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Abstract—Adopting low-resolution hardware at transceivers
in multi-input multi-output (MIMO) sensing systems can sub-
stantially reduce hardware costs and power consumption. This
motivates us to study MIMO sensing systems with hardware
constraints, specifically phase-only analog transmit antennas and
low-resolution receive antennas. This paper adopts a Bayesian
approach and aims to design low-complexity algorithms for the
MIMO sensing beamforming problem while leveraging prior
information about the target at each sensing stage. We formulate
the problem of minimizing the Bayesian Cramér-Rao lower
bound (BCRLB) for estimating a parameter of interest, and
show that it has the structure of a weighted sum-of-ratios
problem. For the case where the phase shifters at transmit
antennas are continuous, we propose a novel linear transform
that can transform a fractional function into a linear function.
In this way, the original problem is turned into a sequence of
sub-problems that can be solved in closed-form in each step
with linear complexity in the number of antennas, making the
iterative optimization process highly efficient. When the phase
shifters are discrete, we propose a penalty-based convex-hull
relaxation algorithm, which provides better performance than
directly quantizing the solution of the continuous case, but at
the cost of increased computational complexity. Numerical results
demonstrate the effectiveness of the proposed algorithms.

I. INTRODUCTION

Multi-input multi-output (MIMO) sensing is a critical tech-
nique in integrated sensing and communications, which is a
promising use case for future networks [1]. However, most of
the current work in this area assumes the availability of high-
resolution digital-to-analog converters (DACs) and analog-to-
digital converters (ADCs), which are expensive from both
implementation cost and power consumption perspectives. To
address these issues, this paper investigates a MIMO sensing
system with phase-only transmit antennas and low-resolution
receivers, as shown in Fig. 1, and focuses on transmit beam-
former design that accounts for the hardware constraints.

There are many prior research works investigating beam-
forming designs for MIMO sensing systems, where the
Cramér-Rao lower bound (CRLB) [2], signal-to-noise ratio
(SNR) [3], and beampattern [4] are typically used as sensing
performance metrics. However, the issue of low-resolution
hardware has not been fully accounted for in most earlier ref-
erences. For example, in [5], the authors consider only the one-
bit ADCs at receivers and use the SNR as a heuristic metric for
sensing performance. In [6], the authors consider only the one-
bit DACs at transmitters and adopt the CRLB as the sensing
metric for a dual-function radar-communication system. In [7],
the authors consider both one-bit DACs and ADCs in a MIMO
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Fig. 1. A MIMO sensing system with low-resolution transceivers.

radar system, however, it focuses on target detection rather
than parameter estimation. Differing from these prior works,
this paper aims to address the parameter estimation problem
by designing the MIMO sensing beamformers that account for
low-resolution hardware constraints at both the transmitter and
the receiver.

Moreover, none of the aforementioned references account
for prior information in sensing. They do not properly address
the issue that CRLB as a commonly adopted sensing metric
depends on the exact values of the parameters to be estimated,
which are not known. In practice, it is often possible to obtain
and to track the prior distribution of the parameters of interest
in a sequential manner so that the sensing objective can be
successively refined. For this reason, this paper adopts the
Bayesian CRLB (BCRLB) (e.g., [8]) as the sensing metric.

The main focus of this paper is to design MIMO sensing
beamformers with low complexity, which is crucial for imple-
mentation in large-scale MIMO systems. Toward this end, this
paper shows that the problem of minimizing the BCRLB for
estimating a parameter of interest is a fractional programming
problem. For the case where the phase shifters at the transmit
antennas are continuous, we propose a novel linear transform
that transforms a fractional function into a linear function.
In this way, the original problem can be transformed into a
sequence of sub-problems that can be solved in closed-form
with complexity linear in the number of antennas, making the
overall iterative optimization process highly efficient. When
the phase shifters are discrete, we propose a penalty-based
convex-hull relaxation algorithm, which has better perfor-
mance than directly quantizing the solution of the continuous
case, but at the cost of increased computational complexity.



