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Abstract—The paper considers a communication constrained
distributed hypothesis testing problem in which the transmitter
sends a message about its local observation to the receiver, and
the receiver tries to decide whether or not its own observation
is independent of the observation at the transmitter. We analyze
the problem in the one-shot setting and derive an achievability
region under both the fixed-length and the variable-length

communication constraints. Novel information-theoretic tools,
including the generalized Poisson matching lemma and the strong
functional representation lemma, are applied. It is shown that the
proposed one-shot schemes, when applied to the asymptotic case,
recover the optimal fixed-length and variable-length type-II error
exponents for testing against independence.

I. INTRODUCTION

This paper considers a distributed hypothesis testing prob-

lem in which a sensor node and a decision node are located in

two different locations and are linked by a noiseless channel

of finite capacity. The sensor and decision nodes each make

local observations. The sensor node transmits a message to

the decision node to help it decide between two hypotheses:

H0 or H1. Our aim is to quantify the effect of communication

constraint on the probability of error.

We model the aforementioned problem by the system de-

picted in Fig. 1. The sensor node (i.e., the transmitter) observes

n independent and identically distributed (i.i.d.) samples of a

random variable X and the decision node (i.e., the receiver)

observes n i.i.d. samples of another random variable Y . We

assume that the marginal distributions of each of the two

random variables are the same under both hypotheses, but

that their joint distribution depends on the hypothesis. We

also assume the transmitter and the receiver share unlimited

common randomness. This paper focuses on an important

special case, often referred to as testing against independence,

where (X,Y ) ∼ PXY under the null hypothesis H0, and

(X,Y ) ∼ PXPY under the alternative hypothesis H1. Here,

PXY is a given distribution over X ×Y , and PX , PY are the

corresponding marginals.

This hypothesis testing problem is formulated under a

communication constraint between the transmitter and the

receiver. The transmitter sends a message M based on Xn.

We impose one of the two following types of communication

constraints. The first is when the message takes values from

a finite set and we restrict the log of the cardinality of the

finite set to be less than nL; the second is when the message

is a variable-length prefix-free binary string and we restrict

the expected length of the message to be less than nL. Upon
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Fig. 1. Distributed hypothesis testing with communication constraint.

receiving M noiselessly and observing Y n, the receiver makes

a decision Ĥ ∈ {H0, H1}. A detection error is classified as

either a type-I error (H = H0 while Ĥ = H1) or a type-

II error (H = H1 while Ĥ = H0). We are interested in the

achievable region of this problem, which consists of all triples

(L, α, β) where α, β are respective upper bounds on the type-I

and type-II error probabilities.

When the number of observed samples n tends to infinity,

one would expect the two types of error probabilities to

approach zero exponentially. Characterizing the error expo-

nents of both types of error is difficult. Instead, a major

line of work focuses on determining the largest exponential

rate of decay of the type-II error probability while fixing

some bound on the type-I error probability. Ahlswede and

Csiszár [1] construct a quantization-based fixed-length testing

scheme and prove that their scheme achieves the optimal type-

II error exponent among all fixed-length schemes for testing

against independence. Han [2] and Shimokawa, Han and

Amari [3] improve upon Ahlswede and Csiszár’s scheme and

establish achievability results for testing between more general

distributions. For a more general case termed “testing against

conditional independence”, Rahman and Wagner [4] establish

tight achievability and converse results. A recent paper [5]

demonstrates that a slightly larger type-II error exponent can

be attained if variable-length schemes are allowed. There have

also been studies on the trade-off between the type-I and

the type-II error exponents, for example, [6], [7]. However,

tight converse bounds for most cases are not known, except

for the special cases of testing against (possibly conditional)

independence.

As opposed to the asymptotic regime of n→ ∞, much less

is known about the finite block-length regime. A Neyman-

Pearson type hypothesis testing scheme is proposed in [8] and

its non-asymptotic performance is analyzed. However, [8] is

restricted to zero-rate settings in which the communication

constraint scales sublinearly with block-length.

