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Abstract—Consider a downlink integrated sensing and com-
munications system where a base station employs linear beam-
forming to estimate an unknown vector of L real parameters,
while communicating with K users. What is the minimum
number of beamformers needed to simultaneously perform both
tasks? This paper first shows that the minimum number of
beamforming vectors is bounded by K +

√
L(L+ 1)/2, when

the sensing performance is measured in terms of the Cramér-
Rao bound involving an L×L Fisher information matrix, and the
communications performance is measured in terms of signal-to-
noise-and-interference ratios. This bound can be tightened and
also generalized by recognizing that when the sensing metric is
a function of M quadratic terms involving the beamformers, the
minimum number of beamformers is at most K +

√
M , where

M can be less than L(L+ 1)/2. In particular, for the task of
estimating the complex path loss and the angle-of-arrival (AoA)
of N targets (with a total of L = 3N parameters), due to the
interdependencies in estimating these parameters through the
beamformers, we show that the total number of beamformers
needed is at most K +

√
3.5N2 + 0.5N . For the sensing-only

scenario with K = 0, the minimum number of beamformers
needed is asymptotically bounded by 1.871N .

I. INTRODUCTION

Wireless communications systems and radars systems are
historically developed independently. In recent years, integra-
tion of sensing and communication (ISAC) has emerged as
an alternative to the traditional approach of operating sensing
and communication systems separately [1]. By combining the
functionalities of communications and radar, ISAC offers the
potential for greater spectrum efficiency, improved hardware
utilization, and reduced overall cost.

Synthesizing transmit waveforms that simultaneously carry
information and enable radar-like functions is a central idea in
ISAC system design [2]–[5]. In general, an ISAC waveform
is formed by superimposing a radar signal on top of a
communication signal. In the context of MIMO beamforming,
this translates to adding extra beamformers for sensing [2],
[3] alongside the communication beamformers. Most cur-
rent ISAC studies simply assume that the total number of
beamformers should be maximally set to be the number of
antennas. While the associated optimization problem becomes
easily tractable via semidefinite relaxation (SDR) with such
a design choice, it may also unnecessarily complicate the
system implementation (because the same performance can
be attained using fewer beamformers, e.g., see [6]).

This paper explores the question of what is the minimum
number of beamformers needed for simultaneous commu-

nications and sensing. An exact answer to this question is
difficult to obtain, because: i) sensing and communication
beamformers are interdependent and can affect each other’s
performance; and ii) the answer depends on the specific
estimation task since there is no universal metric applicable
to all estimation problems. For this reason, even the answer
to this question for the seemingly simple case of MIMO radar
without communication users is already highly nontrivial.

In the literature, some partial characterizations of the mini-
mum number of beamformers needed for sensing are available
in a handful of special cases. In [7], it is shown that the
number of beamformers for angle-of-arrival (AoA) estimation
in MIMO radar (without communication users) is at most
twice the number of targets. This bound is established based
on using the classical Cramér-Rao bound (CRB) as the sensing
performance metric, which requires the unrealistic assumption
that the AoA to be estimated is known ahead of time. Recent
works [4], [6] examine the ISAC framework. Specifically, [4]
shows that two beamformers are needed for the simple case of
one target and one user when the Bayesian CRB (BCRB) is
adopted. In the meanwhile, [6] considers a detection problem
and adopts signal-to-noise-ratio (SNR) to measure the detec-
tion performance. It is shown that no additional beamformers
are needed (i.e., beyond the communication ones) when there
is one target and any number of communications users.

This work derives novel bounds on the minimum number
of beamformers needed to simultaneously communicate to any
number of users and to estimate any number of parameters,
based on BCRB. We show that for estimating L parameters
and communicating with K users, the minimum number of
beamformers cannot exceed K+

√
L(L+ 1)/2. Furthermore,

in an ISAC system with K communication users and for
estimating the complex path losses and the AoAs of N line-of-
sight (LoS) targets (with L = 3N parameters), the minimum
number of beamformers is at most K +

√
3.5N2 + 0.5N .

Setting K = 0 for the sensing-only case, this implies that the
minimum number of beamformers needed is two for N = 1,
three for N = 2, and asymptotically bounded by 1.871N for
large N . This is tighter than the 2N bound derived in [7] under
the classical CRB. When comparing to the special case of
K = N = 1 as in [4] and the case of N = 1 with SNR as the
detection metric as in [6], the bounds in the paper are slightly
looser by one beamformer. However, the bounds derived in
this paper are applicable more generally for arbitrary K and
N , rather than just for the special cases studied in [4] and [6].



