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Abstract—This paper explores the design of beamforming
codebook for a reconfigurable intelligent surface (RIS) based
active sensing scheme for uplink localization, in which the
mobile user sends a sequence of pilots to the base station
(BS), and the RIS is adaptively configured by carefully choosing
RIS codewords from a codebook in a sequential manner to
progressively focus on the target. Most existing codebook designs
for RIS are not tailored for active sensing where the choice of
next codeword depends on the measurement available so far,
and are not designed to dynamically focus reflection toward the
target. Moreover, most existing codeword selection methods rely
on exhaustive search in beam training to identify the codeword
with the highest signal-to-noise ratio (SNR), thus incurring
substantial pilot overhead as the codebook scales. This paper
proposes learning-based approaches for codebook construction
and for codeword selection for active sensing. The proposed
learning approach aims to locate a target in the service area by
recursively selecting a sequence of codewords from the codebook
as more measurements become available without exhaustive beam
training. The codebook design and the codeword selection fuse
key ideas from vector quantized-variational autoencoder (VQ-
VAE) and long short-term memory (LSTM) network to learn
respectively the discrete function space of the codebook and the
temporal dependencies between measurements.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) is a planar sur-

face consisting of a large number of passive elements, with

each element capable of altering the phase of the incident

electromagnetic wave with very low power consumption [1].

The device is typically placed in a reflecting path between

the transceivers, with its configuration wirelessly controlled

by the transceivers via a control link. However, the control

link typically has a limited capacity, so a straightforward RIS

control protocol, which sends the settings of phase shifts of

each RIS element through the control link, is often infeasi-

ble. Codebook-based limited control link rate protocol can

substantially reduce the control overhead [2]. By storing an

RIS codebook at the transceivers and the RIS, the controller

only needs to send the codeword index. Substantial research

progress has been made to study the design of such a codebook

[3]–[10].

This paper considers the design of an RIS codebook that

enables active sensing in an uplink localization setting. By

active sensing, we envision a setting in which a mobile

user repeatedly transmits pilot symbols; the base station (BS)

receives the pilots through the reflection at the RIS; the RIS

is actively reconfigured by selecting an RIS codeword from

the codebook as a function of existing measurements made so

far, in order to eventually determine the location of the user

[11], [12]. Such a sequential sensing strategy makes use of the

wealth of knowledge contained in existing measurements to

recursively select the sequence of codewords to enable the RIS

to focus its reflection on the user progressively over time as

more measurements become available. We aim to answer two

questions that inevitably arise in such a setting: i) Codebook

construction: how to construct a codebook that enables active

sensing? ii) Codeword selection: Given a codebook, how to

select the codeword for the next pilot based on the existing

measurements?

In regards to codebook construction, many works design

codebooks that contain diverse RIS patterns to generate dif-

ferent reflection channels [3]–[5], or are adaptive to the

time-varying channel, site-specific environment and hardware

characteristics [6]–[8]. However, these existing codebooks are

not designed for active sensing to enable sequential drawing

of codewords to gradually focus toward the user.

In regards to codeword selection, most existing works

are based on exhaustive search [3]–[8], where the optimal

codeword is found by exhaustive beam training using every

codeword in the codebook and by measuring the resulting

received power and selecting the codeword with the largest

signal-to-noise ratio (SNR). In essence, the RIS probes the

search area using different beams along multiple directions.

This takes up substantial beam training time. Though efforts

are made to reduce the size of the codebook [7], substantial

beam training overhead is inevitable as the network scales.

Among the works that are most related to our conception

of active sensing is the hierarchical codebook-based approach

[9], [10]. The codebook is constructed based on some channel

model, and the sequence of codewords is selected using

bisection search that gradually narrows the search range.

However, this approach is sensitive to noise, and exhaustive

search is still required within the narrowed search range to

identify the optimal codeword. Moreover, such a hierarchical

codebook-based method is greedy in the sense that it only

empowers exploitation (focus in directions of interest) at the

expense of exploration (probe different directions) in beam

space. Achieving a proper balance between exploitation and

exploration is crucial for harnessing the full potential of active

sensing.