In this paper, we focus on the one-shot setting of n = 1.



We show how to apply the recently developed information

theoretic tools of the generalized Poisson matching lemma

(GPML) [9] and the strong functional representation lemma

(SFRL) [10], developed to prove one-shot source and channel

coding theorems, to the hypothesis testing problem. We con-

struct both fixed-length and variable-length one-shot hypothe-

sis testing schemes based on GPML and SFRL and obtain the

corresponding achievable regions.

These results can be readily generalized to arbitrary n, i.e.,

the finite block-length setting. When the block-length tends to

infinity, the optimal exponents in [1] and [5] are recovered.

Notation: We denote random variables by uppercase letters,

e.g.,X,Y , and their realizations by lowercase letters, e.g., x, y.

The alphabets of random variables are denoted by calligraphic

letters, e.g., X ,Y . The set of all finite-length sequences over

an alphabet X is denoted by X ∗. We use ℓ : X ∗ → N to

denote the length of the sequence. We denote the set of positive

integers by N = {1, 2, · · · } and the set of nonnegative numbers

by R+ = [0,∞). For event E ⊂ X , the indicator function of E
is denoted by 1{· ∈ E} : X → {0, 1}. Throughout the paper,

we assume that log is base 2.

For a pair of random variables (X,Y ), their joint distribu-

tion is denoted by PXY , and the marginal distributions are de-

noted by PX and PY respectively. The conditional distribution

of Y given X is denoted by PY |X . For two distributions P,Q

defined over the same alphabet X such that P is absolutely

continuous with respect to Q (denoted P ≪ Q), the Radon-

Nikodym derivative is denoted by dP
dQ

: X → R+. Given joint

distribution PXY (such that PXY ≪ PXPY ), we denote the

information density as

i(x; y) = log
dPXY

d(PXPY )
(x, y). (1)

II. TECHNICAL TOOLS

In this section, we briefly introduce the main tools needed

to establish the one-shot achievability results. The exposition

mainly follow the works [9], [10].

A. Poisson Functional Representation

Definition 1 (Poisson Function Representation (PFR)). Let

Z = {Ūk, Tk}k∈N be a Poisson point process with intensity

Q× λR+ , where Q is a probability measure over U and λR+

is the Lebesgue measure on [0,∞). Without loss of generality

we assume {Tk}k∈N is monotonically non-decreasing in k.

Equivalently we have Ūk
i.i.d.
∼ Q and Tk − Tk−1

i.i.d.
∼ Exp(1)

(set T0 := 0). For probability measure P ≪ Q, we define

KP (Z) = argmin
k: dP

dQ
(Ūk)>0

Tk
dP
dQ

(Ūk)
, ŨP (Z) = ŪKP (Z), (2)

where ties are broken arbitrarily. When the Poisson process is

clear from the context, we usually omit Z and directly write

KP and ŨP .

By the mapping theorem [11], we have that ŨP is a random

variable such that ŨP ∼ P .

B. Generalized Poisson Matching Lemma

Lemma 1 (GPML [9]). Let Z = {Ūk, Tk}k∈N be defined as

in Definition 1. For any P ≪ Q and any K ∈ N, we have

Pr[KP (Z) > K|ŨP (Z)] ≤

(

1−

(

1 +
dP

dQ
(ŨP (Z))

)−1
)K

.

(3)

C. Strong Functional Representation Lemma

Lemma 2 (SFRL [9], [10]). Let X ∈ X , Y ∈ Y be random

variables such that (X,Y ) ∼ PXY with I(X ;Y ) < ∞. It is

possible to construct a random variable Z ⊥⊥ X and a function

g : X × Z → Y such that Y = g(X,Z) and

H(Y |Z) ≤ I(X ;Y ) + log(I(X ;Y ) + 1) + 4. (4)

In [10], the authors propose a construction using the Poisson

functional representation given in Definition 1. The random

variable Z is the Poisson process {Ȳk, Tk} where we let Q =
PY , the marginal of PXY . The function g is then given by

(X, {Ȳk, Tk})
g
7→ ỸPY |X(·|X).