These algorithms are highly effective for designing MIMO
beamformers for radar sensing in a Bayesian setting.

II. SYSTEM MODEL

Consider a MIMO sensing system equipped with NT trans-
mit antennas and NR receive antennas, both arranged in a
uniform linear array, as illustrated in Fig. 1. We assume that the
receive array is equipped with low-resolution ADCs, e.g., one-
bit, and the transmit array is phase-only. This paper considers
both continuous and discrete phase shifters at the transmit
antennas, for which the elements of transmit beamforming
vector x are constrained as

|xn| = 1, ∀n, if the phase shifter is continuous, (1)
xn ∈ X , ∀n, if the phase shifter is discrete, (2)

where X is the discrete feasible set. Without loss of generality,
the set X can be expressed as

X = {exp(j [−π + (i− 1) ∆]) | i = 1, 2, · · · , QT } , (3)

where ∆ = 2π/QT if the transmit antenna provides QT phase
shift levels. Both the constraints in (1) and (2) are non-convex.

This paper focuses on a sensing task of estimating the
azimuth angle of a sensing target relative to the antenna array,
denoted as η. The steering vectors from the antenna array to
the target and from the target back to the antenna array can
be expressed, respectively, as

h(η) =
[
1, ejτ cos(η), · · · , ej(NT−1)τ cos(η)

]T
, (4)

v(η) =
[
1, ejτ cos(η), · · · , ej(NR−1)τ cos(η)

]T
, (5)

where τ = 2πd/ω, ω represents the carrier wavelength, and d
represents the spacing between the antennas (typically at half
wavelength).

The received echo signal before digitization can then be
expressed as

y =
(
αv(η) hT(η)

)
(
√
px) + n ,

√
pHx + n, (6)

where α represents the complex fading coefficient, p denotes
the transmit power of each antenna, and n represents the noise
with each element distributed as CN (0, σ2

n). Here, we assume
that the fading coefficient α is known for simplicity. In practice
it can be estimated and tracked using various techniques, e.g.,
see [9] and references herein.

Assume that low-resolution ADCs are used at the receiver
to quantize the received signal as follows:

r = Q (y) = Q (
√
pHx + n) , (7)

where Q (·) is the QR-bit quantization operation. Assuming
the use of automatic gain control at the receiver, we can model
the quantization process using an additive quantization noise
model (AQNM) [10]–[13] as follows:

r = κy + nq = κ
√
pHx + κn + nq, (8)

where κ is the quantization gain, defined as κ = 1−ν, and ν is
the normalized mean squared quantization error. The relation

between QR and ν is given in [10]–[13]. Here, nq denotes the
additive Gaussian quantization noise that is uncorrelated with
y, and the covariance matrix of nq is given by

Rq = κ (1− κ) diag[Ry]

= κ (1− κ) diag
[
p (Hx) (Hx)

H
+ σ2

nI
]
. (9)

Note that in this model, the quantization noise power is
proportional to the power of the signal to be quantized. This is
due to the use of automatic gain control that scales the dynamic
range of the quantizer, while the number of quantization levels
remains fixed. From (9), one can observe that the quantization
noise variance is also dependent on the transmit beamforming
vector x, increasing the difficulty of the beamformer design.

III. SENSING SCHEME AND PERFORMANCE METRIC

We adopt an active sensing scheme. Specifically, the MIMO
sensing system forms the transmit beamforming vector accord-
ing to the prior distribution of the target’s azimuth angle, and
then updates its posterior distribution based on the received
echo signals. The posterior distribution after each sensing stage
is used as the prior distribution in the next sensing stage to
design the subsequent beamformer. This process is repeated
over multiple stages.

