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Abstract—This paper explores the design of beamforming
codebook for a reconfigurable intelligent surface (RIS) based
active sensing scheme for uplink localization, in which the
mobile user sends a sequence of pilots to the base station
(BS), and the RIS is adaptively configured by carefully choosing
RIS codewords from a codebook in a sequential manner to
progressively focus on the target. Most existing codebook designs
for RIS are not tailored for active sensing where the choice of
next codeword depends on the measurement available so far,
and are not designed to dynamically focus reflection toward the
target. Moreover, most existing codeword selection methods rely
on exhaustive search in beam training to identify the codeword
with the highest signal-to-noise ratio (SNR), thus incurring
substantial pilot overhead as the codebook scales. This paper
proposes learning-based approaches for codebook construction
and for codeword selection for active sensing. The proposed
learning approach aims to locate a target in the service area by
recursively selecting a sequence of codewords from the codebook
as more measurements become available without exhaustive beam
training. The codebook design and the codeword selection fuse
key ideas from vector quantized-variational autoencoder (VQ-
VAE) and long short-term memory (LSTM) network to learn
respectively the discrete function space of the codebook and the
temporal dependencies between measurements.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) is a planar sur-
face consisting of a large number of passive elements, with
each element capable of altering the phase of the incident
electromagnetic wave with very low power consumption [1].
The device is typically placed in a reflecting path between
the transceivers, with its configuration wirelessly controlled
by the transceivers via a control link. However, the control
link typically has a limited capacity, so a straightforward RIS
control protocol, which sends the settings of phase shifts of
each RIS element through the control link, is often infeasi-
ble. Codebook-based limited control link rate protocol can
substantially reduce the control overhead [2]. By storing an
RIS codebook at the transceivers and the RIS, the controller
only needs to send the codeword index. Substantial research
progress has been made to study the design of such a codebook
[31-10].

This paper considers the design of an RIS codebook that
enables active sensing in an uplink localization setting. By
active sensing, we envision a setting in which a mobile
user repeatedly transmits pilot symbols; the base station (BS)
receives the pilots through the reflection at the RIS; the RIS
is actively reconfigured by selecting an RIS codeword from
the codebook as a function of existing measurements made so
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far, in order to eventually determine the location of the user
[11], [12]. Such a sequential sensing strategy makes use of the
wealth of knowledge contained in existing measurements to
recursively select the sequence of codewords to enable the RIS
to focus its reflection on the user progressively over time as
more measurements become available. We aim to answer two
questions that inevitably arise in such a setting: i) Codebook
construction: how to construct a codebook that enables active
sensing? ii) Codeword selection: Given a codebook, how to
select the codeword for the next pilot based on the existing
measurements?

In regards to codebook construction, many works design
codebooks that contain diverse RIS patterns to generate dif-
ferent reflection channels [3]-[5], or are adaptive to the
time-varying channel, site-specific environment and hardware
characteristics [6]-[8]. However, these existing codebooks are
not designed for active sensing to enable sequential drawing
of codewords to gradually focus toward the user.

In regards to codeword selection, most existing works
are based on exhaustive search [3]-[8], where the optimal
codeword is found by exhaustive beam training using every
codeword in the codebook and by measuring the resulting
received power and selecting the codeword with the largest
signal-to-noise ratio (SNR). In essence, the RIS probes the
search area using different beams along multiple directions.
This takes up substantial beam training time. Though efforts
are made to reduce the size of the codebook [7], substantial
beam training overhead is inevitable as the network scales.

Among the works that are most related to our conception
of active sensing is the hierarchical codebook-based approach
[9], [10]. The codebook is constructed based on some channel
model, and the sequence of codewords is selected using
bisection search that gradually narrows the search range.
However, this approach is sensitive to noise, and exhaustive
search is still required within the narrowed search range to
identify the optimal codeword. Moreover, such a hierarchical
codebook-based method is greedy in the sense that it only
empowers exploitation (focus in directions of interest) at the
expense of exploration (probe different directions) in beam
space. Achieving a proper balance between exploitation and
exploration is crucial for harnessing the full potential of active
sensing.

