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Abstract—This paper studies the rate-distortion-perception
(RDP) tradeoff for a memoryless source model in the asymptotic
limit of large block-lengths. The perception measure is based
on a divergence between the distributions of the source and
reconstruction sequences conditioned on the encoder output, first
proposed by Mentzer et al. We consider the case when there is
no shared randomness between the encoder and the decoder. For
the case of discrete memoryless sources we derive a single-letter
characterization of the RDP function, in contrast to the marginal-
distribution metric case (introduced by Blau and Michaeli), whose
RDP characterization remains open when there is no shared
randomness. The achievability scheme is based on lossy source
coding with a posterior reference map. For the case of con-
tinuous valued sources under squared error distortion measure
and squared quadratic Wasserstein perception measure we also
derive a single-letter characterization and show that a noise-
adding mechanism at the decoder suffices to achieve the optimal
representation. Interestingly, the RDP function characterized for
the case of zero perception loss coincides with that of the marginal
metric and further zero perception loss can be achieved with a
3-dB penalty in minimum distortion. Finally we specialize to
the case of Gaussian sources, and derive the RDP function for
Gaussian vector case and propose a waterfilling like solution.
We also partially characterize the RDP function for a mixture
of Gaussian vector sources.

I. INTRODUCTION

Rate-distortion-perception (RDP) tradeoff [1], a generaliza-
tion of the classical rate-distortion function [2] to incorporate
distribution constraints on the reconstruction, provides a theo-
retical framework for a variety of deep neural compression sys-
tems that exhibit an inherent tradeoff between reconstruction
fidelity and realism [3]. In this framework, the perception loss
is measured through a suitable divergence metric between the
source and reconstruction distributions, with perfect realism
corresponding to the case when the source and reconstruction
distributions are identical. The work of Blau and Michaeli [1]
establishes that when distortion loss is measured using mean
squared error, perfect realism can be achieved with no more
than 3-dB increase in the minimum distortion. The work of
Theis and Wagner [4] establishes an operational interpretation
of the rate-distortion-perception function. The special case
of (scalar) Gaussian sources is studied in [5] where it is
shown that Gaussian distributions attain the RDP function.
Furthermore a natural notion of universality is established
where any representation corresponding to a boundary point on
RDP tradeoff curve can be converted to another representation
associated with another boundary point. The case when there
is limited or no shared randomness between the encoder and

decoder is studied in [6]–[9] (see also [10]). To our knowledge,
unlike the setting with (unlimited) shared randomness, a com-
putable characterization of RDP function remains largely open
in the limited shared randomness settings. The extension of
RDP function to the case when correlated side information is
available to either the encoder or the decoder is studied in [11],
[12]. The applications of RDP function to neural compression
are studied in e.g., [13]–[20] and references therein.

While the perception loss metric in prior works [3] is based
on the divergence between the source and reconstruction dis-
tributions, a different choice is proposed in [13], [18], where it
is empirically observed that a perception loss metric that mea-
sures the divergence between the source and reconstruction
distributions conditioned on the output of the encoder results
in higher perceptual quality in reconstructions. Intuitively, this
metric forces the decoder to follow the conditional distribution
of the source given, the reconstruction based on the encoder
output (e.g., the MMSE reconstruction) and thus introduces
adjustments in the fine details that improve the blurriness,
while not deviating significantly from the reconstruction. In
this work, we provide a theoretical study of the RDP function
when the perception measure is based on such a conditional
metric1. We make the assumption that there is no shared
randomness between the encoder and decoder, and denote
this setting as conditional-distribution based perception mea-
sure, while denoting the original setting of [3] as marginal-
distribution based perception measure. The main contributions
of this paper are as follows:

• We characterize the RDP tradeoff for finite alphabet
sources (Theorem 1) and explicitly derive the tradeoff for
the uniform Bernoulli source (Theorem 2). The achiev-
able scheme uses some recent tools developed for lossy
source coding with a posterior reference map [22]. It is
interesting to note that a complete characterization of
the RDP function for the conditional-distribution based
perception measure is possible, while a similar character-
ization of the RDP function for the marginal-distribution
based perception measure only exists for the case of zero
perception loss (i.e., when the source and reconstruction
distributions exactly match) [8], if there is no shared
randomness.

