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Abstract—This paper studies an uplink dual-functional sensing
and communication system assisted by an active or passive
reconfigurable intelligent surface (RIS), whose reflection pattern
is optimally configured to trade off sensing and communica-
tion functionalities. Specifically, the Bayesian Cramér-Rao lower
bound (BCRLB) for sensing is minimized under the quality-
of-service (QoS) communication constraints. We show that this
problem can be formulated as a fractionally constrained frac-
tional programming (FCFP) problem for which a quadratic
transform, originally proposed for the sum-of-ratio fractional
programs, can be used to decouple the numerators and denomi-
nators in both the objective function and the constraints. In this
way, the FCFP is turned into a sequence of sub-problems that
are convex except for the constant-modulus amplitude constraints
which can be dealt with using a penalty-based method. Numerical
results unveil nontrivial beamforming reflection patterns that
the RIS can be configured to generate in order to facilitate
both sensing and communications. The results demonstrate the
effectiveness of the proposed algorithm.

I. INTRODUCTION

With the increasing demands on location information and
for sensing functionality in the beyond-fifth-generation (5G)
and six-generation (6G) wireless networks, integrated sensing
and communications is seen as a promising use case for future
networks [1]. Reconfigurable intelligent surface (RIS) is a
viable and promising solution to achieve this purpose [2]–
[5], especially in practical scenarios with many obstructions.
This paper investigates the optimal configuration of an active
or passive RIS to trade off sensing and communication func-
tionalities for systems such as the one shown in Fig. 1, where
the direct paths between the users and the base station (BS)
are blocked and the reflection pattern of the RIS needs to be
optimally configured in order to serve both the sensing and
communication purposes.

There are many prior works investigating RIS-aided wireless
sensing [5]–[11], where the Cramér-Rao lower bound (CRLB)
is often used as the performance metric for sensing. However,
the CRLB is not easy to optimize, especially in a system
involving RIS and especially when both communication and
sensing functionalities are involved. For example, [10] adopts
the CRLB to evaluate the target estimation performance in
a system without RIS. In [11], the CRLB of an RIS-aided
wireless sensing system is being minimized, however, the
communication functions are not integrated into the system.
Moreover, it is important to note that CRLB depends on the
exact values of the parameters to be estimated. In practice,
however, only a prior distribution of the parameters to be
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Fig. 1. An RIS-assisted dual-functional sensing and communication system.

sensed is known. Therefore, Bayesian CRLB (BCRLB) (e.g.,
[12]) is more suitable to be adopted as a sensing metric.

In this paper, we investigate an RIS-assisted dual-functional
uplink sensing and communication system, where the RIS is
considered as either active or passive, and the beamforming at
the RIS is designed to trade off between the two functions.
We tackle a specific problem of minimizing the BCRLB
of an azimuth angle estimation problem for one sensing
user under the quality-of-service (QoS) constraints for the
communication users. We show that this novel problem for-
mulation is a fractionally constrained fractional programming
(FCFP) problem with extra RIS amplitude constraints. In
order to address this challenging problem, we first extend a
quadratic transform technique previously proposed to handle
optimization problems for which objective functions contain
fractional structures [13] to the scenario under consideration
where the constraints also contain fractional structures. This
allows the FCFP problem to be transformed into a sequence of
sub-problems which are convex except for the extra constant-
modulus amplitude constraints in the passive RIS case. Finally,
a penalty-based method is used to deal with the constant-
modulus constraints. Numerical results demonstrate the ef-
fectiveness of the proposed algorithm and show that the
optimization can produce nontrivial RIS reflection patterns that
facilitate both sensing and communication functionalities at
the same time.

II. SYSTEM MODEL

Consider an uplink RIS-assisted dual-functional sensing and
communication system where an M -antenna base station (BS)
intends to estimate the azimuth angle η0 from one single-
antenna sensing user to an N × N RIS, while providing



uplink communication service for K single-antenna users, as
illustrated in Fig. 1. We use index 0 to represent the sensing
user and indices 1 to K to represent the communication users.
The azimuth angle of arrival from the k-th user to the RIS
is represented by ηk. For simplicity, we model the RIS as a
planar array. The reflecting operation at the N2 elements can
be modeled as

Φ = diag
(
xT

)
≜ diag ([α1 exp (jθ1) , · · · , αN2 exp (jθN2)]) , (1)

where θn ∈ [−π, π) is the phase shift of the n-th element, αn

is the corresponding amplitude, and x is the RIS beamforming
vector to be optimized. This paper considers both passive and
active RIS, for which the amplitudes of the elements of x are
constrained as [3]

|xn| ≤ αmax, ∀n, if the RIS is active, (2)
|xn| = 1, ∀n, if the RIS is passive, (3)

where αmax is a predetermined maximum amplitude that the
active RIS can provide.