III. PROBLEM FORMULATION

Consider the system model depicted in Fig. 1 with block-

length n ∈ N. We study the hypothesis testing problem

referred to as testing against independence:

H0 : (Xn, Y n)
i.i.d.
∼ PXY , H1 : (Xn, Y n)

i.i.d.
∼ PXPY .

We assume that PXY ≪ PXPY . Upon observing Xn, the

transmitter sends a message M ∈ Mn to the receiver through

a noiseless link, where Mn is the message set that will be

specified later. The transmitter generates the message M using

a possibly randomized encoding function:

φ(n) : Xn → Mn, M = φ(n)(Xn).

We consider two types of encoding schemes:

1) Variable-length scheme: Here Mn = {0, 1}∗, i.e., the

message set is the set of all finite-length binary se-

quences. We also require M to be prefix-free.

2) Fixed-length scheme: Here Mn is a finite index set. The

cardinality of Mn is denoted by |Mn|.

The receiver makes a decision between the hypotheses using

the decision function

ψ(n) : Mn × Yn → {H0, H1},

i.e., Ĥ(φ(n), ψ(n)) = ψ(n)(M,Y n). When it is clear from

context, we just write Ĥ for the decision of the receiver. We

also assume the transmitter and the receiver have access to

unlimited amount of common randomness.

For a hypothesis testing scheme specified by (φ(n), ψ(n)),
the type-I and the type-II error probabilities are defined to be

pI(φ
(n), ψ(n)) = Pr[Ĥ = H1|H = H0],

pII(φ
(n), ψ(n)) = Pr[Ĥ = H0|H = H1],

(5)

where H denotes the true hypothesis. We also omit

(φ(n), ψ(n)) when it is clear from context.



A. One-Shot Setting

In the one-shot setting, we consider a single hypothesis test-

ing scheme with block-length n = 1. We omit the superscripts

and the subscripts n for this case and aim to characterize the

achievable region defined below.

Definition 2 (One-shot achievable regions). A triple (L, α, β)
is said to be fixed-length one-shot achievable if there exists

a fixed-length distributed hypothesis testing scheme (φ, ψ)
satisfying the error probability constraint

pI(φ, ψ) ≤ α, pII(φ, ψ) ≤ β, (6)

and the message set size constraint log |M| ≤ L.

A triple (L, α, β) is said to be variable-length one-shot

achievable if there exists a variable-length distributed hy-

pothesis testing scheme (φ, ψ) satisfying the error probability

constraint (6) and the expected message length constraint

E[ℓ(M)] = E[ℓ(φ(X))] ≤ L. (7)

The randomness of M comes from the source X and (possi-

bly) the randomized encoding function φ.

We denote the set of all variable-length (resp. fixed-length)

achievable triples by RVL (resp. RFL).

The goal of this paper is to characterize the regions RFL

and RVL and to understand the trade-off between the amount

of communication and the two types of the error probabilities.

B. Asymptotic Setting

In contrast to the one-shot setting, we consider a sequence of

hypothesis testing schemes (φ(n), ψ(n)) indexed by the block-

length n. The classic results focus mainly on the following

definition of optimal exponent.

Definition 3 (Optimal exponent). Fix rate R and ǫ ∈ (0, 1),
an exponent E is said to be (ǫ, R)-fixed-length achievable

if there exists a sequence of distributed hypothesis testing

scheme {(φ(n), ψ(n))}n∈N satisfying

lim sup
n→∞

pI(φ
(n), ψ(n)) ≤ ǫ,

lim inf
n→∞

−
1

n
log pII(φ

(n), ψ(n)) ≥ E.
(8)

and

lim sup
n→∞

1

n
log |Mn| ≤ R. (9)

Similarly, an exponent E is said to be (ǫ, R)-variable-length

achievable if there exists a sequence of distributed hypothesis

testing scheme {(φ(n), ψ(n))}n∈N satisfying (8) and

lim sup
n→∞

1

n
E[ℓ(φ(n)(Xn))] ≤ R. (10)

The optimal (ǫ, R)-fixed-length exponent EFL(ǫ, R) (resp.

optimal (ǫ, R)-variable-length exponent EVL(ǫ, R)) is the

supremum of all (ǫ, R)-fixed-length achievable (resp. (ǫ, R)-
variable-length achievable) exponents.