1An earlier investigation of this setting from an information-theoretic per-
spective was reported in [21]. In this paper, we provide a more comprehensive
and rigorous treatment.
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Fig. 1. System model with the perception measure based on the conditional
distribution.

• The RDP tradeoff is further characterized for continuous
alphabet sources (Theorem 3) under squared error distor-
tion measure and squared quadratic Wasserstein percep-
tion measure. For the case of zero perception loss, it is
shown that the rate-distortion tradeoff coincides with that
of the marginal-distribution based perception measure
(Corollary 1). As has been previously observed for the
latter measure [9], [23], [24], for a fixed encoder, the
distortion of reconstruction satisfying zero perception loss
is exactly twice that of the MMSE representation. Fur-
thermore, the MMSE represenation can be transformed
to representations for other operating points on the RDP
tradeoff by adding noise at the decoder.

• Shannon’s lower bound [2, Eq. (13.159)] for the RD
tradeoff is extended to the RDP setting (Theorem 4).
Using this lower bound, we are able to partially char-
acterize the RDP tradeoff for a Gaussian-mixture source
(Corollary 2) and completely characterize the tradeoff for
a Gaussian vector source (Corollary 3). For the latter case,
a water-filling type solution is also derived.

Notation: We use [a : b] to represent the set of integers from
a to b for any two integers a ≤ b, and use x ∧ y to represent
the minimum of two real numbers x and y . Throughout this
paper, the base of the logarithm function is e.

II. PROBLEM FORMULATION

A. System Model

Let the source {X(t)}∞t=1 be a stationary and memoryless
process with marginal distribution pX over alphabet X (see
Fig. 1). A stochastic encoder f (n) : Xn → M maps a length-
n source sequence Xn to a codeword M in a binary prefix
code M according to some conditional distribution pM |Xn . A
stochastic decoder g(n) : M → Xn then generates a length-n
reconstruction sequence X̂n based on M according to some
conditional distribution pX̂n|M . Note that this coding system
induces the following joint distribution:

pXnMX̂n = pXnpM |XnpX̂n|M .

Let ∆ : X × X → [0,∞) be a distortion measure with
∆(x, x̂) = 0 if and only if x = x̂. Define ∆(xn, x̂n) :=∑n

t=1 ∆(x(t), x̂(t)) for xn, x̂n ∈ Xn. Let ϕ : P×P → [0,∞]
be a divergence with ϕ(p, p′) = 0 if and only if p = p′ a.s.,
where P denotes the set of probability distributions. Through-
out this paper, we focus on a special class of divergences that

arise from the theory of optimal transport. Specifically, for any
two probability distributions pX̃n and pX̄n over Xn, let

ϕ(pX̃n , pX̄n) := inf
pX̃nX̄n∈Π(pX̃n ,pX̄n )

n∑
t=1

E[c(X̃(t), X̄(t))],

(1)

where Π(pX̃n , pX̄n) denotes the set of couplings of pX̃n and
pX̄n , and c : X×X → [0,∞) is a cost function with c(x̃, x̄) =
0 if and only if x̃ = x̄. In this work, ϕ serves the role of
perception measure.

Proposition 1: ϕ defined in (1) has the following properties.
(a) Tensorizability:

ϕ(pX̃n , pX̄n) ≥
n∑

t=1

ϕ(pX̃(t), pX̄(t))

and the equality holds if pX̃n =
∏n

i=1 pX̃(t) and pX̄n =∏n
i=1 pX̄(t).

(b) Convexity:

ϕ((1− λ)pX̃n + λp′
X̃n , (1− λ)pX̄n + λp′X̄n)

≤ (1− λ)ϕ(pX̃n , pX̄n) + λϕ(p′
X̃n , p

′
X̄n)

for λ ∈ [0, 1].
(c) Continuity:

|ϕ(pX̃n , pX̄n)− ϕ(pỸ n , pȲ n)|
≤ ncmax(dTV(pX̃n , pỸ n) + dTV(pX̄n , pȲ n)),

where dTV is the total variation distance, and cmax :=
supx,x′∈X c(x, x′).
Proof: See [25, Appendix A].