This paper proposes a learning-based approach to simulta-

neously learn to construct a codebook and learn to recursively

select a codeword based on measurements received. This is
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Fig. 1: RIS-assisted network [11].

in contrast to the conventional paradigm which often sepa-

rately treats the codebook construction and codeword selection

problem. Here, the codebook is learned through the codeword

selection process where a subset of the codewords in the

codebook is updated at a time until all codewords are fully

trained via forward propagation and backward propagation.

Conceptually, the deep learning algorithm works as follows.

Given a codebook of V trainable codewords, during forward

propagation, the learning algorithm recursively receives new

measurements from a user and maps the new and historical

measurements to a codeword, which is to be used to make

the next measurement. For T measurements, T codewords

are selected to survey the environment to perform user sens-

ing. During backward propagation, the sensing loss is then

computed, and the selected codewords are updated to reduce

training loss. Through many training samples with users of

different locations, many sets of T codewords (which can be

overlapping) are selected and updated until all codewords have

reached an equilibrium. Given the optimized codebook, the

learning algorithm can automatically draw a sequence of code-

words based on recurring measurements without exhaustive

beam training to locate any user within the service area. This

proposed learning-based approach is based on a combination

of vector quantized variational autoencoder (VQ-VAE) [13]

and long short-term memory (LSTM) network [14] to respec-

tively learn the discrete function space of codebook and learn

the temporal relationship between different measurements over

a long period. Numerical results show that the proposed

algorithm can effectively learn a codebook that enables active

sensing, from which a sequence of RIS codewords can be

adaptively chosen to enable accurate localization.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a localization problem in an RIS-assisted sys-

tem with a single-antenna BS, a single-antenna user equipment

(UE), and a planar RIS. The BS and RIS are placed as in Fig. 1

to localize the potential users in the area. Let pBS and pRIS

denote the known position of the BS and the RIS respectively.

The unknown UE position is denoted as p = [x, y, z]⊤.

The reflection coefficients of the RIS are controlled by an

RIS controller that receives controlling signals from the BS

via a control link. Due to the low rate of the control link, we

adopt a codebook-based control protocol. With the codebook

stored at the BS and the RIS, only the codeword index needs to

be transmitted. Let ΘRIS ∈ C
N×V denote the RIS codebook

containing V codewords, each of which takes the form

θ = [ejδ1 , ejδ2 , · · · , ejδN ]⊤ ∈ C
N , (1)

where N denote the number of reflection coefficients at the

RIS with δn ∈ [0, 2π) as the phase shift of the n-th element.

When there is a localization request, the UE sends a

sequence of T uplink pilot symbols to the BS over T time

frames, where for each pilot, the RIS is actively reconfigured

to enable a different measurement. Given a codebook, the

sequence of T RIS codewords can be randomly drawn from the

codebook or can be strategically selected from the codebook

to enable better measurements. At the t-th time frame, let θ(t)

be the codeword drawn from the codebook and let x(t) ∈ C be

the pilot symbol to be transmitted from the UE to the BS. As

shown in Fig. 1, the BS receives a combination of the signal

from the direct path and the signal reflected off the RIS, so

the received pilots at the BS can be expressed as

y(t)(θ(t)) =
√

Pu(hd +v⊤
r θ

(t))x(t) +n(t), t = 0, · · · , T − 1,
(2)

where Pu denotes the uplink transmission power, hd ∈ C

denotes the direct channel from the BS to the UE, and n(t) ∼
CN (0, σ2

u) denotes the uplink additive white Gaussian noise at

the t-th time frame. We use vr to denote the cascade channel

between the BS and the UE through the reflection at the RIS:

vr = diag(hr)g
⊤
r , (3)

where hr ∈ C
N denotes the reflection channel from the RIS

to the UE, and g⊤
r ∈ C

N denotes the channel from the BS to

the RIS. We adopt a block-fading model in which the channels

are assumed to be constant across multiple time frames within

a coherence period, then change independently in subsequent

coherence periods. The direct channel and reflection channels

are assumed to follow Rician fading model as in [11, eq. 2].

B. Problem Formulation

Under the active sensing framework, the goal of the local-

ization problem is to estimate the unknown user position p

based on the T observations [y(t)]T−1
t=0 , by actively drawing T

RIS codewords from the codebook and reconfiguring the RIS

accordingly for each observation. In this work, we propose an

RIS codebook design strategy and the associated codeword

selection mechanism under the active sensing framework,

which enables sequential drawing of codewords to gradually

narrow down the searching area using more directional beams

without exhaustive beam training.