Ahlswede and Csiszár provided the following single letter

characterization of optimal (ǫ, R)-fixed-length exponent [1]:

EFL(ǫ, R) = sup
PU|X :R≥I(U ;X)

I(U ;Y ). (11)

In their scheme, the transmitter sends a quantized version of

its observed sequence, where quantization is performed via a

test channel PU|X optimized subject to the rate constraint as

in (11). The receiver performs a typicality test between the

quantized sequence and its own observed sequence. Note that

the right hand side of (11) does not depend on ǫ, i.e., this can

be seen as a strong converse result.

The corresponding variable-length result is established in

[5]. Somewhat surprisingly, the strong converse result fails to

hold in this case:

EVL(ǫ, R) = sup
PU|X :R≥(1−ǫ)I(U ;X)

I(U ;Y ). (12)

Their proposed scheme makes use of the variability of the

message length to modify the aforementioned scheme in [1].

Namely, whenever the transmitter’s observed sequence falls

into a predetermined subset with probability close to ǫ, it

transmits a special message instructing the receiver to declare

the alternative hypothesis.

IV. FIXED-LENGTH ACHIEVABILITY

This section presents the main one-shot achievability result.

We use P⋆ to denote the set of all kernels PU|X such that

PU|X(·|X), PU|Y (·|Y ) ≪ PU almost surely (with respect to

PX and PY respectively). For any PU|X ∈ P⋆, define the

following region for real numbers γ > 0 and θ ∈ [0, 1]:

Rin
FL(PU|X , γ, θ)

=

{

(L, α, β) :
α ≥ P0[i(U ;Y ) < log γ] + (1 − θ)p0

β ≥ P1[i(U ;Y ) ≥ log γ] + θp0

}

,

(13)

where we use P0 and P1 as shorthand notation of PU|XPXY

and PU|XPXPY respectively (in accordance with the hypothe-

ses). The quantity p0 is defined as

p0 = E

[

(

1−
(

1 + 2i(U ;X)
)−1

)⌊2L⌋−1
]

, (14)

where the expectation is taken with respect to PU|XPX . We

also define

Rin
FL =

⋃

γ>0, 0≤θ≤1
PU|X∈P⋆

Rin
FL(PU|X , γ, θ). (15)

The superscript “in” indicates that Rin
FL is an inner bound.

Theorem 1. For testing against independence, all triples in

RFL are fixed-length achievable, i.e.,

Rin
FL ⊂ RFL.



Proof. It suffices to show that for a fixed PU|X ∈ P⋆

and γ > 0, there exists a fixed-length scheme (φ, ψ) with

|M| = ⌊2L⌋ such that

pI ≤ P0[i(U ;Y ) < log γ] + (1 − θ)p0,

pII ≤ P1[i(U ;Y ) ≥ log γ] + θp0.
(16)

Hypothesis Testing Scheme: We apply GPML (cf. Lemma

1) in a similar fashion to channel simulation [12], [9, Remark

14]. Using the unlimited common randomness, the transmitter

and the receiver generate the same samples of a Poisson

point process Z = {Ūk, Tk}k∈Z with intensity measure

PU × λR+ . The transmitter observes X and then transmits

M = min{KPU|X(·|X), ⌊2
L⌋}.

At the receiver, we consider two scenarios: if M = ⌊2L⌋,

the receiver flips a biased coin, i.e., it generates a sample

V ∼ Ber(1 − θ) where V is independent of (U,X, Y, Z)
conditioning on the event {M = ⌊2L⌋}, and declares Ĥ = Hi

if V = i for i ∈ {0, 1}. If M < ⌊2L⌋, the receiver sets

Û = ŪM and performs a likelihood ratio test: namely, it

declares Ĥ = H0 if
dPU|Y (·|Y )

dPU
(Û) ≥ γ and Ĥ = H1

otherwise.