II. DOWNLINK BEAMFORMING FOR ISAC
A. System Model

Consider a downlink ISAC system where a base station (BS)
with NT transmit antennas aims to send information to K
single-antenna users and to simultaneously learn a vector of
L real-valued parameters η ∈ RL by listening to the reflected
signal through its NR received antennas in full-duplex mode.
The input-output relationships at the remote communication
users and at the full-duplex received antennas at the BS for
sensing in each symbol period are described by

yk = hH
kx+ zHk , ∀k ∈ {1, . . . ,K} , (1a)

ys = G(η)x+ zs, (1b)

where x ∈ CNT is the transmitted signal, hk ∈ CNT is the
channel vector, and yK ∈ CT is the received signal for the
k-th communication user. The matrix G(η) ∈ CNR×NT models
the “round-trip” channel between the BS transmit and receive
arrays, and ys ∈ CNR is the received radar signal at the BS. We
make the simplifying assumption that G(η) is a deterministic
function of the parameters η. Finally, zk ∈ C and zs ∈ CNR

are Gaussian noises with i.i.d. entries ∼ CN (0, σ2).
We assume a block fading model for both the communica-

tion and sensing channels, where h1, . . . ,hk and η remain
fixed during a coherence interval T . Within the coherence
interval, we assume that the communication channel H ≜
[h1, . . . ,hK ] can be perfectly estimated by using pilots. The
vector η is unknown and to be estimated. We adopt a Bayesian
framework and assume that it has a prior distribution fη(η).

We adopt a linear beamforming scheme for both commu-
nications and sensing, where the transmit signal is formed
as the sum of a communication part and a sensing part.
This is done by augmenting the “traditional” beamforming
model for communications with extra beamformers dedicated
to sensing [2], [3]. In particular, the t-th transmit signal within
the coherence interval of length T is formed by

x(t) ≜
[
Vc Vs

] [s(t)c

s
(t)
s

]
, (2)

where Vc ≜ [v1, . . . ,vK ] ∈ CNT×K is the set of communi-
cation beamformers with vk denoting the beamformer for the
k-th user, and Vs ∈ CNT×(N−K) is the matrix of additional
sensing beamformers. Note that extra (N −K) beamformers
are added for sensing, so the total number of beamformers is
N . Here, s(t)c ∈ CK are the communication symbols and s

(t)
s ∈

CN−K are the pseudo-random sequences for sensing, both
assumed to have i.i.d. CN (0, 1) entries, over t = 1 · · · , T .
The overall beamforming matrix V ≜

[
Vc Vs

]
needs to

satisfy a total power constraint Tr
(
VVH

)
≤ P .

B. Performance Metrics
The communication performance is measured in terms of

the achievable rate for each user, which is a function of the
signal-to-interference-and-noise ratio (SINR) at the receiver

SINR(V)
k ≜

|hH
kvk|2∑

i ̸=k |hH
kvi|2 + hH

kVsVH
s hk + σ2

. (3)

The previous SINR expression arises from treating the radar
signal as interference. In theory, the interference from the
beamformed sensing signal can be canceled, but we do not
assume cancellation here in order to simplify transciever
design, as commonly done in the ISAC literature [2]–[4].

The sensing performance is measured in terms of bounds on
the mean-squared-error (MSE) for estimating the parameters
of interest. In this paper, we assume a prior fη(·), and use the
BCRB as a lower bound on the MSE averaged over fη(·) [8]:

Eη

[
E
[
(η − η̂) (η − η̂)

T
∣∣∣η]] ≽ (J(V))−1 (4)

where ≽ denotes inequality with respect to the positive
semidefinite (PSD) cone and η̂ is an estimate of η satisfying
certain regularity conditions. The matrix J(V) denotes the
L×L Bayesian Fisher Information matrix (BFIM), which can
be expressed by

J(V) = C+T(V), (5)

where C is a matrix that depends on the prior only, and T(V)

is a PSD matrix whose (i, j)-th element is given by [5]

[TV]ij ≜
T

σ2
Tr

(
G̃ijVVH

)
(6)

with G̃ij ≜ E
[
ĠH

i Ġj + ĠH
j Ġi

]
and Ġi ≜ ∂G(η)

∂ηi
. Note that

the BCRB is a function of both communications beamformers
and the extra sensing beamformers, because the echoes from
both the communication symbols and the sensing sequences
are used for the estimation of η.