Specifically, we consider the following codebook construc-

tion setup. Let Ψ denote some underlying parameters of the

environment. It had been advocated in [6], [7] that the code-

book should be designed in accordance with the site-specific

parameters for improved network performance. Conceptually,

the RIS codebook construction problem can be thought of as

Θ
RIS = H(Ψ), (4)
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where H : Cdimension(Ψ) → C
N×V denote the mapping from

environment parameters to a codebook with V RIS codewords,

where each codeword satisfies the unit modulus constraint.

Given a fixed codebook, in the t-th time frame, the BS

draws a codeword from the codebook based on the existing

observations, which is used to configure the RIS θ(t+1) to

make the next measurement y(t+1) in the (t+1)-th time frame.

We can cast the RIS codeword selection function as a function

of historical measurements:

i = G(t)({y(τ)}tτ=0), i ∈ {1, · · · , V }, (5a)

θ(t+1) = [ΘRIS](:, i), t = 0, · · · , T − 1, (5b)

where G(t) : C
t+1 → N denotes the mapping from the

existing received pilots directly to a codeword index. We use

the notation [ΘRIS](:, i) to denote the i-th column of codebook

Θ
RIS, hence the i-th codeword is drawn. After T observations,

the estimated UE position p̂ is a function of all observations:

p̂ = F({y(t)}T−1
t=0 ), (6)

where F : C
T → [x̂, ŷ, ẑ]⊤ denotes the mapping from all

received pilots to estimated UE position. Given a codebook,

the codeword selection problem for active sensing can be

characterized as follows:

minimum
{G(t)(·)}T−1

t=0 ,F(·)
E
[

∥p̂− p∥22|Θ
RIS

]

(7a)

subject to (5), (6). (7b)

Here, the goal is to construct a codebook as in (4), such

that once used to perform active sensing in (7), accurate

localization performance can be achieved. However, the design

of such a codebook and the sequential codeword selection

mechanism are difficult. To make the problem tractable, some

works resort to a hierarchical codebook-based approach, where

the codebook is constructed relying on some channel model,

and the sequence of codewords is selected based on heuristics

that gradually narrow the search range [9], [10]. However,

the hierarchical codebook-based method is not optimal as it

only exploits the direction of interest, without exploring fully

the alternatives. An optimal codebook should strike a balance

between exploitation and exploration in the beam space.

In this paper, we employ a neural network to parameterize

the function mapping H(·) by constructing a codebook, from

which the sequence of RIS codewords is adaptively chosen

as more measurement becomes available without exhaustive

beam training, using a learned function mapping G(t)(·).

III. PROPOSED CODEBOOK LEARNING SOLUTION

The conventional codebook-based methods often separately

treat the codebook construction and codeword selection prob-

lems, where relying on some channel model, a codebook is

constructed first, then based on the fixed codebook, exhaus-

tive search or some heuristics is performed for codeword

selection. In this paper, we propose a data-driven approach

to simultaneously learn to construct a codebook and learn to

recursively select codeword based on measurements received,

π
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s
(t)

c
(t)

c
(t+1)

s
(t+1)

θ
(t+1)

Codebook

p̂
(T )

c
(T )

· · ·

Backpropagate

Inference
Environment

π
(t+1)

Fig. 2: Proposed active localization framework.

without assuming a specific geometric channel model. Here,

the codebook is learned through the codeword selection pro-

cess where the codebook is updated T codewords at a time

until all codewords are fully trained via forward propagation

and backward propagation.

The proposed learning approach is realized by integrating

key ideas from VQ-VAE [13], a generative model based on

the principle of vector quantization (VQ), into the LSTM

network in [12]. The use of LSTM network is vital because

the network is capable of extracting the temporal dependencies

from a sequence of temporal measurements and based on the

extracted features, automatically constructing an information

vector of fixed dimension. However, the use of LSTM net-

work alone is not sufficient to learn the mapping from an

information vector to a codeword index, because due to the

V -dimensional categorical distribution of the codebook, the

discretized design space of the RIS configuration is not always

smooth and differentiable. Hence, we first use the idea of VQ

to help design the mapping from measurements made to a

codeword index during forward propagation by quantizing the

LSTM-designed RIS pattern to a codeword from the codebook.