Conventionally, CRLB has been widely used to characterize
the estimation performance of deterministic parameters. It has
also been widely adopted as an alternative metric to the MSE
when the MSE is difficult to compute. But the computation of
CRLB depends on the exact values of parameters. In practice,
however, only a prior distribution of the parameters is known.
Therefore, we cannot directly employ the classic CRLB as the
optimization objective. Instead, this paper uses the BCRLB as
the metric for estimating η, as given by

BCRLB (η) =
1

Eq(η)[FI (η)] + FIP (η)
, (10)

where q (η) denotes the prior distribution of η, FI (η) denotes
the Fisher information of η, and FIP (η) represents the Fisher
information from prior information and is independent on x.
The Fisher information FI (η) is given by [14]

FI (η) = 2

[(
κ
√
pḢx

)H
Σ−1

(
κ
√
pḢx

)]
, (11)

where Ḣ represents the derivative of H with respect to η, and
Σ denotes the covariance matrix of the quantization noise plus
the additive white noise, expressed as

Σ = κ (1− κ) diag
[
p (Hx) (Hx)

H
+ σ2

nI
]

+ κ2σ2
nI. (12)

One can observe from (10) that minimizing BCRLB (η) over x
is equivalent to maximizing Eq(η)[FI (η)]. Thus, we define the
following metric for estimation performance:

Eq(η)[S(η)] , Eq(η)
[
FI (η)

2pκ2

]
. (13)

Then, the problem of transmit beamforming design is turned
into a maximization of Eq(η)[S(η)]. In the sequel, we formu-
late the problems for both the cases of continuous and discrete



phase shifters, and design the transmit beamforming vector in
each case.

IV. BEAMFORMING DESIGN FOR MIMO SENSING

Based on the performance metric established in the previous
section, we now formulate the beamformer design problem as

(PO): maximize
x

Eq(η)[S(η)] (14a)

subject to |xn| = 1 or xn ∈ X , ∀n. (14b)

The problem (PO) has three main numerical difficulties:
• The optimization variable x is embedded inside an ex-

pectation operation.
• The objective function contains multi-dimensional ratios.
• The feasible set is non-convex.

To tackle the first difficulty, we adopt uniform sampling for
approximating the expectation and rewrite problem (PO) as

maximize
x

L∑
i=1

qi∑L
j=1 qj

S(ηi) (15a)

subject to |xn| = 1 or xn ∈ X , ∀n, (15b)

where L denotes the number of samples, i represents the index
of the i-th sample, and qi , q (ηi) represents the probability
density of the prior.

In the next two subsections, we address the above optimiza-
tion problem for the scenarios of continuous and discrete phase
shifts, respectively. Specifically, we propose algorithms to deal
with the issue that the objective function contains weighted
sum of ratios.

A. Beamforming Design for Continuous Case

In this subsection, we focus on the continuous-phase-shift
case. The corresponding problem is formulated as

(P1): maximize
x

L∑
i=1

qi

[(
Ḣix

)H
Σ−1i

(
Ḣix

)]
(16a)

subject to |xn| = 1, ∀n. (16b)

To solve problem (P1) in an efficient manner, we propose a
constant-modulus linear transform in the following theorem.

Theorem 1: Consider a weighted sum-of-ratios maximiza-
tion problem with constant-modulus constraints as

maximize
x

∑
i

wigi (x) (17a)

subject to |xn| = 1, ∀n, (17b)

where gi (x) is a multi-dimensional ratio defined as

gi (x) , (Aix)
H

R−1i (Aix) , (18)

and the denominator matrix Ri is defined as

Ri , diag

[∑
k∈Ri

(Akx) (Akx)
H

]
+ Ci. (19)

Here, the matrix Ci is positive definite so that the denominator
matrix Ri is invertible.