Error analysis: Define U = ŨPU|X(·|X). From the discus-

sion in Section II-A, we already know that U = ŪKPU|X (·|X)
∼

PU|X(·|X). Conditioning on the event {M < ⌊2L⌋}, we have

M = KPU|X(·|X). Therefore Û = ŪM = ŪKPU|X (·|X)
= U .

On the other hand, by GPML, we have

Pr
[

M = ⌊2L⌋
]

= E

[

Pr

[

KPU|X(·|X) > ⌊2L⌋ − 1

∣

∣

∣

∣

U

]]

≤ E





(

1−

(

1 +
dPU|X(·|X)

dPU

(U)

)−1
)⌊2L⌋−1





= E

[

(

1−
(

1 + 2i(U ;X)
)−1
)⌊2L⌋−1

]

= p0.

From the description of the scheme, we have that the distri-

bution of M does not depend on the true hypothesis H , thus

Pr[M = ⌊2L⌋|H = H0] = Pr[M = ⌊2L⌋|H = H0] ≤ p0. We

also have that Pr[V = 1|H = H0] = Pr[V = 1|H = H1] =
1− θ. The type-I error can now be upper bounded as

pI ≤ Pr[M < ⌊2L⌋|H = H0] · Pr[Ĥ = H1|M < ⌊2L⌋, H = H0]

+ Pr[M = ⌊2L⌋|H = H0] · Pr[Ĥ = H1|M = ⌊2L⌋,H = H0]

≤ 1 · Pr

[

dPU|Y (·|Y )

dPU

(U) < γ

∣

∣

∣

∣

H = H0

]

+ p0 · Pr[V = 1]

≤ P0[i(U ; Y ) < log γ] + (1− θ)p0, (17)

and the type-II error can be bounded similarly as

pII ≤ Pr[M < ⌊2L⌋|H = H1] · Pr[Ĥ = H0|M < ⌊2L⌋,H = H1]

+ Pr[M = ⌊2L⌋|H = H1] · Pr[Ĥ = H0|M = ⌊2L⌋,H = H1]

≤ 1 · Pr

[

dPU|Y (·|Y )

dPU

(U) < γ

∣

∣

∣

∣

H = H1

]

+ p0 · Pr[V = 0]

≤ P1[i(U ; Y ) ≥ log γ] + θp0. (18)

�

We provide the following lemma to upper bound the term

P1[i(U ;Y ) ≥ log γ] which will be useful subsequently.

Lemma 3. P1[i(U ;Y ) ≥ log γ] ≤ γ−1P0[i(U ;Y ) ≥ log γ].

Proof. By calculation:

P1[i(U ;Y ) ≥ log γ]

=

∫

1{i(u; y) ≥ log γ}PU (du)PY (dy)

=

∫

1{i(u; y) ≥ log γ}
dPUPY

dPUY

(u, y)PUY (dudy)

=

∫

1{i(u; y) ≥ log γ}2−i(u;y)PUY (dudy)

≤ γ−1

∫

1{i(u; y) ≥ log γ}PUY (dudy)

= γ−1P0[i(U ;Y ) ≥ log γ]. �

In the remaining part of the section, we show that the one-

shot scheme of Theorem 1, when applied to the infinite block-

length setting, can recover the optimal exponent given in (11).