C. The Minimum Number of Beamformers
The total number of beamforming vectors for the ISAC

operation should clearly satisfy K ≤ N ≤ NT, because at
least K beamformers are needed to communicate to the K
users, and at most NT beamformers can be used since there
are a total of NT antennas. However, setting N to either K or
NT is undesirable. Setting N = K may not give us sufficient
transmit dimensions to achieve the best sensing performance;
setting N = NT may be unnecessary since we can often
achieve the same performance using fewer beamformers with-
out overcomplicating the system implementation.

The goal of this paper is to characterize the minimum
number of beamformers needed for ISAC such that it results
in no performance loss relative to N = NT, i.e.,

NBCRB
min ≜ arg min N (7a)

subject to p∗N = p∗NT
, (7b)

where p∗N is the optimal value of an ISAC beamforming prob-
lem with SINR targets γk and power constraint P , assuming
that N beamformer vectors are used, i.e.,

minimize
V∈CNT×N

h
((

J(V)
)−1

)
(8a)

subject to SINR(V) ≥ γk, ∀k. (8b)

Tr(VVH) ≤ P. (8c)

Here, h(·) is a nondecreasing scalar function of the BCRB. For
instance, trace, weighted-trace, or logarithm-determinant [7].
We assume that γk > 0,∀k, and the constraints are feasible.



III. BOUND ON THE MINIMUM NUMBER OF
BEAMFORMERS FOR ISAC

This section establishes a bound on the minimum number
of beamformers NBCRB

min needed for communicating to K users
while sensing L parameters. We derive such a bound by
starting from a full set of NT beamformers, then proving
that it can be reduced to a set at most K +

√
L(L+ 1)/2

beamformers while maintaining the same BFIM and SINR
targets. Hereafter, we use the shorthand notation vSINR(V) ≜[
SINR(V)

1 , . . . ,SINR(V)
K

]T
to denote a vector of SINRs.

Theorem 1: Fix a power constraint P and let A(N)
P denote

the set of BFIM-SINR pairs achievable using N beamformers:

A(N)
P ≜

{(
J(V), vSINR(V)

) ∣∣∣V ∈ CNT×N ,Tr(VVH) ≤ P
}
.

(9)
Then, A(NT)

P = A(Nbound)
P , where

Nbound ≜

⌊
K +

√
L(L+ 1)

2

⌋
. (10)

Thus, the minimum number of beamformers NBCRB
min for the

ISAC problem as expressed in (7) is at most Nbound.
Proof: We define an alternative form of the ISAC prob-

lem (8) while restricting to using at most N beamformers as
follows. For any pair (J,γ) ∈ A(N)

P , the set of N beamformers
that achieves (J,γ) with minimum total power is the solution
to the following problem:

P(N) : minimize
V∈CNT×N

Tr
(
VVH

)
(11a)

subject to J(V) = J, (11b)

SINR(V)
k = γk, ∀k. (11c)

The idea of the proof is to start from N = NT and some
arbitrary (J,γ) ∈ A(NT)

P with the optimal solution V̂ for the
corresponding P(NT), and to show that it is always possible
to reduce the number of sensing beamformers in V̂ in a
sequential fashion until the total number of beamformers is
less than or equal to Nbound. This is done by applying a special
case of an iterative procedure in [9] while maintaining (11b)-
(11c) and keeping the same transmit power.

The procedure involves transforming V̂ ≜ [v̂1, . . . , v̂K , V̂s]
to some V′ ≜ [v′

1, . . . ,v
′
K ,V′

s] with fewer sensing beamform-
ers, by scaling v̂1, . . . , v̂K by some appropriate factors and
post-multiplying V̂s by some “tall” matrix as follows:

v′
k = dkv̂k, dk ∈ C, ∀k, (12)

V′
s = V̂sU, U ∈ Cm̂×m′

, m′ < m̂. (13)

Here, m̂ and m′ denote the number of sensing beamformers
before and after multiplication, with m̂ = NT − K initially.
The goal is to find {dk} and U so that the new matrix satisfies

J(V′) = J, vSINR(V′)
k = γ, Tr

(
V′V′H

)
≤ P. (14)

As a first step, we find {dk} and U so that the same BFIM
and SINRs are maintained. Subsequently, we prove that the
V′ so obtained also satisfies the power constraint.