B. Rate-Distortion-Perception Function

Definition 1: We say rate R is achievable subject to distor-
tion and percetion constraints D and P if for some n, there
exist encoder f (n) and decoder g(n) such that (see Fig. 1)

1

n
E[ℓ(M)] ≤ R,

1

n
E[∆(Xn, X̂n)] ≤ D,

1

n
E[ϕ(pXn|M (·|M), pX̂n|M (·|M))] ≤ P, (2)

where ℓ(M) denotes the length of M . The infimum of all
such R is denoted by RC(D,P ), is referred to as the oper-
ational rate-distortion-perception function for the conditional-
distribution based perception measure.

We also introduce the following informational rate-
distortion-perception function:

R(D,P ) := inf
pUX̂|X

I(X;U)

s.t. X ↔ U ↔ X̂ form a Markov chain, (3)

E[∆(X, X̂)] ≤ D, (4)
E[ϕ(pX|U (·|U), pX̂|U (·|U))] ≤ P. (5)



Proposition 2: R(D,P ) is convex in (D,P ).
Proof: See [25, Appendix B].

Proposition 3: If |X | < ∞, then there is no loss of
generality in assuming that the alphabet of U , denoted by U ,
satisfies |U| ≤ |X |+2; moreover, the infimum in the definition
of R(D,P ) can be attained, thus is a minimum.

Proof: Note that |X | < ∞ implies cmax < ∞, which in
light of part 3) of Proposition 1 further implies the continuity
of ϕ(p, p′) in (p, p′). Therefore, we can invoke the support
lemma [26, p. 631] to establish the desired cardinality bound.
Moreover, the continuity of ϕ(p, p′), together with the cardi-
nality bound, implies that the feasible domain for pUX̂|X is
compact. As a consequence, the objective function I(X;U),
which is continuous in pUX̂|X , has a minimum value over this
domain.

III. FINITE ALPHABET SOURCES

We focus on finite alphabet sources in this section. Our
first main result shows that the operational rate-distortion-
perception function coincides with its informational counter-
part for such sources.

Theorem 1: Assume |X | < ∞. For D ≥ 0 and P ≥ 0,

RC(D,P ) = R(D,P ).

Proof: See [25, Appendix C]. The achievability part of
the proof relies on a recent development in information theory
known as lossy source coding with a posterior reference map
[22].

Remark 1: The proof actually indicates that if (2) is replaced
with the following stronger constraint

1

n
ϕ(pXn|M (·|m), pX̂n|M (·|m)) ≤ P, m ∈ M,

Theorem 1 continues to hold.
The next result provides an explicit characterization of

RC(D,P ) for the uniform Bernoulli source (i.e., X ∼ Ber( 12 ))
under Hamming distortion measure (i.e., ∆(x, x̂) = dH(x, x̂))
and divergence induced by Hamming cost function (i.e.,
c(x, x̂) = dH(x, x̂)). For D ≥ 0 and P ≥ 0, let

h̄(D,P ) =

Hb

(
1+(D∧P )−

√
1+(D∧P )2−2D

2

)
, D ∈ [0, 1

2 ),

log 2, D ∈ [ 12 ,∞),

where Hb denotes the binary entropy function. Moreover, let
h̄ be the upper concave envelope of h̄ over [0,∞)2.

Theorem 2: Assume X ∼ Ber( 12 ), ∆(x, x̂) = dH(x, x̂), and
c(x, x̂) = dH(x, x̂). For D ≥ 0 and P ≥ 0,

RC(D,P ) = log 2− h̄(D,P ).

Proof: See [25, Appendix D].
Remark 2: The upper concave envelope operation is neces-

sary as h̄ itself is not concave in (D,P ). See [25, Appendix E]
for some relevant analysis.

Remark 3: Theorem 2 implies that for D ≥ 0 and P ≥ D,

RC(D,P ) ≤ log 2− h̄(D,P )

=

{
log 2−Hb(D), D ∈ [0, 1

2 ),

0, D ∈ [ 12 ,∞).

This upper bound is tight because it coincides with the rate-
distortion function of the uniform Bernoulli source under
Hamming distortion measure [2, Theorem 13.3.1], which is
the infimum of achievable rates when the perception constraint
is ignored.