Then, the problem (17) is equivalent to

maximize
x,z,λ

∑
i

wifi (x, z,λi) (20a)

subject to |xn| = 1, |zn| = 1, ∀n (20b)

where the transformed objective function is given by

fi (x, z,λi) , (21)

2Re
(
xH
[
(δiI−Di) z + AH

i λi
])

+ ci (z,λi) ,

z and λi are auxiliary variables introduced to decouple the
numerator and denominator of gi (x), the matrix Di is

Di =
∑
k∈Ri

AH
k diag

[
λiλ

H
i

]
Ak, (22)

δi represents the trace of the matrix Di, and

ci (z,λi) = zHDiz− 2δiNT − λH
i Ciλi. (23)

For fixed x, the optimal auxiliary variables for maximizing
the objective in (20) are given as

z? = x, (24)

λ?i = R−1i Aix. (25)

Proof: The proof is given in Appendix A.
This theorem uses a key technique in [15] that turns a quadratic
optimization over x with unit-modulus constraints into a linear
optimization. This is made possible by taking advantage of the
unit-modulus property of x. Please also note that this theorem
can be generalized by removing the diagonal extraction opera-
tions diag(·) in (19) and (22).

According to Theorem 1, problem (P1) can be equivalently
transformed into the following problem:

(P2): maximize
x,z,λ

L∑
i=1

qi fi (x, z,λ) (26a)

subject to |xn| = 1, |zn| = 1, ∀n. (26b)

The transformed objective function is given by

fi (x, z,λ) =

2Re
(
xH
[
(δiI−Mi) z + ḢH

i λi

])
+ ci (z,λi) , (27)

where the matrix Mi is given by

Mi = p
(
κ− κ2

)
HH
i diag

[
λiλ

H
i

]
Hi, (28)

and δi is the trace of Mi. Note that ci (z,λi) has no influence
on the updating of x, thus is omitted here. A key advantage of
the problem reformulation (P2) is that the objective function is
now linear with respect to the optimization variable. This gives
arise to efficient algorithm for solving problem (P2) with per-
iteration complexity which is linear in the number of antennas.

Now, problem (P2) can be solved in an iterative manner.
More specifically, when x is held fixed, the auxiliary variables
z and λi can be updated by

z? = x, (29)

λ?i = Σ−1i Ḣix. (30)



When z and λi are held fixed, x can be updated by solving
the following linear programming problem:

maximize
x

L∑
i=1

qi fi (x, z,λ) (31a)

subject to |xn| = 1, ∀n. (31b)

It is easy to demonstrate that the optimal solution of the above
subproblem is given by

x? = exp

(
j arg

[
L∑
i=1

qi

(
(δiI−Mi) z + ḢH

i λi

)])
. (32)

Since all the variables have closed-form updating solutions, the
proposed algorithm is highly efficient.

B. Beamforming Design for Discrete Case
Now, consider the case of discrete phase shifts, the problem

can be formulated as

(P3): maximize
x

L∑
i=1

qi

[(
Ḣix

)H
Σ−1i

(
Ḣix

)]
(33a)

subject to xn ∈ X , ∀n. (33b)

One direct approach to solving problem (P3) is to quantize the
solution of problem (P1) obtained in the previous subsection.
However, this can cause a performance loss. In this subsection,
to obtain a better performance and allow the obtained solution
to directly satisfy the discrete constraints, we propose an algo-
rithm based on a penalty method with convex-hull relaxation
[16]. By adding a penalty term into the objective function and
relaxing the discrete feasible set to its convex-hull, the problem
(P3) is transformed into the following problem:

maximize
x,z

L∑
i=1

qi

[(
Ḣix

)H
Σ−1i

(
Ḣix

)]
− µ ‖x− z‖2

(34a)
subject to xn ∈ conv (X ) , |zn| = 1, ∀n, (34b)

where µ > 0 determines the extent of penalty, and the penalty
term ‖x− z‖2 equals to zero if and only if xn ∈ X and z = x.
Thus, by tuning the penalty coefficient, the penalty can force
the optimized solution to be the vertices of the convex hull.
Next, we use the quadratic transform technique [17] to solve
the problem (34). The first step is to transform (34) into

(P4): maximize
x,z,λ

L∑
i=1

qi gi (x,λ)− µ ‖x− z‖2 (35a)

subject to xn ∈ conv (X ) , |zn| = 1, ∀n, (35b)

where the transformed objective function is given by

gi (x,λ) = 2Re
(
λH
i Ḣix

)
− λH

i Σiλi. (36)