For the transformed V′ to satisfy the BFIM constraint, it
must satisfy the following L(L+1)

2 quadratic equations due to
the symmetric nature of J

Tr
(
G̃ijV

′V′H
)
= tij , ∀1 ≤ i ≤ j ≤ L, (15)

with tij ≜ σ2

T ([J]ij − [C]ij), and further satisfy K equations
corresponding to the SINR constraints

|hH
kv

′
k|2

γk
−

∑
n ̸=k

|hH
kv

′
n|2 − hH

kV
′
sV

′
s
H
hk = σ2, ∀k. (16)

Together, (15)-(16) give rise to the following set of equations
in terms of {dk} and U∑

k

|dk|2v̂H
k G̃ijv̂k +Tr

(
G̃ijV̂sUUHV̂H

s

)
= tij , (17)

|dkhH
k v̂k|2

γk
−
∑
n ̸=k

|dnhH
k v̂n|2−hH

k V̂sUUHV̂H
s hk = σ2. (18)

Now define a new set of variables ak = 1 − |dk|2 and C =
I − UUH. Using the fact that V̂ already satisfies the BFIM
and SINR constraints, we can express (17)-(18) in terms of
the new variables {ak} and C as follows:∑

k

akv̂
H
k G̃ijv̂k +Tr

(
G̃ijV̂sCV̂H

s

)
= 0, (19)

ak|hH
k v̂k|2

γ∗
k

−
∑
n ̸=k

an|hH
k v̂n|2 − hH

k V̂sCV̂H
s hk = 0. (20)

This is a linear system of equations. In addition, we have the
following conditions that arise due to the definitions of {ak}
and C:

I−C ≽ 0, I−C singular, 1− ak ≥ 0, ∀k. (21)

It is easy to verify that whenever {ak} and C satisfy (19),
(20) and (21), it is always possible to construct V′ with fewer
sensing beamformers and to attain the same BFIM and SINRs.
We now show that this is possible whenever

m̂2 >
L(L+ 1)

2
. (22)

Indeed, the set of equations (19)-(20) comprise a linear ho-
mogeneous system with K + L(L+1)

2 equations and K + m̂2

real unknowns, because there are K equations from the SINR
constraints and L(L+1)

2 equations from the BFIM constraint
(due to symmetry), and there are K real variables a1, . . . , aK
and m̂2 real variables from the Hermitian matrix C. So if (22)
holds, the number of unknowns exceeds the number of equa-
tions and such system must have a solution a′1, . . . , a

′
K ,C′,

which are not all zero. This solution can be scaled as follows

C =
1

δ
C′, ak =

a′k
δ
, ∀k, (23)

to additionally satisfy (21). Here, δ is chosen to satisfy

|δ| = max{|a′1|, . . . , |a′K |, |δ′1|, . . . , |δ′m̂|}, (24)



and either δ = a′k for some k or δ = δ′m for some m, where
δ′1, . . . , δ

′
m are the eigenvalues of C′. Note that δ ̸= 0 since

{a′k} and {δ′m} are not all zero.
It is straightforward to verify that {ak} and C defined

in (23) must satisfy I−C ≽ 0 and 1−ak ≥ 0,∀k. The fact that
I−C is singular is established by contradiction. Suppose that
I−C is nonsingular, then by (23), we must have 1− δn

δ > 0
for all n = {1, . . . , m̂}, which implies that δ = ai for some i.
In this case, the corresponding di is zero and v′

i in (12) is the
all-zero vector. However, this cannot happen since γk > 0,∀k.

We now show that V′ obtained by such {ak} and C has
the same power as V̂. This is due to the fact that V̂ is a
solution to the problem P(NT). First, because (J,γ) ∈ A(NT)

P ,
we must have Tr(V̂V̂H) ≤ P . Furthermore, it turns out that
the optimization problem P(NT) has strong duality despite
being nonconvex, which follows by showing that its SDR
is tight using the technique in [3]. Thus, there exist dual
variables {νi,j}1≤i≤j≤L and {µk}1≤k≤K such that the first-
order conditions as written below are satisfied:

v̂k =

∑
i≤j

νi,jG̃i,j +
µk

γk
hkh

H
k −

∑
n ̸=k

µnhnh
H
n

 v̂k, ∀k

(25)