The operational RDP function for the marginal-distribution
based perception measure, denoted as RM(D,P ), can be
defined similarly by replacing (2) with

1

n
ϕ(pXn , pX̂n) ≤ P. (6)

It follows by part 2) of Proposition 1 that (2) implies (6). As
a consequence, we must have

RM(D,P ) ≤ RC(D,P ). (7)

Different from RC(D,P ), a single-letter characterization of
RM(D,P ) is unavailable except for the special case P = 0,
for which it is known [10, Section III.B], [8, Corollary 1], [9,
Eq. (16)] that

RM(D, 0) = inf
pUX̂|X

max{I(X;U), I(X̂;U)} (8)

s.t. X ↔ U ↔ X̂ form a Markov chain, (9)

E[∆(X, X̂)] ≤ D, (10)
pX̂ = pX . (11)

The difficulty in characterizing RM(D,P ) arises from the fact
that the i.i.d. form of the reconstruction sequence X̂n favored
by the perception constraint (6) (see part (a) and part (b)
of Proposition 1) is not necessarily desirable from the rate
perspective. This tension disappears when P = 0 as X̂n is
forced to be an i.i.d. sequence. In contrast, under constraint
(2), the conditional i.i.d. form of the source sequence Xn

and the reconstruction sequence X̂n given the codeword M is
desirable from both the perception and the rate perspectives.
This explains why RC(D,P ) is more amenable to single-
letterization as compared to RM(D,P ).

In light of Theorem 2, when X ∼ Ber( 12 ) and ∆(x, x̂) =
dH(x, x̂),

RC(D, 0) ≤ log 2− h̄(D, 0)

=

{
log 2−Hb(

1−
√
1−2D
2 ), D ∈ [0, 1

2 ),

0, D ∈ [ 12 ,∞).

Interestingly, the corresponding RM(D, 0) is given by [9,
Theorem 7]

RM(D, 0) =

{
log 2−Hb(

1−
√
1−2D
2 ), D ∈ [0, 1

2 ),

0, D ∈ [ 12 ,∞).

In view of (7), we must have

RC(D, 0) = RM(D, 0) (12)



for this special case. As shown in the next section (see
Corollary 1), this is a general phenomenon rather than a
coincidence.

IV. CONTINUOUS ALPHABET SOURCES

In this section, we consider continuous alphabet sources,
more specifically, the case where X := (X1, X2, . . . , XL)

T is
a random vector with X = RL. The following result indicates
that Theorem 1 continues to hold for square-integrable sources
(i.e., E[∥X∥2] < ∞) under squared error distortion measure
(i.e, ∆(x, x̂) = ∥x − x̂∥2) and squared quadratic Wasserstein
distance (i.e., ϕ(p, p′) = W 2

2 (p, p
′), resulting from choosing

c(x, x̂) = ∥x− x̂∥2). As D = 0 corresponds to lossless source
coding, which is generally impossible for continuous alphabet
sources (unless pX has a discrete support), we focus on the
case D > 0 throughout this section.

Theorem 3: Assume E[∥X∥2] < ∞, ∆(x, x̂) = ∥x − x̂∥2,
and ϕ(p, p′) = W 2

2 (p, p
′). For D > 0 and P ≥ 0,

RC(D,P ) = R(D,P ). (13)

Moreover, in this case,

R(D,P ) = R′(D,P ), (14)

where

R′(D,P ) = inf
pU′X̂′|X

I(X;U ′)

s.t. X ↔ U ′ ↔ X̂ ′ form a Markov chain,
(15)

U ′ = E[X|U ′] = E[X̂ ′|U ′] almost surely,
(16)

E[∥V ∥2] +E[∥V̂ ∥2] ≤ D, (17)

E[W 2
2 (pV |U ′(·|U ′), pV̂ |U ′(·|U ′))] ≤ P,

(18)

with V := X − U ′ and V̂ = X̂ ′ − U ′.
Proof: See [25, Appendix F].