We assume that the direct channels between the users and
the BS are obstructed so that the radio propagation paths can
only be established by the reflecting channels. We also assume
that the RIS-BS channel, denoted as G, follows the Rician
fading model. Since this channel is shared by all sensing and
communication users, it is assumed to be known at the BS.
As the RIS is typically deployed in proximity to the users, in
this paper we make the simplifying assumption that the user-
RIS channel has only a line-of-sight component [14], and the
channel hk from the k-th user to the RIS can be determined
by the steering vector v (ηk) as follows:

hk = ρkv (ηk) ≜ ρk exp
(
jτ cos (ηk)

[
v(1), · · · , v(N2)

]T)
,

(4)
where τ = 2πd/ω, ω is the carrier wavelength, d represents
the spacing between the reflecting elements (typically at half
wavelength), v(n) = mod (n− 1, N), and ρk represents the
fading coefficient, which is assumed to be known for now for
simplicity, but in practice can be estimated or tracked using
various techniques, e.g., see [15] and references herein.

Based on the channel model established above, the received
signal at the BS can then be expressed as

y = (GΦh0) s0 +

K∑
k=1

(GΦhk) sk + n (5)

=

K∑
k=0

sk [Gdiag(hk)] diag
−1(Φ) + n ≜

K∑
k=0

skHkx+ n,

where s0 denotes the pilot transmitted by the sensing user,
s1, s2, · · · , sK are the uplink data symbols transmitted by
the K communication users, and n is the additive white
Gaussian noise distributed as CN (0, σ2I). Here, the transmit
signals sk, k = 0, · · · ,K are independent and distributed as
CN (0, pk) with transmit power pk. We rely on beamforming
to spatially separate the users, and assume no interference
cancellation is performed.

III. PROBLEM FORMULATION

A. Sensing Performance Metric

CRLB, which is a lower bound on the mean squared error
of an unbiased estimator, is widely adopted for characterizing
sensing performance. Since in this paper, we only consider the
estimation of one single azimuth angle, the CRLB is simply
the inverse of the scalar Fisher information, given by

J (y; η0) = 2p0

(
Ḣ0x

)H

Σ−1
0 (x)

(
Ḣ0x

)
, (6)

where Ḣ0 = Gdiag (ḣ0), and ḣ0 is the derivative of h0 with
respect to η0. The n-th entry of ḣ0 can be computed as[

ḣ0

]
n
= −jρkτ sin (η0) v(n) exp [jτ cos (η0) v(n)] . (7)

The Fisher information contains a covariance matrix term
Σ0(x), as a function of the optimization variable x, given by

Σ0(x) =

K∑
k=1

pk (Hkx) (Hkx)
H
+ σ2I. (8)

Note that this classic CRLB depends on the true azimuth
angle η0 of the sensing user as in (7), which in practice is
unknown and needs to be estimated. Thus, we cannot directly
utilize the classic CRLB to evaluate the sensing performance.
To this end, we adopt the Bayesian version of the CRLB,
accounting for the prior distribution of η0, based on the
historical observations and/or prior knowledge.

Denote the probability density function (PDF) of the prior
distribution of η0 as p (η0). The BCRLB can be expressed as

B (η0) = (Eη0 [J (y; η0)] + Jo (η0))
−1

, (9)

where J (y; η0) is the Fisher information given in (6), and the
expectation of J (y; η0) is taken with respect to p (η0), and
Jo (η0) is the Fisher information of the prior distribution of
η0 and is independent of the optimization variable x. Conse-
quently, minimizing B (η0) with respect to x is equivalent to
maximizing the expectation Eη0

[J (y; η0)] given by

Eη0
[J (y; η0)] = 2p0

∫ (
Ḣ0x

)H

Σ−1
0 (x)

(
Ḣ0x

)
p (η0) dη0.

(10)
The above expectation involves an integral and is complicated
to evaluate and to optimize. The following theorem allows us
to extract the optimization variable x from the integral.