Fix rate R > 0, type-I error threshold ǫ ∈ (0, 1), and an

arbitrarily small constant δ > 0. Equation (11) implies the ex-

istence of a kernel PU|X such that for (U,X, Y ) ∼ PU|XPXY ,

we have I(U ;X) < R and I(U ;Y ) > EFL(ǫ, R)−δ. Consider

the auxiliary random variable Un where PUn|Xn = Pn
U|X . By

Theorem 1 and Lemma 3, there exists a fixed-length scheme

(φ(n), ψ(n)) with |Mn| = 2nR + 1 such that

pI ≤ Pn
0 [i(U

n;Y n) < log γ] + p0,

pII ≤ γ−1Pn
0 [i(U

n;Y n) ≥ log γ],

which is obtained by choosing θ = 0. Note that

lim supn→∞
1
n
log |Mn| = R. Let γ = 2n(I(U ;Y )−δ). We now

analyze the type-I error. Under Pn, E[i(Un;Y n)] = nI(U ;Y )
and hence by law of large numbers, we have Pn[i(Un;Y n) <
log γ] < ǫ

2 for sufficiently large n ∈ N. Also

p0 = E

[

(

1−
(

1 + 2i(U
n;Xn)

)−1
)2nR]

≤ E

[(

1−
(

1 + 2i(U
n;Xn)−nR

)−1
)]

≤ 1−
(

1 + 2E[i(U
n;Xn)−nR]

)−1

= 1−
(

1 + 2−n(R−I(U ;X))
)−1

,

where the first inequality is by Taylor expansion, the second

inequality is by Jensen’s inequality (observe that x 7→ 1 −
(1+2x)−1 is concave on R+), and the last equality is because

E[i(Un;Xn)] = nI(U ;X). Since R− I(U ;X) > 0, we have

2−n(R−I(U ;X)) → 0. Hence for sufficiently large n, p0 <
ǫ
2 .

Combining, we have p1 < ǫ whenever n is sufficiently large,

and hence lim supn→∞ p1 < ǫ. For the type-II error, we have

pII ≤ 2−n(I(U ;Y )−δ) · Pn
0 [i(U

n;Y n) ≥ n(I(U ;Y )− δ)]

≤ 2−n(EFL(ǫ,R)−2δ).

Hence, the exponent EFL(ǫ, R) − 2δ is (ǫ, R)-fixed-length

achievable using one-shot testing. The infinite block-length

result follows, since δ can be made arbitrarily small.



V. VARIABLE-LENGTH ACHIEVABILITY

We now present the one-shot achievability result for the

variable-length case. Recall that P⋆ is the set of all kernels

PU|X such that PU|X(·|X), PU|Y (·|Y ) ≪ PU almost surely

(with respect to PX and PY respectively). For PU|X ∈ P⋆

and a positive real number γ > 0, define the following region:

Rin
VL(PU|X , γ)

=











(L, α, β) :

L ≥ I(U ;X) + log(I(U ;X) + 1) + 5

α ≥ P0[i(U ;Y ) < log γ]

β ≥ P1[i(U ;Y ) ≥ log γ]











,

where we use P0 and P1 as shorthand notation of PU|XPXY

and PU|XPXPY respectively. We also define

Rin
VL =

⋃

γ>0
PU|X∈P⋆

Rin
VL(PU|X , γ).

Theorem 2. For testing against independence, all triples in

Ra are variable-length achievable, i.e.,

Rin
VL ⊂ RVL.

Proof: It suffices to show that for a fixed PU|X and γ > 0,

there exists a variable-length scheme (φ, ψ) such that

E[ℓ(M)] ≤ I(U ;X) + log(I(U ;X) + 1) + 5,

pI ≤ P0[i(U ;Y ) < log γ],

pII ≤ P1[i(U ;Y ) ≥ log γ].

(19)

Hypothesis Testing Scheme. We apply the SFRL. By Theo-

rem 2 and the discussion after, there exists a function g such

that for the Poisson point process Z = {Ūk, Tk}k∈Z with

intensity PU × λR+ , we have U = g(X,Z) and

H(U |Z) ≤ I(U ;X) + log(I(U ;X) + 1) + 4.

Using the unlimited shared randomness, the transmitter and

the receiver can generate the same sample Z at both terminals.