However, the VQ operation lacks a gradient, which renders

backward propagation ineffective in updating the LSTM net-

work during the backward propagation. To address this issue,

we use the idea of gradient approximation to estimate the

unknown gradient to allow for weight updates. Lastly, we

design a composite loss function to update the set of T selected

codewords at a time until all codewords in the codebook have

been updated.

A. Forward Propagation

The neural network architecture is shown in Fig. 2. The

RIS codebook Θ
RIS constitutes a discrete function space with

V codewords (V -way categorical). We concatenate the real

and imaginary components of the N dimensional codeword

such that the codebook has 2N × V trainable entries in total.

The entries are randomly initialized according to N (0, 1), then

normalized as in [11, eq. 16] to ensure unit modulus constraint.

The hidden state vector s(t−1) and the cell state vector

c(t−1) of the LSTM network are the information vectors which

contain information about the temporal measurement before

the t-th time frame. At the t-th time frame, the LSTM cell

accepts new features π(t) as input to update the hidden state

vector and the cell state vector:

(c(t), s(t)) = LSTM(π(t), c(t−1), s(t−1)), (8)
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where π(t) is the concatenated real and imaginary component

of received pilots [R(y(t)), I(y(t))] and the updating rule of

LSTM(·) is detailed in [11, eq. 12].

It is shown in [11] that the hidden state vector s(t) can

be used to map to the RIS configuration in a codebook-

free setting, but with the introduction of the codebook, the

mapping from the hidden state vector to the codeword index

is challenging to learn as the function space of the codebook

is not smooth and differentiable. We opt for a two-step

approach where the hidden state vector is mapped to an RIS

configuration, then the RIS configuration is quantized to a

codeword. The mapping from the hidden state vector to the

RIS configuration is as follows:

θ̃(t+1) = NORM(DNN(s(t))), (9)

where DNN(·) maps the hidden state vector to the right

representation of information to design the RIS [11, eq. 14],

and NORM(·) enforces unit modulus constraint [11, eq. 16].

The quantization of RIS pattern to a codeword is as follows:

θ(t+1) = VQ(θ̃(t+1),ΘRIS) = [ΘRIS](:, i), (10)

where i = argminj∈{1,···,V }∥θ̃
(t+1) − [ΘRIS](:, j)∥2. Hence,

the i-th RIS codeword is used to obtain pilot measurement

for the next time frame. We point out that searching through

the codebook for optimal codeword via VQ can be parallelized

and requires no additional pilot training, as opposed to existing

methods which perform beam-training with every codeword in

the codebook to identify the optimal codeword producing the

largest SNR. After T time frames, we obtain the estimated

UE position p̂(T ) based on the final cell state c(T ) via a fully

connected neural network ℓp(·) as follows:

p̂(T ) = ℓp(c
(T )). (11)

B. Backward Propagation

The use of VQ in forward propagation is simple and

effective, yet leaves complications for backward propagation

as there is no gradient defined for operation (10). During

backpropagation, the gradients of the loss function with respect

to weights prior to the VQ operation are unknown. Specifically,

the weights of DNN(·) in (9) are unable to update meaningfully

to reduce the loss and thereby unable to design better pre-

quantized RIS configuration θ̃(t+1).

To train those weights, since the pre-quantized and quan-

tized RIS configurations share the same dimensionality of 2N ,

we approximate the gradient by copying the known gradients

of quantized RIS configuration θ(t+1) to pre-quantized RIS

configuration θ̃(t+1):

▽
θ̃(t+1)L = ▽θ(t+1)L. (12)

Here, the gradients ▽
θ̃(t+1)L, albeit an approximation, contain

useful information for the DNN(·) in (9) to update its weights

to design better RIS pattern based on the hidden state vector.

The realization of the gradient approximation can be

achieved by redefining the chosen RIS codeword θ(t+1) after

the VQ operation in (10) as follows:

θ(t+1) = θ̃(t+1) − SG(θ(t+1) − θ̃(t+1)). (13)

Here as proposed in [13], we use stop-gradient operator SG(·)
which acts as an identity operator in forward propagation and

has zero partial derivatives. As a result, the operand of the

SG operator is disregarded for computing gradients during

backpropagation, which effectively achieves (12).