Now, problem (P4) can be solved in an iterative manner.
More specifically, when x is held fixed, the auxiliary variables
z and λi can be updated by

z? = exp [j arg (x)] , (37)

λ?i = Σ−1i Ḣix. (38)

When z and λi are held fixed, the subproblem of updating x
is a convex quadratic programming problem as follows:

maximize
x

L∑
i=1

qi gi (x,λ)− µ ‖x− z‖2 (39a)

subject to xn ∈ conv (X ) , ∀n. (39b)

The optimal solution can be easily obtained using a standard
optimization solver.

C. Complexity Analysis

In this subsection, we briefly analyze the complexity of the
proposed method and compare it with that of a benchmark
of projected gradient ascent method which is widely adopted
and can guarantee the convergence on a unit-sphere [18]. The
updating rule for the optimization variable x is given by

xt+1 = Proj
[
xt + step×∇xObj (x)

]
. (40)

As to the discrete case, we directly quantize the continuous
solution obtained by (40) to the discrete feasible set.

The computational complexity of the linear transform-based
algorithm is O(NT ) in each iteration since all the variables
have closed-form solutions. Thus, the linear transform-based
algorithm for the continuous-phase problem is highly efficient.

As for the projected gradient ascent method, the complexity
is also O(NT ) per iteration. But it is nontrivial to choose
appropriate step sizes in the projected gradient algorithm,
which can affect the converge speed and performance. As
seen in the next section, the projected gradient method with
common heuristic for choosing the step size takes much longer
to converge as compared to the linear transform-based method.

Regarding the convex-hull relaxation-based algorithm, the
complexity in each iteration is at least O

(
N2
T

)
since we need

to solve a convex quadratic programming problem over a
convex polyhedron in each iteration. Thus, this algorithm for
the discrete-phase problem has a higher complexity.

V. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate
the effectiveness of our proposed algorithms. The simulation
environment is set as follows (unless otherwise specified).
• The ADCs are one-bit with the normalized mean squared

quantization error ν = 0.3634.
• The discrete phase shift level QT = 4 and X is given by

X =
1√
2

{
1 + j, 1− j, −1 + j, −1− j

}
. (41)

• The transmit power is set such that pNT /σ2
n = 10 dB.

• The numbers of transmit and receive antennas are set as
NT = NR = 16.

In addition, we consider three scenarios as follows:
1) The azimuth angle of the point target has a uniform prior

distribution in the range [40◦, 80◦].
2) The azimuth angle has a Gaussian prior distribution with

mean 60◦ and standard deviation 10◦.
3) The azimuth angle is almost deterministic at 60◦.



Fig. 2. Transmit beampatterns with different prior distributions of η.

TABLE I
RUNTIME AND ITERATION NUMBERS OF DIFFERENT ALGORITHMS.

LT PG PCH

Runtime for 100 Iterations [s] 0.4014 3.0346 33.0872

Number of Iterations to Converge 60 145 15

* LT: Linear Transform, PG: Projected Gradient Ascent, PCH: Penalty Convex Hull.

Before illustrating the sensing performance, we first show
the efficiency of the proposed algorithms. Table I gives the run-
time and the number of iterations to converge for the different
algorithms in the first considered scenario. We observe that the
proposed linear transform method demonstrates a significantly
faster runtime than the other two algorithms, while the penalty
and convex hull relaxation based method is the slowest, which
aligns with the complexity analysis presented in the previous
section.

Next, we show the optimized transmit beampattern, which
is defined as

Q (η) =
∣∣hT(η) x

∣∣2 , (42)

in Fig. 2. The designed transmit beampatterns are interpretable.
From Fig. 2, it can be observed that the solutions of the
optimization problem produce beams that are aligned with the
prior distributions of the target angle.