Theorem 1: Consider a second moment matrix U̇ defined as

U̇ ≜ Eη0

[
vec

(
Ḣ0

)
vecH

(
Ḣ0

)]
, (11)

where the operation vec(·) represents vectorization. Let U̇ be
of rank R, and let the r-th eigenvalue and the corresponding
eigenvector of U̇ be denoted by κr and ur, respectively. Then,
(10) can be equivalently rewritten as

Eη0
[J (y; η0)] = 2p0

R∑
r=1

κr (Urx)
H
Σ−1

0 (x) (Urx) , (12)

where Ur = vec−1 (ur) and κr ≥ 0.



Proof: Since Σ0 is positive definite, we can decompose
its inverse as Σ−1

0 = VHV. Based on the properties of the
Kronecker product, denoted here as ⊗, (6) can be rewritten as
follows:

J (y; η0) = 2p0

[(
xT ⊗V

)
vec(Ḣ0)

]H [(
xT ⊗V

)
vec(Ḣ0)

]
= 2p0 vec

H(Ḣ0)
[
x∗xT ⊗VHV

]
vec(Ḣ0)

= 2p0 Tr
((

x∗xT ⊗Σ−1
0

) (
vec(Ḣ0)vec

H(Ḣ0)
))

.

(13)
Then, the expectation in (10) can be equivalently rewritten as

Eη0
[J (y; η0)] = 2p0Tr

((
x∗xT ⊗Σ−1

0

)
U̇
)
, (14)

where U̇ is the expectation given in (11). Since U̇ is a positive
semi-definite matrix, it has an eigenvalue decomposition as

U̇ =

R∑
r=1

κruru
H
r , (15)

where κr and ur are the r-th eigenvalue and the corresponding
eigenvector of U̇, respectively. Then, substituting (15) into
(14) and reversing the derivation of (13) give us (12).

Remark 1: The classic CRLB is a special case of the above,
where η0 is deterministic and the prior distribution p(η0) has
zero variance. In this case, the rank of U̇ is one, and (12)
reduces to (6).

B. Communication Performance Metric

For the communication users, we denote the uplink receive
combining matrix as W with the column wk as the beam-
former for the k-th communication user, where ∥wk∥22 = 1.
The SINR of the k-th communication user is

γk =
pk

∣∣wH
k (Hkx)

∣∣2∑
k′ ̸=0,k

pk′
∣∣wH

k (Hk′x)
∣∣2 + p0 Eη0

[∣∣wH
k (H0x)

∣∣2]+ σ2
.

(16)
For a fixed RIS beamforming vector x, optimizing the receive
combining vector wk to maximize the SINR γk is a general-
ized Rayleigh quotient problem

maximize
wk

γk =
pkw

H
k (Hkx) (Hkx)

H
wk

wH
k Σk(x)wk

, (17)

where the covariance matrix Σk(x) is given by

Σk(x) =
∑

k′ ̸=0, k′ ̸=k

pk′ (Hk′x) (Hk′x)
H

+ p0 Eη0

[
(H0x) (H0x)

H
]
+ σ2I. (18)

The expectation in (18) can be expressed as

Eη0

[
(H0x) (H0x)

H
]
= vec−1

(
Eη0 [H

∗
0 ⊗H0] vec

(
xxH

))
,

(19)
so that x can be separated from the expectation. The optimal
solution w⋆

k is a function of x and can be found in closed-
form:

w⋆
k =

[
Σ−1

k (x)Hkx
]
/
∥∥Σ−1

k (x)Hkx
∥∥, (20)

With this optimal receive combining vector w⋆
k, the SINR (16)

can be rewritten as follows:

γk(x) = pk (Hkx)
H
Σ−1

k (x) (Hkx) . (21)

C. Problem Formulation
We now formulate the overall joint sensing and communica-

tion problem as that of minimizing the BCRLB while ensuring
SINR constraints for the communication users. For the case
where the RIS is active, (2) is the amplitude constraint. Then,
the optimization problem is formulated as

(P1) : maximize
x

Eη0
[J (y; η0)] (22a)

subject to γk(x) ≥ Γ, ∀k ̸= 0, (22b)
|xn| ≤ αmax, ∀n, (22c)

where Γ is the given SINR threshold. For the case where
the RIS is passive, the amplitude constraint is (3), and the
optimization problem is formulated as

(P1*) : maximize
x

Eη0 [J (y; η0)] (23a)

subject to γk(x) ≥ Γ, ∀k ̸= 0, (23b)
|xn| = 1, ∀n. (23c)

The choice of SINR threshold affects the trade-off between
sensing and communications. When Γ = 0, the problem
reduces to the sensing-only problem. The main observation
of this paper is that the formulated problems are FCFP.
Specifically, they have sum-of-ratios as the objective function
(i.e., (12)) and fractional constraints (i.e., (21)).