C. Loss Function

We use a composite loss function to train the codebook

and the LSTM network. The three terms are the mean-

squared error (MSE) loss, codeword loss and commitment loss

respectively:

L = E

[

∥p̂(T ) − p∥22

]

+

T−1
∑

t=0

∥SG(θ̃(t+1))− θ(t+1)∥22

+ β

T−1
∑

t=0

∥θ̃(t+1) − SG(θ(t+1))∥22, (14)

To train the LSTM network, MSE loss is used to minimize the

average MSE between the estimated position p̂(T ) and the true

position p by training the weights of the LSTM(·), DNN(·) and

ℓp(·) functions through the gradients estimator in (12).

We introduce additional terms to train the codebook. Specif-

ically, we add codeword loss and use ℓ2 error to move the

sequence of T selected codewords in (10) from the initial

random configuration towards a configuration with growing

similarity with the output of DNN(·). To ensure the output

of DNN(·) commits to a codeword, we add commitment loss

to move DNN(·) outputs in T time frames towards the T

selected codewords. The joint effect of the second term and

the third term moves the pre-quantized RIS patterns (DNN(·)
outputs) and the T selected codewords closer in ℓ2 distance.

The commitment coefficient β is used to strike a balance

between the two loss terms.

The loss function (14) enables the update of T codewords

per training data sample. After many training iterations, the

codebook is finalized until all codewords in the codebook have

been updated to reach an equilibrium.

IV. NUMERICAL RESULTS

We consider a system setup where the BS and an 8 × 8
RIS are placed at pBS = (40m,−40m,−10m) and pRIS =
(0m, 0m, 0m) respectively. The UE locations p are gener-

ated uniformly within a rectangular area on the x-y plane

(20m ± 15m, 0m ± 35m,−20m). The parameters of the

channel models are chosen in line with those in [11, Sec. IV-

A].

The proposed LSTM network with a learnable codebook

is implemented using parameters from [11, Tab. 1]. The

algorithm requires T log2 V signalling bits and T pilot training

overhead across T time frames to perform localization. We

fix β = 1 and build the model with Tensorflow [15], training

it on 2,048,000 samples over 2000 epochs. We evaluate its

localization performance against the following benchmarks.

Codebook-free LSTM network [11]: The sequence of T up-

link RIS configurations is adaptively chosen based on existing

measurements in a codebook-free fashion. This scheme needs
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Fig. 3: Localization error vs. Pilot length, N = 64, Raw SNR = 25dB,
Codebook size V = 10000.

T pilot training overhead and TN log2 B signalling bits to

configure N RIS elements each of B possible phase shift

values over T time frames. This is a suitable scheme when

the BS-RIS control link is not rate-limited.

DNN with random or learned RIS configurations: The

sequence of T uplink RIS configurations is non-adaptive and

can follow one of two schemes: i) the sequence of T RIS

configurations are randomly chosen, or ii) the sequence of T

RIS configurations is learned from training data, but is not

adaptive as a function of measurements made. This scheme

requires T pilot training overhead and no signalling bits

to adaptively configure the RIS. A deep neural network of

dimensions [200, 200, 200, 3] maps received pilots over T time

frames {R(y(t)), I(y(t))}T−1
t=0 to estimated UE position.

Optimizing BCRLB using gradient descent (GD) [12]: We

design an active sensing strategy by minimizing the Bayesian

Cramér-Rao lower bound (BCRLB) in each time frame. This

involves updating the posterior distribution of the unknown UE

position based on existing pilots and accordingly updating the

conditional BCRLB. We optimize an RIS pattern to minimize

the BCRLB and quantize the optimized pattern to a codeword.

The codebook consists of a selection of optimized RIS patterns

that minimize BCRLB in the codebook-free setting [12].

We examine the localization performance in terms of root

mean-squared error (RMSE), i.e., ∥p̂−p∥2, with varying num-

bers of time frames for fixed raw SNR, i.e., Pu = 10SNR/10.

Fig. 3 shows that the proposed method approaches the perfor-

mance of its codebook-free counterpart with 10000 codewords,

which amounts to 14 bits per control signal to specify code-

word index as opposed to hundreds of bits to express the entire

RIS configuration. However, the performance gap is not zero,

due to the neural network’s inherent limitation in surveying a

discrete function space as compared to continuous ones. Our

method consistently outperforms fixed sensing benchmarks

with non-adaptive RIS design across various pilot lengths.