This paper proposes a learning-based approach to simulta-
neously learn to construct a codebook and learn to recursively
select a codeword based on measurements received. This is
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Fig. 1: RIS-assisted network [11].

in contrast to the conventional paradigm which often sepa-
rately treats the codebook construction and codeword selection
problem. Here, the codebook is learned through the codeword
selection process where a subset of the codewords in the
codebook is updated at a time until all codewords are fully
trained via forward propagation and backward propagation.
Conceptually, the deep learning algorithm works as follows.
Given a codebook of V' trainable codewords, during forward
propagation, the learning algorithm recursively receives new
measurements from a user and maps the new and historical
measurements to a codeword, which is to be used to make
the next measurement. For 7' measurements, 7' codewords
are selected to survey the environment to perform user sens-
ing. During backward propagation, the sensing loss is then
computed, and the selected codewords are updated to reduce
training loss. Through many training samples with users of
different locations, many sets of 7' codewords (which can be
overlapping) are selected and updated until all codewords have
reached an equilibrium. Given the optimized codebook, the
learning algorithm can automatically draw a sequence of code-
words based on recurring measurements without exhaustive
beam training to locate any user within the service area. This
proposed learning-based approach is based on a combination
of vector quantized variational autoencoder (VQ-VAE) [13]
and long short-term memory (LSTM) network [14] to respec-
tively learn the discrete function space of codebook and learn
the temporal relationship between different measurements over
a long period. Numerical results show that the proposed
algorithm can effectively learn a codebook that enables active
sensing, from which a sequence of RIS codewords can be
adaptively chosen to enable accurate localization.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a localization problem in an RIS-assisted sys-
tem with a single-antenna BS, a single-antenna user equipment
(UE), and a planar RIS. The BS and RIS are placed as in Fig. 1
to localize the potential users in the area. Let p®> and pR™S
denote the known position of the BS and the RIS respectively.
The unknown UE position is denoted as p = [z,y,2] .

The reflection coefficients of the RIS are controlled by an
RIS controller that receives controlling signals from the BS
via a control link. Due to the low rate of the control link, we
adopt a codebook-based control protocol. With the codebook

stored at the BS and the RIS, only the codeword index needs to
be transmitted. Let ORIS ¢ CV*V denote the RIS codebook
containing V' codewords, each of which takes the form

(9:[ej51,6j52,---,ej5N]TE(CN, (D
where N denote the number of reflection coefficients at the
RIS with ¢,, € [0, 27) as the phase shift of the n-th element.

When there is a localization request, the UE sends a
sequence of T uplink pilot symbols to the BS over T time
frames, where for each pilot, the RIS is actively reconfigured
to enable a different measurement. Given a codebook, the
sequence of T RIS codewords can be randomly drawn from the
codebook or can be strategically selected from the codebook
to enable better measurements. At the ¢-th time frame, let 8%
be the codeword drawn from the codebook and let z(*) € C be
the pilot symbol to be transmitted from the UE to the BS. As
shown in Fig. 1, the BS receives a combination of the signal
from the direct path and the signal reflected off the RIS, so
the received pilots at the BS can be expressed as

y OO0 = /Py (ha+v] 0D)z® 40 ¢t =0,... T -1,

2
where P, denotes the uplink transmission power, hq € C
denotes the direct channel from the BS to the UE, and n® ~
CN(0,02) denotes the uplink additive white Gaussian noise at
the t-th time frame. We use v, to denote the cascade channel
between the BS and the UE through the reflection at the RIS:

v = diag(hr)g:, 3)

where h, € CV denotes the reflection channel from the RIS
to the UE, and ng € CV denotes the channel from the BS to
the RIS. We adopt a block-fading model in which the channels
are assumed to be constant across multiple time frames within
a coherence period, then change independently in subsequent
coherence periods. The direct channel and reflection channels
are assumed to follow Rician fading model as in [11, eq. 2].

B. Problem Formulation

Under the active sensing framework, the goal of the local-
ization problem is to estimate the unknown user position p
based on the T observations [y]7_!, by actively drawing T
RIS codewords from the codebook and reconfiguring the RIS
accordingly for each observation. In this work, we propose an
RIS codebook design strategy and the associated codeword
selection mechanism under the active sensing framework,
which enables sequential drawing of codewords to gradually
narrow down the searching area using more directional beams
without exhaustive beam training.