IV. JOINT SENSING AND COMMUNICATIONS

We first consider (P1) since its RIS amplitude constraint is
convex and is easier to handle, then proceed to (P1*).

A. Quadratic Transform-Based FCFP for (P1)
In problem (P1), both the objective function and the SINR

constraints contain fractional structures. To tackle such a
highly nontrivial FCFP, we first rewrite problem (P1) as

maximize
x

R∑
r=1

κr (Urx)
H
Σ−1

0 (x) (Urx) (24a)

subject to (Hkx)
H
Σ−1

k (x) (Hkx) ≥ Γk, ∀k ̸= 0, (24b)
|xn| ≤ αmax, ∀n, (24c)

where Γk = Γ/pk.
The main idea is to apply a quadratic transform technique

to this problem. Quadratic transform is originally proposed
for fractional programming problems with fractional structure
in the objective function only [13]. The main result of this
paper is that it can also be applied when there are fractional
structures both in the objective and the constraints.

Theorem 2: For a maximization problem with fractional
structures in both objective function and constraints as

maximize
x

∑
k∈S

aHk (x)B
−1
k (x)ak(x) (25a)

subject to aHk (x)B
−1
k (x)ak(x) ≥ Γk, ∀k /∈ S, (25b)



where Bk(x) is Hermitian and positive definite, it is equivalent
to the following problem:

minimize
x,λk

∑
k∈S

fk (x,λk) (26a)

subject to fk (x,λk) + Γk ≤ 0, ∀k /∈ S, (26b)

where

fk (x,λk) = λH
kBk(x)λk − 2Re

{
λH
kak(x)

}
. (27)

Here, λk is the auxiliary variable introduced to decouple the
numerator and denominator of a fractional structure.

Proof: The key is to recognize the following relationship,
which can be verified by expanding the terms:

λH
kBk(x)λk − 2Re

{
λH
kak(x)

}
=

[
λk −B−1

k (x)ak(x)
]H

Bk(x)
[
λk −B−1

k (x)ak(x)
]

− aHk (x)B
−1
k (x)ak(x) . (28)

Observe that the above expression is minimized when the
auxiliary variable is chosen as follows:

λ⋆
k = B−1

k (x)ak(x) , (29)

in which case

λ⋆H
k Bk(x)λ

⋆
k−2Re

{
λ⋆H
k ak(x)

}
= − aHk (x)B

−1
k (x)ak(x) .

(30)
Now consider the optimization problem (26) as an outer

minimization over x together with an inner minimization
over λk. For fixed x, the objective of the inner problem is
minimized when λ⋆

k = B−1
k ak(x) for all k ∈ S.

For the constraints, each choice of λk in the inner problem
gives rise to a different constraint set over x for the outer
problem. But it can be seen that the choice of λ⋆

k = B−1
k ak(x)

makes the resulting constraint sets the largest. Thus, to help
the outer optimization achieve its minimum, we should set
λ⋆
k = B−1

k ak(x) for all k /∈ S.
Together, the above choices of λ⋆

k make (30) to hold. In this
case, the outer optimization over x in (26) and the optimization
(25) are identical, because both the objective function and the
constraints are the same. Therefore, (26) is equivalent to (25).

Based on Theorem 2, the problem (24) can be equivalently
transformed into the following problem:

minimize
x,λr,λk

R∑
r=1

κrfr (x,λr) (31a)

subject to fk (x,λk) + Γk ≤ 0, ∀k ̸= 0, (31b)
|xn| ≤ αmax, ∀n, (31c)

where the new transformed functions are given by

fr (x,λr) = λH
r Σ0(x)λr − 2Re

{
λH
rUrx

}
, (32)

fk (x,λk) = λH
kΣk(x)λk − 2Re

{
λH
kHkx

}
. (33)

This problem can now be solved numerically by iteratively
optimizing the auxiliary variables and the passive RIS beam-
forming vector to reach a stationary point.