Remark 4: In some scenarios, the source only takes on
values from a strict subset X of RL and the reconstruction
is also confined to X . The proof of (13) is not directly
applicable to such scenarios as the output of quantizer ξ may
live outside X (except for the special case P = 0 where the
reconstruction is forced to have the same distribution as the
source). Nevertheless, it can be shown (see [25, Appendix G])
using a more delicate argument that (13) continues to hold
in the aforementioned scenarios (correspondingly, R(D,P ) is
defined with X̂ restricted to X ). On the other hand, except
for the special case P = 0, the proof of (14) relies critically
on the fact that X̂ and X̂ ′ in the definition of R(D,P ) and
R′(D,P ) have the freedom to take on values from R

L.
Remark 5: The equivalent characterization in (14) suggests

that it suffices to consider MMSE representation U ′ since
any other optimal representation X ′ can be generated from
U ′ through a simple noise-adding mechanism. This is closely
related to the universality of MMSE representation observed
in the setting with (unlimited) shared randomness [5].

The following result indicates that RC(D, 0) is always equal
to RM(D, 0) under squared error distortion measure, and
connects them to the classical rate-distortion function.

Corollary 1: Assume E[∥X∥2] < ∞ and ∆(x, x̂) = ∥x −
x̂∥2. For D > 0,

RC(D, 0) = RM(D, 0) = R

(
D

2

)
, (19)

where

R

(
D

2

)
= inf

pŪ|X
I(X; Ū)

s.t. E[∥X − Ū∥2] ≤ D

2
. (20)

Proof: See [25, Appendix H].
Remark 6: The second equality in (19) is known [9, Eq.

(20)] (see also [23, Theorem 2], [24, Theorem 2]).
Remark 7: Note that (12) can be viewed as a special case of

Corollary 1, because dH(x, x̂) = ∥x− x̂∥2 for x, x̂ ∈ {0, 1}.
Remark 8: In the definition of R(D2 ), we allow Ū to have the

freedom to take on values from R
L even if X is only defined

over a strict subset of RL. Otherwise, the second equality in
(19) might not hold. For example, when X ∼ Ber( 12 ) and
∆(x, x̂) = ∥x − x̂∥2, we have RC(

1
2 , 0) = RM( 12 , 0) = 0; on

the other hand, R( 14 ) = 0 only if Ū is allowed to be equal
to 1

2 , which does not belong to {0, 1}. See Remark 4 for a
related discussion.

The next result extends the Shannon lower bound [2, Eq.
(13.159)] to the RDP setting.

Theorem 4: Assume σ2
ℓ = E[(Xℓ − E[Xℓ])

2] ∈ (0,∞),
ℓ ∈ [1 : L], ∆(x, x̂) = ∥x − x̂∥2, and ϕ(p, p′) = W 2

2 (p, p
′).

For D > 0 and P ≥ 0,

RC(D,P ) ≥ h(X)−
L∑

ℓ=1

1

2
log(2πeωℓ),

where

ωℓ ={
ω ∧ σ2

ℓ , D +
√

(2D − (D ∧ P ))(D ∧ P ) < 2
∑L

ℓ′=1 σ
2
ℓ′ ,

σ2
ℓ , D +

√
(2D − (D ∧ P ))(D ∧ P ) ≥ 2

∑L
ℓ′=1 σ

2
ℓ′ ,

ℓ ∈ [1 : L], (21)

with ω being the unique solution to

L∑
ℓ=1

(ω ∧ σ2
ℓ ) =

D +
√
(2D − (D ∧ P ))(D ∧ P )

2
.

Proof: See [25, Appendix I].
The following result provides a partial characteriza-

tion of RC(D,P ) for Gaussian mixture sources. Let∑K
k=1 βkN (µk,Σk) be a mixture of K Gaussian distributions,

N (µk,Σk), k ∈ [1 : K], with βk > 0, k ∈ [1 : K],
and

∑K
k=1 βk = 1. We assume Σk ≻ 0 and consequently

λmin(Σk) > 0, k ∈ [1 : K], where λmin(A) denotes the
minimum eigenvalue of symmetric matrix A.



ω

Fig. 2. Water-filling solution for the Gaussian vector source.