Specifically, we consider the following codebook construc-
tion setup. Let ¥ denote some underlying parameters of the
environment. It had been advocated in [6], [7] that the code-
book should be designed in accordance with the site-specific
parameters for improved network performance. Conceptually,
the RIS codebook construction problem can be thought of as

OfS = (W), 4)
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where H : Cdimension(¥) _, CNXV denote the mapping from
environment parameters to a codebook with V' RIS codewords,
where each codeword satisfies the unit modulus constraint.

Given a fixed codebook, in the ¢-th time frame, the BS
draws a codeword from the codebook based on the existing
observations, which is used to configure the RIS 81 to
make the next measurement y(*+1) in the (¢4 1)-th time frame.
We can cast the RIS codeword selection function as a function
of historical measurements:

1= g(t)({y(T)}'tz—:O)7 (S {17 ) V}’
0(t+1) _ [@RIS](Z7i)7 t = 07 e 7T — 1,

(52)
(5b)

where G®) : C'! — N denotes the mapping from the
existing received pilots directly to a codeword index. We use
the notation [@R18](:, i) to denote the i-th column of codebook
ORIS hence the i-th codeword is drawn. After T observations,
the estimated UE position p is a function of all observations:

p=F{y ), (6)

where F : CT — [#,9,2]" denotes the mapping from all
received pilots to estimated UE position. Given a codebook,
the codeword selection problem for active sensing can be
characterized as follows:

minimum  E [|[p — p||3|©""] (7a)
{9V ONSLFO)
subject to (5), (6). (70)

Here, the goal is to construct a codebook as in (4), such
that once used to perform active sensing in (7), accurate
localization performance can be achieved. However, the design
of such a codebook and the sequential codeword selection
mechanism are difficult. To make the problem tractable, some
works resort to a hierarchical codebook-based approach, where
the codebook is constructed relying on some channel model,
and the sequence of codewords is selected based on heuristics
that gradually narrow the search range [9], [10]. However,
the hierarchical codebook-based method is not optimal as it
only exploits the direction of interest, without exploring fully
the alternatives. An optimal codebook should strike a balance
between exploitation and exploration in the beam space.

In this paper, we employ a neural network to parameterize
the function mapping #(:) by constructing a codebook, from
which the sequence of RIS codewords is adaptively chosen
as more measurement becomes available without exhaustive
beam training, using a learned function mapping G(*)(-).

III. PROPOSED CODEBOOK LEARNING SOLUTION

The conventional codebook-based methods often separately
treat the codebook construction and codeword selection prob-
lems, where relying on some channel model, a codebook is
constructed first, then based on the fixed codebook, exhaus-
tive search or some heuristics is performed for codeword
selection. In this paper, we propose a data-driven approach
to simultaneously learn to construct a codebook and learn to
recursively select codeword based on measurements received,

(t) (t+1) (T), H(
c K c p
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Fig. 2: Proposed active localization framework.

without assuming a specific geometric channel model. Here,
the codebook is learned through the codeword selection pro-
cess where the codebook is updated 7' codewords at a time
until all codewords are fully trained via forward propagation
and backward propagation.

The proposed learning approach is realized by integrating
key ideas from VQ-VAE [13], a generative model based on
the principle of vector quantization (VQ), into the LSTM
network in [12]. The use of LSTM network is vital because
the network is capable of extracting the temporal dependencies
from a sequence of temporal measurements and based on the
extracted features, automatically constructing an information
vector of fixed dimension. However, the use of LSTM net-
work alone is not sufficient to learn the mapping from an
information vector to a codeword index, because due to the
V-dimensional categorical distribution of the codebook, the
discretized design space of the RIS configuration is not always
smooth and differentiable. Hence, we first use the idea of VQ
to help design the mapping from measurements made to a
codeword index during forward propagation by quantizing the
LSTM-designed RIS pattern to a codeword from the codebook.
However, the VQ operation lacks a gradient, which renders
backward propagation ineffective in updating the LSTM net-
work during the backward propagation. To address this issue,
we use the idea of gradient approximation to estimate the
unknown gradient to allow for weight updates. Lastly, we
design a composite loss function to update the set of 7" selected
codewords at a time until all codewords in the codebook have
been updated.

A. Forward Propagation

The neural network architecture is shown in Fig. 2. The
RIS codebook @RS constitutes a discrete function space with
V' codewords (V-way categorical). We concatenate the real
and imaginary components of the /N dimensional codeword
such that the codebook has 2N x V' trainable entries in total.
The entries are randomly initialized according to A/(0, 1), then
normalized as in [11, eq. 16] to ensure unit modulus constraint.