When x is held fixed, the optimal λ⋆
r and λ⋆

k can be easily
found in closed form as in (29):

λ⋆
r = Σ−1

0 (x)Urx, ∀r, (34)

λ⋆
k = Σ−1

k (x)Hkx, ∀k ̸= 0. (35)

It is interesting to observe that the optimal auxiliary variables
λ⋆
k are equal to the optimal receive combining vectors,

λ⋆
k

∥λ⋆
k∥

=
Σ−1

k (x)Hkx

∥Σ−1
k (x)Hkx∥

= w⋆
k, ∀k ̸= 0. (36)

When the auxiliary variables λ⋆
r and λ⋆

k are held fixed, the
second term in (32) is affine. For the first term in (32), it can
be rewritten as

λ⋆H
r Σ0(x)λ

⋆
r = λ⋆H

r

∑
k ̸=0

pk (Hkx) (Hkx)
H
+ σ2I

λ⋆
r

= xH

∑
k ̸=0

pk(H
H
kλ

⋆
r)(H

H
kλ

⋆
r)

H

x+ σ2 ∥λ⋆
r∥

2

≜ xHΥrx+ σ2 ∥λ⋆
r∥

2
,

(37)
where Υr is positive semi-definite. Consequently, the function
in (32) is convex with respect to x,

fr (x,λ
⋆
r) = xHΥrx− 2Re

{
λ⋆H
r Urx

}
+ σ2 ∥λ⋆

r∥
2
. (38)

Similarly, the function in (33) can be rewritten in the following
convex form,

fk (x,λ
⋆
k) = xHΥkx− 2Re

{
λ⋆H
k Hkx

}
+ σ2 ∥λ⋆

k∥
2
, (39)

where the positive semi-definite matrix Υk is given by

Υk =
∑

k′ ̸=0, k′ ̸=k

pk′
(
HH

k′λ⋆
k

) (
HH

k′λ⋆
k

)H
+ p0 Eη0

[(
HH

0λ
⋆
k

) (
HH

0λ
⋆
k

)H]
. (40)

The expectation in (40) can be computed by

Eη0

[(
HH

0λ
⋆
k

) (
HH

0λ
⋆
k

)H]
= vec−1

(
Eη0

(
HT

0 ⊗HH
0

)
vec

(
λ⋆
kλ

⋆H
k

))
, (41)

so that there is no need to recompute the expectation each
time λ⋆

k is updated. Then, the sub-problem of optimizing x
can be formulated as

(P2) : minimize
x

R∑
r=1

κrfr (x,λ
⋆
r) (42a)

subject to fk (x,λ
⋆
k) + Γk ≤ 0, ∀k ̸= 0, (42b)

|xn| ≤ αmax, ∀n. (42c)

The above sub-problem is a convex quadratically constrained
quadratic program (QCQP), and the optimal solution can be
easily obtained by an optimization solver such as the CVX.



Fig. 2. Reflecting beampatterns with different prior distributions of the azimuth angle of sensing user and different directions of communication users.

B. Penalty Quadratic Transform-Based FCFP for (P1*)

Now, consider the case of passive RIS. Similar to problem
(P1), Theorem 2 can also be applied to problem (P1*). Then,
the equivalently transformed problem of (P1*) is

minimize
x,λr,λk

R∑
r=1

κrfr (x,λr) (43a)

subject to fk (x,λk) + Γk ≤ 0, ∀k ̸= 0, (43b)
|xn| = 1, ∀n, (43c)

The only difference from the active case is that the amplitude
constraints of the RIS are now unit-modulus, which are non-
convex and not easy to address. To handle the unit-modulus
constraints, we directly include a penalty term into the objec-
tive function. Then, the problem (43) is reformulated as

minimize
x,θ,λr,λk

R∑
r=1

κrfr (x,λr) + µ ∥x− θ∥2 (44a)

subject to fk (x,λk) + Γk ≤ 0, ∀k ̸= 0, (44b)

where µ determines the extent of penalty, and θ is defined as

θT = [exp (jθ1) , exp (jθ2) , · · · , exp (jθN2)] . (45)

This problem can be solved by iteratively updating the auxil-
iary variables θ, λr, λk, and the optimization variable x.

When x is fixed, the optimal λ⋆
r and λ⋆

k are the same as that
in (34) and (35), respectively. The optimal θ⋆ can be obtained
by solving the following problem:

minimize
−π≤θn≤π

N2∑
n=1

∣∣xn − ejθn
∣∣2 . (46)

Since the optimization variables θn’s are separable in (46), the
optimal θn is simply arg(xn).