V̂s =

∑
i≤j

νi,jG̃i,j −
∑
k

µkhkh
H
k

 V̂s, (26)

and that the primal optimum is equal to the dual optimum∑
i≤j

νi,jti,j + σ2
∑
k

µk = Tr
(
V̂V̂H

)
. (27)

Multiplying both sides of (25) from the left by |dk|2v̂H
k and

both sides of (26) from the left by V̂H
s U

HU, and summing
the K equations in (25) together with (26), we get

Tr
(
V′HV′

)
=

∑
i≤j

νi,j Tr
(
V′HG̃i,jV

′
)
+
∑
k

µk
|hH

kv
′
k|2

γ∗
k

−
∑
k

µk

∑
n ̸=k

|hH
kv

′
n|2 + hH

kV
′
sV

′
s
H
hk


=

∑
i≤j

νi,jti,j + σ2
∑
k

µk

= Tr
(
V̂HV̂

)
≤ P. (28)

where we make use of (15) and (16). Thus, V′ has power at
most P . To summarize, provided that the number of sensing
beamformers satisfies (22), it is always possible to reduce the
number of sensing beamformers while satisfying (14).

Now, denote the new total number of beamformers by N ′ =
K +m′ and consider the problem P(N ′). We now make two
observations. First, we claim that V′ is an optimal solution of
P(N ′). This is because the optimal value of P(N ′) is at least
that of P(NT), but V′ has the same power as V̂, so V′ must
achieve the minimum power of P(N ′).

Second, we claim that strong duality must also hold for
P(N ′). This is because P(N ′) and P(NT) achieve the same
primal optimal value as shown earlier, and further, they also
have the same SDR. The SDR of this type of nonconvex opti-
mization problem gives the optimal value of its dual problem.
Combined with the strong duality of P(NT), this shows that
P(N ′) also has strong duality, despite being nonconvex.

With this in mind, if the new number of sensing beam-
formers matrix m′ also satisfies (22), we can set V′ as
the new V̂ and m′ as the new m̂, and repeat the process.
Due to the two key observations mentioned above, it can be
verified that every step of this sensing beamformer reduction
process can be carried out as before. This procedure continues
until the number of sensing beamformers is less than or
equal to ⌊

√
L(L+ 1)/2⌋, or equivalently, the total number

of beamformers is less than or equal to Nbound. Since (J,γ)

can be any point in A(NT), this shows that A(NT)
P = A(Nbound)

P .
Finally, since the BFIM and SINRs corresponding to the

solution of the ISAC problem (8) always lie in A(NT)
P , such

solution can always be achieved using at most Nbound beam-
formers. This shows that NBCRB

min is at most Nbound.
We remark that the proof of Theorem 1 does not follow

directly from the results in [9]. Moreover, the proof of The-
orem 1 reveals that the bound (10) is not tied to the specific
ISAC optimization used to define NBCRB

min . This is because
a different optimization must also yield some (J,γ) in the
achievable set so that the same bound remains applicable.

IV. BOUND ON THE MINIMUM NUMBER OF
BEAMFORMERS FOR SENSING LOS TARGETS

In many practical sensing applications, such as that of
estimating the complex path losses and the AoAs of LoS
targets, due to the structural properties of the BFIM, the
bound on the minimum number of beamformers can be further
tightened. The key to obtaining a tighter bound is to consider
the effective number of quadratic terms in the BFIM. This
section formalizes this concept by introducing the notion of
M -quadratic functions.

Definition 1: A real function of matrix hM (V) : CNT×N →
R is said to be M -quadratic, if it has the following form:

hM (V) = g
(
Tr

(
Q1VVH

)
, . . . ,Tr

(
QMVVH

))
, (29)

where Q1, . . . ,QM are distinct nonzero Hermitian matrices
and g(·) is a function from RM to R.

In the ISAC context, a sensing performance metric is M -
quadratic if it depends on the design variables (i.e., the beam-
forming matrix V) only through M distinct quadratic func-
tions of V. The BCRB-based sensing metrics are examples of
an M -quadratic function. Consider the optimization objective
for the ISAC problem (8). Assuming that the matrices

{
G̃ij

}
in (6) are all distinct and nonzero, based on (5)-(6), the BFIM
can be expressed as

J(V) = r
(
Tr

(
G̃11VVH

)
, . . . ,Tr

(
G̃LLVVH

))
(30)



where r(·) is a function that arranges its arguments in an L×L
symmetric matrix with a constant matrix C added to it, i.e.,
for w = [w11, . . . , w1L, w22, . . . w2L, . . . wLL]

T ∈ RL(L+1)/2,

r(w) = C+


w11 w12 . . . w1L

w12 w22 . . . w2L

...
...