The hidden state vector s~ and the cell state vector
c*=1 of the LSTM network are the information vectors which
contain information about the temporal measurement before
the ¢-th time frame. At the ¢-th time frame, the LSTM cell
accepts new features 7w(*) as input to update the hidden state
vector and the cell state vector:

(c®,s0)) = LSTM (@ =) s(t=1)) 8)
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where 7(*) is the concatenated real and imaginary component
of received pilots [R(y*)),Z(y™)] and the updating rule of
LSTM(-) is detailed in [11, eq. 12].

It is shown in [11] that the hidden state vector s(¥) can
be used to map to the RIS configuration in a codebook-
free setting, but with the introduction of the codebook, the
mapping from the hidden state vector to the codeword index
is challenging to learn as the function space of the codebook
is not smooth and differentiable. We opt for a two-step
approach where the hidden state vector is mapped to an RIS
configuration, then the RIS configuration is quantized to a
codeword. The mapping from the hidden state vector to the
RIS configuration is as follows:

6"+ = NORM(DNN(s")), 9)

where DNN(-) maps the hidden state vector to the right
representation of information to design the RIS [11, eq. 14],
and NORM(-) enforces unit modulus constraint [11, eq. 16].
The quantization of RIS pattern to a codeword is as follows:

01" = vo(6!'th, @) = [@"F](,i),  (10)

where i = argminjE{L,,,y}||0~(t+1) — [©R9](:, 5)|2. Hence,
the ¢-th RIS codeword is used to obtain pilot measurement
for the next time frame. We point out that searching through
the codebook for optimal codeword via VQ can be parallelized
and requires no additional pilot training, as opposed to existing
methods which perform beam-training with every codeword in
the codebook to identify the optimal codeword producing the
largest SNR. After 7' time frames, we obtain the estimated
UE position p(T) based on the final cell state ¢(7) via a fully
connected neural network ¢,(-) as follows:

ﬁ(T) = gp(c(T))
B. Backward Propagation

Y

The use of VQ in forward propagation is simple and
effective, yet leaves complications for backward propagation
as there is no gradient defined for operation (10). During
backpropagation, the gradients of the loss function with respect
to weights prior to the VQ operation are unknown. Specifically,
the weights of DNN(-) in (9) are unable to update meaningfully
to reduce the loss and thereby unable to design better pre-
quantized RIS configuration 8(+1).

To train those weights, since the pre-quantized and quan-
tized RIS configurations share the same dimensionality of 2N,
we approximate the gradient by copying the known gradients
of quantized RIS configuration *+1) to pre-quantized RIS
configuration (+1):

Vé(t+1)L = VG(t+1)L. (12)

Here, the gradients V (41, L, albeit an approximation, contain
useful information for the DNN(-) in (9) to update its weights
to design better RIS pattern based on the hidden state vector.

The realization of the gradient approximation can be
achieved by redefining the chosen RIS codeword 8(+1) after
the VQ operation in (10) as follows:

g+t = g+ _ 5G(eU+) — glt+D)), (13)

Here as proposed in [13], we use stop-gradient operator SG(-)
which acts as an identity operator in forward propagation and
has zero partial derivatives. As a result, the operand of the
SG operator is disregarded for computing gradients during
backpropagation, which effectively achieves (12).

C. Loss Function

We use a composite loss function to train the codebook
and the LSTM network. The three terms are the mean-
squared error (MSE) loss, codeword loss and commitment loss
respectively:

T-1
L=E[IpD - pl3] + SISO ) — 61+ 3
t=0
T-1 _
+8) 1194 —sGe" )3, (14)
t=0

To train the LSTM network, MSE loss is used to minimize the
average MSE between the estimated position p() and the true
position p by training the weights of the LSTM(-), DNN(-) and
¢, (-) functions through the gradients estimator in (12).

We introduce additional terms to train the codebook. Specif-
ically, we add codeword loss and use /5 error to move the
sequence of T selected codewords in (10) from the initial
random configuration towards a configuration with growing
similarity with the output of DNN(-). To ensure the output
of DNN(-) commits to a codeword, we add commitment loss
to move DNN(-) outputs in 7' time frames towards the T
selected codewords. The joint effect of the second term and
the third term moves the pre-quantized RIS patterns (DNN(-)
outputs) and the T selected codewords closer in /5 distance.
The commitment coefficient S is used to strike a balance
between the two loss terms.