To further illustrate the sensing performance of the proposed
algorithm, we show the evolution of the posterior distributions
after several iterations of sensing stages in Fig. 3. The posterior

Fig. 3. Posterior distributions of three iterations with the transmit beamform-
ing vectors designed by the proposed algorithm.
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probability function of the (t+1)-th sensing stage is computed
as follows:

Pr (η | rt+1) ∝ L (rt+1 | η) · Pr (η | rt) (43)
= CN (rt+1 |κ

√
pHx,Σ) · Pr (η | rt) ,

where L (rt+1 | η) denotes the likelihood function of η given
the received signal rt+1, and Pr (η | rt) represents the posterior
distribution from the previous iteration, which is used as the
prior distribution q (η) for the current iteration. We show the
result of the first scenario under consideration in Fig. 3. The
actual angle of the target is at 70◦. We plot the posterior distri-
bution of η after three iterations using the transmit beamformer
designed by the proposed algorithm. We can see from Fig. 3
that as the number of sensing stages increases, the posterior
distribution of η rapidly converges to a highly concentrated
distribution with a peak at the true sensing angle. This shows
that the active sensing scheme is highly effective.

In Fig. 4, we show the results of different algorithms versus
the number of transmit antennas in the range of [10, 70], in



the first scenario under consideration. One can observe that the
proposed algorithms perform better than the benchmark and
the result of randomization beamforming. Most importantly,
the results show that better performance can be achieved by
considering the quantization noise in the problem formulation.
In other words, if we overlook the influence of quantization
at receivers and treat the one-bit receiver as an ideal receiver
in the design of the beamformer, it would lead to a noticeable
performance loss. In addition, it can be observed from Fig. 4
that as the number of antennas increases, the performance loss
caused by quantization operations also increases. Hence, when
the phase shifters are discrete, one can make informed choices
between the linear transform based method and the penalty and
convex hull relaxation based method according to performance
and complexity tradeoff.

VI. CONCLUSION

This paper proposes methodologies for transmit beamform-
ing designs for a MIMO sensing system with low-resolution
transceivers. The problem is formulated as minimizing the
BCRLB for estimating the target’s azimuth angle. This prob-
lem is a fractional programming problem. We first propose
a novel linear transform technique to tackle the case of
continuous phase shifts. Then, we propose a penalty and
convex hull relaxation based algorithm to tackle the case of
discrete phase shifts. These algorithms are highly effective
for designing MIMO transmit beamformers for the sensing
problem that accounts for hardware constraints.

APPENDIX A
PROOF OF THEOREM 1

According to the quadratic transform in [17], a lower bound
of (18) can be established as follows:

gi (x) ≥ 2Re
[
(Aix)

H
λi

]
− λH

i Riλi. (44)

The equality in (44) is achieved at

λi = R−1i Aix. (45)

Then, based on the following equation,

aH diag
[
bbH

]
a = bH diag

[
aaH

]
b, (46)

we have

λH
i Riλi = xH

(∑
k∈Ri

AH
k diag

[
λiλ

H
i

]
Ak

)
x + λH

i Ciλi

, xHDix + λH
i Ciλi. (47)

We eliminate the quadratic term in (47) by making use of the
fact that for unit-modulus variables x and z,

xH (δiI) x = zH (δiI) z = δiNT . (48)

Specifically, we apply [19, Eq. (26)] to (47), which is repeated
here that

xHDix ≤ xHLix + zH (Li −Di) z

+ 2Re
(
xH (Di − Li) z

)
, (49)

where Li � Di, and the equality is achieved at z = x. Then,
following [15], we replace Li with δiI, where δi is the trace of
Di so that δiI � Di. By combining with (48), we obtain

gi (x) ≥ fi (x, z,λi) (50)

, 2Re
(
xH
[
(δiI−Di) z + AH

i λi
])

+ ci(z,λi) ,

where ci(z,λi) is given in (23). The equality in the above is
achieved when z = x and λi = R−1i Aix. This shows the
equivalence of (17) and (20) under unit modulus constraints.
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