Upon observing X , the transmitter generates a sample U from

PU|X(·|X) and then uses a Huffman code corresponding to

distribution PU|Z(·|Z) to encode U . In other words, the encod-

ing function φ maps a sample X to the Huffman codeword of

U . Averaging over the realization of Z , the expected message

length is upper bounded by

E[ℓ(M)] ≤ H(U |Z) + 1

≤ I(U ;X) + log(I(U ;X) + 1) + 5.
(20)

At the decoder, the receiver can decode U losslessly

upon receipt of the message M and knowledge of Z . Now

upon observing a sample Y , the decoder performs a like-

lihood ratio test. Namely, the decoder declares Ĥ = H0 if
dPU|Y (·|Y )

dPU
(U) ≥ γ and Ĥ = H1 otherwise.

Error analysis. Note that U |X ∼ PU|X . By a similar

analysis as in (17) and (18), we obtain the last two inequalities

in (19). Combining with (20) finishes the proof.

For the remaining part of the section, we slightly modify

the one-shot scheme in Theorem 2 then recover the optimal

exponent for infinite block-length case given in (12).

Fix rate R > 0, type-I error threshold ǫ ∈ (0, 1) and an

arbitrarily small number δ ∈ (0, ǫ). Equation (12) implies

the existence of a kernel PU|X such that for (U,X, Y ) ∼
PU|XPXY , we have (1 − ǫ)I(U ;X) < R and I(U ;Y ) >
EVL(ǫ, R) − δ. Consider the auxiliary random variable Un

where PUn|Xn = Pn
U|X . Denote the testing scheme presented

in the proof of Theorem 2 by (φ(n), ψ(n)). We define a

new testing scheme (φ̃(n), ψ̃(n)) as follows. Let Vn be an

independent Ber(ǫ− δ) random variable. Further, let

φ̃(n)(xn) =

{

0, Vn = 1,

1 ◦ φ(n)(xn), Vn = 0,

where ◦ denotes string concatenation, and

ψ̃(n)(mn, y
n) =

{

H1, mn = 0,

ψ(n)(m̃n, y
n), mn = 1 ◦ m̃n.

The expected message length of this scheme is given by

E[ℓ(φ̃(X))]

= Pr[Vn = 1] · 1 + Pr[Vn = 0] · (E[ℓ(φ(X))] + 1)

≤ 1 + (1− ǫ+ δ)(nI(U ;X) + log(nI(U ;X) + 1) + 5).

Hence lim supn→∞
1
n
E[ℓ(φ(n)(Xn))] ≤ (1 − ǫ+ δ)I(U ;X).

Let γ = 2n(I(U ;Y )−δ). We upper bound the type-I error as:

pI(φ̃
(n), ψ̃(n)) ≤ pI(φ

(n), ψ(n)) + Pr[V = 1]

≤ Pn
0 [i(U

n;Y n) < n(I(U ;Y )− δ)] + ǫ− δ.

Since E[i(Un;Y n)] = nI(U ;Y ), by law of large numbers,

Pn[i(Un;Y n) < n(I(U ;Y ) − δ)] < δ for sufficiently large

n, hence lim supn→∞ pI(φ̃
(n), ψ̃(n)) < ǫ. It is straightforward

that the type-II error for the modified scheme is upper bounded

by that of the original scheme:

pII(φ̃
(n), ψ̃(n))

≤ pII(φ
(n), ψ(n))

≤ 2−n(I(U ;Y )−δ) · Pn
0 [i(U

n;Y n) ≥ n(I(U ;Y )− δ)]

≤ 2−n(EVL(ǫ,R)−2δ),

where the second inequality is by Theorem 2 and Lemma 3.

From this, we have thatEVL(ǫ, R)−2δ is (ǫ, R)-variable length

achievable using the modified scheme. The infinite block-

length result follows since δ can be arbitrarily small.

VI. CONCLUSION

This paper provides one-shot achievable regions for a

distributed hypothesis testing problem under communication

constraints for both the fixed-length and variable length cases.

The results are stated for testing against independence, but can

also be generalized for testing between arbitrary distributions.

When extended to asymptotic i.i.d. case, these results recover

the previously known asymptotic optimal error exponents for

testing against independence.
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