The loss function (14) enables the update of T' codewords
per training data sample. After many training iterations, the
codebook is finalized until all codewords in the codebook have
been updated to reach an equilibrium.

IV. NUMERICAL RESULTS

We consider a system setup where the BS and an 8 x 8
RIS are placed at pP> = (40m, —40m, —10m) and p*> =
(Om, 0m,0m) respectively. The UE locations p are gener-
ated uniformly within a rectangular area on the z-y plane
(20m + 15m,0m + 35m,—20m). The parameters of the
channel models are chosen in line with those in [11, Sec. I'V-
Al.

The proposed LSTM network with a learnable codebook
is implemented using parameters from [11, Tab. 1]. The
algorithm requires 7"log, V' signalling bits and T’ pilot training
overhead across 7T' time frames to perform localization. We
fix # =1 and build the model with Tensorflow [15], training
it on 2,048,000 samples over 2000 epochs. We evaluate its
localization performance against the following benchmarks.

Codebook-free LSTM network [11]: The sequence of T" up-
link RIS configurations is adaptively chosen based on existing
measurements in a codebook-free fashion. This scheme needs
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Fig. 3: Localization error vs. Pilot length, N = 64, Raw SNR = 25dB,
Codebook size V' = 10000.

T pilot training overhead and T'N log, B signalling bits to
configure N RIS elements each of B possible phase shift
values over T' time frames. This is a suitable scheme when
the BS-RIS control link is not rate-limited.

DNN with random or learned RIS configurations: The
sequence of 1" uplink RIS configurations is non-adaptive and
can follow one of two schemes: i) the sequence of 7" RIS
configurations are randomly chosen, or ii) the sequence of T’
RIS configurations is learned from training data, but is not
adaptive as a function of measurements made. This scheme
requires 7' pilot training overhead and no signalling bits
to adaptively configure the RIS. A deep neural network of
dimensions [200, 200, 200, 3] maps received pilots over 7' time
frames {R(y"), Z(y™)}1=' to estimated UE position.

Optimizing BCRLB using gradient descent (GD) [12]: We
design an active sensing strategy by minimizing the Bayesian
Cramér-Rao lower bound (BCRLB) in each time frame. This
involves updating the posterior distribution of the unknown UE
position based on existing pilots and accordingly updating the
conditional BCRLB. We optimize an RIS pattern to minimize
the BCRLB and quantize the optimized pattern to a codeword.
The codebook consists of a selection of optimized RIS patterns
that minimize BCRLB in the codebook-free setting [12].

We examine the localization performance in terms of root
mean-squared error (RMSE), i.e., ||[p—p||2, with varying num-
bers of time frames for fixed raw SNR, i.e., P, = 105NR/10,
Fig. 3 shows that the proposed method approaches the perfor-
mance of its codebook-free counterpart with 10000 codewords,
which amounts to 14 bits per control signal to specify code-
word index as opposed to hundreds of bits to express the entire
RIS configuration. However, the performance gap is not zero,
due to the neural network’s inherent limitation in surveying a
discrete function space as compared to continuous ones. Our
method consistently outperforms fixed sensing benchmarks
with non-adaptive RIS design across various pilot lengths.
This implies that the proposed neural network is utilizing
the existing measurements effectively to select a suitable
RIS codeword for the next time frame to reduce localization

error. We also point out that the BCRLB-minimization based
adaptive RIS design is not an optimal design for minimizing
the location MSE due to quantization errors and also due to
reasons outlined in [12, Sec. V-C]. Finally, we note that the
proposed approach is flexible across a range of codebook sizes.
For example, reducing the codebook size to 5000 would result
in only about 10% increase in localization RMSE.

V. CONCLUSION

This paper designs a learning-based RIS codebook design
and codeword selection for active sensing in an uplink local-
ization setting. By integrating VQ-VAE and LSTM networks
to learn the discrete space of the codebook and capture tem-
poral features, we enable adaptive codeword selection based
on the sequence of received measurements. Numerical results
show that the proposed codebook effectively enables active
sensing to achieve low localization errors without exhaustive
beam training overhead.
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