ) = QB
` R

B
`

10: Set WB
` = QB

` .
11:
12: B→ A: Y A

` = GHWB
` + NA

`

13: for i = 1, . . . , Ns do
14: hA

`,i = GRUCellA(hA
`−1,i,y

A
`,i)

15: w̃A
`,i = DNNA(hA

`,i)
16: end for
17: W̃A

` = [w̃A
`,1, . . . , w̃

A
`,Ns

]

18: QR decomposition: (W̃A
` + Y A

` ) = QA
` R

A
`

19: Set WA
`+1 = QA

`

20: end for

to mimic the power iteration method while mitigating its
limitation in noisy scenarios by incorporating a neural network
based active sensing unit.

V. PROPOSED ACTIVE SENSING FRAMEWORK

We now describe the proposed active sensing framework for
learning the sensing matrices in the ping-pong pilot transmis-
sion stage. The proposed framework is designed to be robust
to channel noise and can achieve excellent performance even
in low SNR scenarios. Moreover, the proposed framework
includes the power iteration method as a special case.

The proposed active sensing framework parameterizes the
sensing strategies fA` and fB` with an active sensing unit
as shown in Fig. 2. Specifically, both agent A and agent B
consist of Ns GRU cells to extract useful information from the
received pilots and Ns DNNs to map the updated hidden state
vectors to the next pilot sequence. More specifically, given the
observations Y B

` in (6), agent B takes the i-th column of Y B
`



(denoted by yB
`,i) as input to the i-th GRU cell. The GRU cell

updates its hidden state vector hB
`,i ∈ CNB

h as follows:

hB
`,i = GRUCellB(hB

`−1,i,y
B
`,i), i = 1, . . . , Ns, (11)

where GRUCellB follows the standard gated recurrent unit
implementation as proposed in [13]. Here, the ability of GRU
to summarize useful information from historical observations
into a fixed dimensional vector enables the active sensing
framework to scale up to any number of transmission rounds
L since the same unit in Fig. 2 can be applied to different
transmission rounds.

The hidden state vector hB
`,i is then mapped to a vector

w̃B
`,i ∈ CMt using a fully connected neural network DNNB:

w̃B
`,i = DNNB(hB

`,i), i = 1, . . . , Ns. (12)

The vectors w̃B
`,i’s are collected into a matrix W̃B

` , given by

W̃B
` = [w̃B

`,1, . . . , w̃
B
`,Ns

]. (13)

After power normalization in each column, the matrix W̃B
`

can already be used as the designed sensing beamformers in
the `-th transmission round at agent B.

To further improve the performance, we propose to incor-
porate the power iteration method into the neural network
through the following steps:

(W̃B
` + Y B

` ) = QB
` R

B
` (QR decomposition), (14a)

WB
` = QB

` . (14b)

This ensures that our proposed active sensing framework
performs at least as well as the conventional power method. If
the neural network generates a matrix W̃B

` = 0, the proposed
active sensing framework reduces to the conventional power
method proposed in [9].

The neural network architecture at agent A is the same as
that of agent B, except for using different parameters. The
overall algorithm in the ping-pong pilot transmission stage
is listed in Algorithm 1. The initial matrix WA

0 ∈ CMt×Ns

is learned from channel statistics in the training stage and
remains fixed in the testing stage. The initial hidden state
vectors hB

−1,i ∈ CNB
h and hA

−1,i ∈ CNA
h are both set to the

vector with all entries equal to one. To improve scalability, the
GRU cells and DNNs on each side share the same parameters,
respectively.