When θ⋆, λ⋆
r , and λ⋆

k are held fixed, the sub-problem of
updating x can be formulated as

(P2*) : minimize
x

R∑
r=1

κrfr (x,λ
⋆
r) + µ ∥x− θ⋆∥2 (47a)

such that fk (x,λ
⋆
k) + Γk ≤ 0, ∀k ̸= 0, (47b)

which is also a convex QCQP similar to problem (P2). Note
that the penalty coefficient µ can be updated using µ = αµ
with a suitable factor α along each iteration to balance between
accuracy and convergence.

V. NUMERICAL RESULTS

In this section, we provide numerical results to show the
effectiveness of the proposed algorithms in various scenarios.
The simulation environment is as follows. The BS is equipped
with M = 16 antennas. For both the sensing user and
communication users, we set their transmit powers such that
pk/σ

2 is −5 dB (unless otherwise specified). The SINR
threshold for the communication users is set to 15 dB. The
number of reflecting elements is set to 10× 10. For the active
RIS, the maximum amplification gain is a2max = 5 dB.

We consider two scenarios: (i) four communication users
at 105◦, 120◦, 135◦, and 150◦, respectively, and one sensing
user, whose azimuth angle has a prior distribution centered at
60◦, as shown in the top row of Fig. 2; (ii) four communication
users at 65◦, 80◦, 100◦, and 115◦, respectively, and one
sensing user, whose azimuth angle has a prior distribution
which is a uniform distribution over the ranges [25◦, 55◦]
and [125◦, 155◦], as shown in the bottom row of Fig. 2. The
designed RIS beampatterns of passive cases are shown in the
second column and those of active cases are shown in the third
column. The RIS beampattern for the k-th user is defined as

Qk =
∣∣wH

k [GΦv(η)]
∣∣2 , (48)



Fig. 3. Posterior distributions over three iterations with adaptive RIS sensing.

which is the received signal power after linear minimum mean
square error (LMMSE) combining at the BS from a unit-power
transmitter at an azimuth angle η with respect to the RIS. As
comparison, we also plot the received signal power for the
sensing user, if utilizing a linear combiner w0 similar for the
communication users as given below:

w0 = δmax

(
Σ−1

0 (x)Eη0

[(
Ḣ0x

)(
Ḣ0x

)H
])

, (49)

where δmax (A) denotes the eigenvector corresponding to the
largest eigenvalue of A.

The designed RIS beamforming patterns are interpretable.
From Fig. 2, it can be observed that the solutions of the
optimization problem produce beams that are aligned with
the directions of communication users, while also having a
peak matching the prior distribution of the sensing angle.
Moreover, compared to the passive RIS, the active RIS can
provide better sensing performance while meeting communi-
cation requirements. This improvement is attributed not only to
the additional power but also to additional degrees of freedom
available for beamforming for the active RIS.

To further illustrate the sensing performance of the proposed
algorithm, we show evolution of the posterior distributions
after several iterations of sensing stages in Fig. 3. The posterior
probability function of the (t+1)-th sensing stage is computed
as follows. Note that the communication signals are regarded
as noise for sensing. In this case, we have

P (η0 |yt+1) ∝ L (yt+1 | η0) · P (η0 |yt) (50)
= CN (s0H0x,Σ0(x)) · P (η0 |yt) ,

where L (yt+1 | η0) is the likelihood function of the received
signal yt+1, and P (η0 |yt) is the posterior distribution from
the previous iteration, which is used as the prior distribution
p (η0) for the current iteration. We show the result for the
passive RIS case in the first scenario in Fig. 2. The true angle
of the sensing user is at 40◦. The communication signals are
randomly generated from a Gaussian distribution. The pilot
signal for the sensing user is a known sequence with p0/σ

2 =
−20 dB. In Fig. 3, we plot the posterior distribution of η0 after
three iterations using the RIS beamforming vector designed by

the proposed algorithm. From Fig. 3, we can see that as the
number of sensing stages increases, the posterior distribution
rapidly converges to a highly concentrated distribution with a
peak at the true sensing angle. This shows that the proposed
beamforming design is highly effective for sensing.

VI. CONCLUSION

This paper proposes a methodology for RIS beamforming
pattern design for an uplink RIS-assisted integrated sensing
and communications scenario. We formulate the optimiza-
tion problem of minimizing the BCRLB of azimuth angle
estimation for the sensing user, while imposing SINR con-
straints for multiple communication users. This problem is
a non-convex fractional program with fractional constraints.
We extend a quadratic transform technique to handle the
fractional structures in both the objective function and the
constraints, then transform the problem into a sequence of
convex QCQP. Simulation results demonstrate highly effective
RIS beampattern design for both sensing and communications.
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