. . .
...

w1L w2L . . . wLL

 . (31)

Then, the objective of (8) can be seen as an M -quadratic
function with M = L(L+1)

2 .
In many practical ISAC scenarios, some of

{
G̃ij

}
are zero

or are repeated in different entries of the BFIM. In these cases,
the objective of (8) can still be viewed as an M -quadratic func-
tion, but with M being strictly less than L(L+1)

2 . This leads
to a tighter bound on the minimum number of beamformers
needed for ISAC. In the rest of this section, we first derive a
new bound on the minimum number of beamformers needed
when the sensing metric is an M -quadratic function, then give
an example of the tighter bound.

Theorem 2: Fix a power constraint P and assume that the
sensing metric hM (·) is an M -quadratic function. Let Ã(N)

P

denote the set of sensing-metric-value and SINRs, achievable
using N beamformers, i.e.,

Ã(N)
P ≜

{(
hM (V), vSINR(V)

)∣∣∣V ∈ CNT×N ,Tr(VVH) ≤ P
}
.

(32)
Then, Ã(NT)

P = Ã(N
(M)
bound )

P , where

N
(M)
bound ≜ ⌊K +

√
M⌋. (33)

Proof: The proof follows the same line of argument as
Theorem 1, except when counting the number of linear equa-
tions, there are now K+M equations instead of K+ L(L+1)

2
equations. The details are omitted due to space limitation.

Theorem 2 reduces to Theorem 1 when M = L(L+1)
2 . The

following example shows how M can be significantly less in
specific applications. Consider the scenario of sensing N LoS
targets characterized by a round-trip channel

G(η) =

N∑
i=1

αiA(θi), (34)

where αi’s are the complex path losses and θi’s are the AoAs.
There are a total of L = 3N parameters:

η =
[
ℜ{α1},ℑ{α1}, θ1, . . . ,ℜ{αN},ℑ{αN}, θN

]T
. (35)

But, instead of bounding NBCRB
min ≤ K +

⌊√
3N(3N+1)

2

⌋
,

we can view the sensing metric as an M -quadratic function,
because the BFIM can be written as

J(V) = C+


T

(V)
11 . . . T

(V)
1N

...
. . .

...
T

(V)
N1 . . . T

(V)
NN

 (36)

where T(V)
ii and T

(V)
ij , i ̸= j are 3×3 matrices whose elements

correspond to the intra-traget and inter-target parameters,
respectively. In particular, the matrix T

(V)
ii is given by [2]

T
(V)
ii =

Tr(Qii,1VVH) 0 Tr(Qii,3VVH)
0 Tr(Qii,1VVH) Tr(Qii,4VVH)

Tr(Qii,3VVH) Tr(Qii,4VVH) Tr(Qii,2VVH)


where Qii,1, . . . ,Qii,4 are Hermitian matrices. Note that in-
stead of having 6 distinct terms (due to its symmetry), the zero
and the repeated element Tr(Qii,1VVH) reduce the number
of distinct terms in T

(V)
ii to 4. Likewise, it can be shown

that each of the matrices T
(V)
ij has 7 distinct terms, so that

M = 4N + 7
2N(N − 1). Applying Theorem 2, we obtain the

improved bound

NBCRB
min ≤ K +

⌊√
3.5N2 + 0.5N

⌋
. (37)

If K = 0, we obtain an improvement on the 2N bound in [7]
derived under the classical CRB. Interestingly, this shows that
the minimum number of beamformers grows asymptotically
at most as 1.871N for sensing 3N parameters.

A key advantage of the more general bound in Theorem 2
is that it is not only limited to BCRB as the sensing metric.
There are many other examples of M -quadratic functions that
are relevant to estimation and detection tasks, for instance, the
radar-SNR [6], metric for beam pattern matching [3], etc.

V. CONCLUSION

This paper introduces nontrivial bounds on the minimum
number of beamformers required for integrated sensing and
communications. The bounds of this paper are applicable to
any number of users and sensing parameters and can be further
applied to a large family of sensing metrics that have quadratic
dependence on the beamformers.
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