To design the final precoding/decoding matrices in the data
transmission stage, both agents use another set of DNNs to
map the latest hidden state vectors to the corresponding ma-
trices, which are further processed with QR decompositions.
After L rounds of pilot transmission, agent B generates the
final decoding matrix Wr as follows:

w̃r,i = DNNr(hB
L,i), i = 1, . . . , Ns, (15a)

W̃r = [w̃r,1, . . . , w̃r,Ns
], (15b)

(W̃r + Y B
L−1) = QrRr, (QR decomposition), (15c)

Wr = Qr. (15d)

Similarly, agent A uses its hidden state vector hA
L,i and

received pilots Y A
L−1 to design its precoding matrix Wt

following the same procedure in (15), but replaces the DNNr

and Y B
L−1 with DNNt and Y A

L−1, respectively.
The proposed active sensing framework is trained by con-

catenating L active sensing units sequentially to optimize the
policy for the entire sensing trajectory during the training
stage. The training objective is to enforce the neural network’s
outputs Wr and Wt to match the optimal solution V1 and U1.
While the loss function E

[
‖Wr − V1‖22 + ‖Wt −U1‖22

]
can

achieve this goal, it requires performing SVD for each channel
matrix in the training data to obtain the true labels V1 and U1.
To avoid SVD calculations, we propose to use unsupervised
training, where the loss function is set as −E

[
det(W H

r GWt)
]

since the function det(W H
r GWt) is maximized when Wr =

V1 and Wt = U1. Furthermore, to train a neural network that
is generalizable to different ping-pong round L, we set the
loss function as −E

[∑L−1
`=0 det(W H

r,`GWt,`)
]
, where Wr,`

and Wt,` are the data transmission precoding and decoding
matrices generated by the neural network in round `.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
active sensing framework for a MIMO system with Mt = 64
transmit antennas and Mr = 64 receive antennas. The number
of independent data streams is set to Ns = 4. The channel
matrix follows the Rayleigh fading model, namely the entries
of G follow i.i.d. Gaussian distribution CN (0, 1). In practice,
the model should be trained using the site-specific channel data
to achieve the best performance. For simplicity, we assume the
SNRs in both the uplink and the downlink are the same, i.e.,
SNR , 1/σ2

A = 1/σ2
B.

We set the dimensions of all the hidden states of the gated
recurrent units (GRUs) to be NA

h = NB
h = 512. All the

DNNs are two-layer fully connected neural networks with
the dimension [512, 1024, 2Mt]. The entire neural network is
implemented on PyTorch [14]. We train the neural network
offline using the Adam optimizer [15], with an initial learning
rate progressively decreasing from 10−3 to 10−5. We generate
as much training data as needed, and stop training if the
performance on the validation set does not improve after
several epochs. The testing dataset consists of 1000 randomly
generated channel matrices.

We compare the proposed active sensing approach with
the following benchmarks. i) LMMSE+SVD: Each agent first
estimates the channel matrix based on the received pilots using
linear minimum mean square error (LMMSE) estimator then
performs SVD on the estimated channel matrix to design
precoding/decoding matrices. ii): Power iteration method [9].
iii) Summed power method [10]: Both agents calculate their
next sensing beamformers based on the accumulated sum of
previously received pilots to effectively average out noise.

In Fig. 3a, we present the average objective value against
the number of ping-pong transmission rounds at SNR = 0dB.
The neural network is trained at L = 16. It can be seen from
the figure that the proposed active sensing method outperforms
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Fig. 3: Performance comparison of different methods for a MIMO system with Mt = Mr = 64, Ns = 4.

other benchmarks significantly. Although the power iteration
method converges quickly, it yields a highly suboptimal solu-
tion due to the impact of noise. The summed power method
can eventually achieve better performance than the power
iteration method, but it still performs much worse than the
proposed method. The channel estimation-based method is
not as competitive as the other approaches, even though the
LMMSE estimator is optimal in terms of the mean squared
error metric in this Rayleigh fading scenario. This implies that
estimating the entire channel matrix is inefficient if we only
need partial information on the channel matrix, i.e., the top-Ns

singular vectors.
In Fig. 3b, we plot the average objective value against

the SNR for a fixed number of ping-pong rounds L = 16.
We observe that the proposed active sensing approach can
still perform well even when the SNR drops to −10dB.
However, the performance of the other benchmarks degrades
significantly as the SNR decreases. This indicates that the
proposed approach is much more robust to noise as compared
to the other benchmarks.