This implies that the proposed neural network is utilizing

the existing measurements effectively to select a suitable

RIS codeword for the next time frame to reduce localization

error. We also point out that the BCRLB-minimization based

adaptive RIS design is not an optimal design for minimizing

the location MSE due to quantization errors and also due to

reasons outlined in [12, Sec. V-C]. Finally, we note that the

proposed approach is flexible across a range of codebook sizes.

For example, reducing the codebook size to 5000 would result

in only about 10% increase in localization RMSE.

V. CONCLUSION

This paper designs a learning-based RIS codebook design

and codeword selection for active sensing in an uplink local-

ization setting. By integrating VQ-VAE and LSTM networks

to learn the discrete space of the codebook and capture tem-

poral features, we enable adaptive codeword selection based

on the sequence of received measurements. Numerical results

show that the proposed codebook effectively enables active

sensing to achieve low localization errors without exhaustive

beam training overhead.

REFERENCES

[1] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Commun.

Mag., vol. 58, no. 1, pp. 106–112, Nov. 2020.
[2] J. An et al., “Codebook-based solutions for reconfigurable intelligent

surfaces and their open challenges,” IEEE Wireless Commun., pp. 1–8,
Nov. 2022.

[3] J. An, C. Xu, L. Gan, and L. Hanzo, “Low-complexity channel estima-
tion and passive beamforming for RIS-assisted MIMO systems relying
on discrete phase shifts,” IEEE Trans. Commun., vol. 70, no. 2, pp.
1245–1260, Nov. 2022.

[4] J. An, C. Xu, L. Wang, Y. Liu, L. Gan, and L. Hanzo, “Joint training
of the superimposed direct and reflected links in reconfigurable intel-
ligent surface assisted multiuser communications,” IEEE Trans. Green

Commun. Netw., vol. 6, no. 2, pp. 739–754, Jan. 2022.
[5] X. Pei et al., “RIS-aided wireless communications: Prototyping, adaptive

beamforming, and indoor/outdoor field trials,” IEEE Trans. Commun.,
vol. 69, no. 12, pp. 8627–8640, Sept. 2021.

[6] X. Jia, J. An, H. Liu, H. Liao, L. Gan, and C. Yuen, “Environment-aware
codebook for reconfigurable intelligent surface-aided MISO communi-
cations,” IEEE Wireless Commun. Lett., vol. 12, no. 7, pp. 1174–1178,
Apr. 2023.

[7] Y. Zhang and A. Alkhateeb, “Learning reflection beamforming
codebooks for arbitrary RIS and non-stationary channels,” 2021.
[Online]. Available: https://arxiv.org/abs/2109.14909

[8] J. Kim, S. Hosseinalipour, A. C. Marcum, T. Kim, D. J. Love, and C. G.
Brinton, “Learning-based adaptive IRS control with limited feedback
codebooks,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9566–
9581, Jun. 2022.

[9] J. He, H. Wymeersch, T. Sanguanpuak, O. Silven, and M. Juntti,
“Adaptive beamforming design for mmWave RIS-aided joint localization
and communication,” in Proc. IEEE Wireless Commun. Netw. Conf.

Workshops (WCNCW), Apr. 2020, pp. 1–6.
[10] X. Wei, L. Dai, Y. Zhao, G. Yu, and X. Duan, “Codebook design and

beam training for extremely large-scale RIS: Far-field or near-field?”
China Commun., vol. 19, no. 6, pp. 193–204, Jun. 2022.

[11] Z. Zhang, T. Jiang, and W. Yu, “Active sensing for localization with
reconfigurable intelligent surface,” in Proc. IEEE Int. Conf. Commun.

(ICC), Jun. 2023, pp. 4261–4266.
[12] ——, “Localization with reconfigurable intelligent surface: An active

sensing approach,” IEEE Trans. Wireless Commun., pp. 1–1, Dec. 2023.
[13] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete

representation learning,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
Dec. 2017, p. 6309–6318.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997.
[15] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-

ing,” in Proc. USENIX Conf. Operating Syst. Des. and Implementation

(OSDI), 2016, p. 265–283.

2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

825