Corollary 2: Assume X ∼∑K
k=1 βkN (µk,Σk), ∆(x, x̂) =

∥x − x̂∥2, and ϕ(p, p′) = W 2
2 (p, p

′). For D > 0 and P ≥ 0
satisfying

D +
√

(2D − (D ∧ P ))(D ∧ P )

2L
≤ min{λmin(Σk)}Kk=1,

we have

RC(D,P )

= h(X)− L

2
log

(
2πe(D +

√
(2D − (D ∧ P ))(D ∧ P ))

2L

)
.

Proof: See [25, Appendix J].
A complete characterization of RC(D,P ) can be obtained

for Gaussian sources, namely, X ∼ N (µ,Σ). Let Σ = ΘTΛΘ
be the eigenvalue decomposition of Σ, where Θ is a unitary
matrix and Λ is a diagonal matrix with the ℓ-th diagonal
entry denoted by λℓ, ℓ ∈ [1 : L]. We assume Σ ≻ 0 and
consequently λℓ > 0, ℓ ∈ [1 : L].

Corollary 3: Assume X ∼ N (µ,Σ), ∆(x, x̂) = ∥x − x̂∥2,
and ϕ(p, p′) = W 2

2 (p, p
′). For D > 0 and P ≥ 0,

RC(D,P ) =

L∑
ℓ=1

1

2
log

(
λℓ

ωℓ

)
,

where ωℓ is defined in (21) with σ2
ℓ replaced by λℓ, ℓ ∈ [1 : L]

(see Fig. 2).
Proof: See [25, Appendix K].

Remark 9: Note that RC(D,P ) degenerates to the rate-
distortion function R(D) of the Gaussian vector source with
quadratic distortion when P ≥ D, where R(D) is given by the
conventional reverse waterfilling formula [2, Theorem 13.3.3]

R(D) =


L∑

ℓ=1

1
2 log

(
λℓ

ω∧λℓ

)
, D <

∑L
ℓ=1 λℓ,

0, D ≥∑L
ℓ=1 λℓ,

with ω being the unique solution to

L∑
ℓ=1

(ω ∧ λℓ) = D.

It is also easy to verify that RC(D, 0) = R(D2 ), which is
consistent with Corollary 1.

2.5 3 3.5 4 4.5 5 5.5 6
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Distortion-Perception Tradeoff

Fig. 3. Distortion-Perception tradeoff for R = 1, λ1 = 1, λ2 = 2 and
λ3 = 3.

Remark 10: Note that ωℓ can be interpreted as the water
level in the subspace associated with eigenvalue λℓ, ℓ ∈ [1 :
L] (see Fig. 2). Different from the conventional waterfilling
formula where the water level coincides with the distortion
loss in each subspace when the distortion constraint is active,
the situation is more complex here due to the presence of
the perception constraint. Specifically, for ℓ ∈ [1 : L], the
distortion loss Dℓ and the perception loss Pℓ in the subspace
associated with eigenvalue λℓ are given respectively by2

Dℓ =


(

2D2−2D
√

(2D−P )P

(D−P )2

)
ωℓ, D > P,

ωℓ, D ≤ P,

Pℓ =


(√

(2D−P )P−P

D−P

)2

ωℓ, D > P,

ωℓ, D ≤ P.

In Fig. 3, based on Corollary 3 and for a given rate, we
plot the tradeoff between distortion and perception for some
values of parameters.

V. CONCLUSION

This paper characterizes the RDP tradeoff for both finite
and continuous alphabet sources when the perception mea-
sure is based on the divergence between the distributions
of the source and reconstruction sequences conditioned on
the encoder output. For the Gaussian vector source, a novel
waterfilling type solution is obtained under squared error dis-
tortion measure and squared quadratic Wasserstein perception
measure. In contrast to the conventional reverse waterfilling
solution, here the water level depends on both distortion and
perception losses. Throughout this work, we have focused on
the setting when no shared randomness is assumed between
the encoder and the decoder. When shared randomness is
available, the analysis of the proposed conditional-distribution
based perception measure appears significantly harder and is
left for future research.

2Actually Dℓ and Pℓ are not uniquely defined when
D +

√
(2D − (D ∧ P ))(D ∧ P ) > 2

∑L

ℓ=1
λℓ (which implies

RC(D,P ) = 0).
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