VII. CONCLUSION

This paper proposes an active sensing framework to directly
estimate the optimal precoding and decoding matrices for a
TDD massive MIMO system in a ping-pong pilot training
stage, where the sensing beamformers are actively designed
based on historically received pilots on both sides. Compared
to previous approaches, the proposed algorithm achieves sig-
nificantly better performance and maintains superior perfor-
mance in low SNR regimes. Simulations also show that the
proposed algorithm works well even in the most challenging
Rayleigh fading channel model.

REFERENCES

[1] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L.
Marzetta, “Massive MIMO is a reality—what is next?: Five promising
research directions for antenna arrays,” Digit. Signal Process., vol. 94,
pp. 3–20, Nov. 2019.

[2] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE Access,
vol. 1, pp. 335–349, May 2013.

[3] W. Yu, F. Sohrabi, and T. Jiang, “Role of deep learning in wireless
communications,” IEEE BITS Inf. Theory Mag., vol. 2, no. 2, pp. 56–
72, Nov. 2022.

[4] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel
estimation and hybrid precoding for millimeter wave cellular systems,”
IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct.
2014.

[5] F. Sohrabi, T. Jiang, W. Cui, and W. Yu, “Active sensing for communi-
cations by learning,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp.
1780–1794, June 2022.

[6] T. Jiang, F. Sohrabi, and W. Yu, “Active sensing for two-sided beam
alignment using ping-pong pilots,” in Asilomar Conf. Signals Syst.
Comput., Pacific Grove, California, USA, Nov. 2022, pp. 913–918.

[7] H. Han, T. Jiang, and W. Yu, “Active beam tracking with reconfigurable
intelligent surface,” in Proc. IEEE Int. Conf. on Acoust., Speech and
Signal Process. (ICASSP), Rhodes, Greece, June 2023.

[8] Z. Zhang, T. Jiang, and W. Yu, “Active sensing for localization with
reconfigurable intelligent surface,” in Proc. IEEE Int. Conf. Commun.
(ICC), Rome, Italy, June 2023.

[9] T. Dahl, N. Christophersen, and D. Gesbert, “Blind MIMO eigenmode
transmission based on the algebraic power method,” IEEE Trans. Signal
Process., vol. 52, no. 9, pp. 2424–2431, Sept. 2004.

[10] D. Ogbe, D. J. Love, and V. Raghavan, “Noisy beam alignment tech-
niques for reciprocal MIMO channels,” IEEE Trans. Signal Process.,
vol. 65, no. 19, pp. 5092–5107, Oct. 2017.

[11] P. Xia, R. W. Heath, and N. Gonzalez-Prelcic, “Robust analog precoding
designs for millimeter wave MIMO transceivers with frequency and time
division duplexing,” IEEE Trans. Commun., vol. 64, no. 11, pp. 4622–
4634, Nov. 2016.

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ: Wiley-Interscience, 2006.

[13] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” in Proc. Conf.
on Empirical Methods in Natural Lang. Process. (EMNLP), Doha, Qatar,
Oct. 2014, pp. 1724–1734.

[14] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Pytorch: An imperative style,
high-performance deep learning library,” in Proc. Conf. on Neural Info.
Process. Systems (NeurIPS), Vancouver, Canada, Dec. 2019, pp. 8024–
8035.

[15] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Int. Conf. on Learning Representations (ICLR), Y. Bengio and
Y. LeCun, Eds., San Diego, CA, USA, May 2015, pp. 1–13.


	Introduction
	System Model
	Active Sensing via Ping-pong Pilots
	Conventional Power Iteration Method
	Proposed Active Sensing Framework
	Simulation Results
	Conclusion
	References

