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Abstract—This paper presents a novel technique to design
receive beamformers for on-grid angle-of-arrival (AoA) estima-
tion in large-scale multiple-input multiple-output systems using
channel codes. Specifically, the receive beamformers are designed
so that the measurement model is effectively transformed to a
Gaussian channel whose inputs are codewords in a channel code,
with each codeword corresponding to a different AoA on the
grid. Assuming that the number of antennas is larger than the
desired angle resolution in the grid, the AoAs can be recovered by
leveraging a suitable decoder on the resulting equivalent channel.
The performance of the proposed method is derived in terms of
the performance of the underlying channel code. Simulations
results demonstrate the advantage of the proposed approach
compared to existing beamforming strategies.

I. INTRODUCTION

The angle-of-arrival (AoA) estimation problem entails es-
timating the direction upon which signals impinging on an
antenna array are received. This is a classical problem in
signal processing with many practical applications, including,
but not limited to, target tracking [1], beam alignment [2], lo-
calization [3]–[5], and downlink beamforming in time-division
duplex (TDD) systems [6]. In order to ensure accurate AoA
estimation through highly directional beams, sixth-generation
(6G) wireless networks are expected to employ extremely
large-scale multiple-input multiple-output (XL-MIMO) sys-
tems with a huge number of antennas and an enlarged array
aperture [7], but typically with limited number of radio-
frequency (RF) chains. In such systems, the number of an-
tennas is in the order of the desired angle resolution (but the
number of RF chains is much lower).

The straightforward way of designing directional beams
for AoA estimation is through exhaustive beam sweeping
(e.g. [8]), which scans each possible direction through a
dedicated beamformer, and outputs the direction which results
in the highest received power. This is inefficient as the number
of required measurements needs to grow linearly with the
desired angle resolution. Later works on beamforming-based
AoA estimation strategies show that the number of measure-
ments can, in fact, grow only logarithmically with the angle
resolution. For example, the work [9] proposes a non-adaptive
beamforming strategy based on random hash functions and
shows that a logarithmic number of measurements (in the
angle resolution) is sufficient in the high signal-to-noise-ratio
(SNR) regime. The same logarithmic scaling is obtained by
exploiting the sparse nature of the problem in the angular

domain using compressed sensing techniques, as done in [10],
[11]. Adaptive beamforming strategies have also been applied
to AoA estimation and show good performance with fewer
number of measurements, e.g. in [12], [13], where a hierar-
chical codebook of beamformers is used, in [14], where the
Bayesian Cramér-Rao bound (CRB) is optimized to design the
beamformers, and in [15], [16], where a learning-based design
is proposed. However, a common issue with all these methods
is that resolving multiple AoAs is very challenging.

This paper takes a different approach to AoA estimation
by leveraging a connection between designing beamforming
vectors for AoA estimation and channel coding for reliable
communication, under the simplifying assumption that the
AoA’s belong to a finite-size grid. The connection between
these two problems has been previously pointed out in the
literature through their common relation to the noisy searching
problem with feedback [13], [17], where the goal is to estimate
the location of a target by sequentially querying possible re-
gions based on responses to previous queries. The application
of channel coding to AoA estimation is also explored in [18],
[19], where the beamforming vectors are designed to have
particular beampatterns which are chosen based on a given
channel code. However, in these works, it is not clear how the
performance of the underlying coding scheme translates to a
performance guarantee in the AoA estimation problem.

In this paper, we provide an explicit method to design re-
ceive beamformers for on-grid AoA estimation using point-to-
point channel codes designed for Gaussian channels. Through
successive decoding, the proposed method is able to resolve
multiple AoAs. For estimating a single angle, the proposed
method effectively transforms the measurement model to a
Gaussian channel whose inputs are codewords in the code
and whose noise statistics depend on the chosen beamformers.
Through a careful analysis of the structure of the array re-
sponse, the performance of the proposed strategy is bounded in
terms of the performance of the channel code when simulated
over the Gaussian channel. The performance guarantee holds
as long as the number of antennas is larger than the desired
angle resolution. This makes the proposed approach suitable
for XL-MIMO systems in next-generation wireless networks.

II. ANGLE-OF-ARRIVAL ESTIMATION PROBLEM

Consider a mmWave communication channel in which a
base station (BS) equipped with N antennas and Q RF chains



(Q < N ) aims to communicate with a single-antenna user. In
order to estimate the channel between the user and the BS, an
uplink pilot training phase consisting of T time frames is used,
in which the user sends T pilot symbols {xt}Tt=1 with power
P , i.e., xt =

√
P , ∀t. Due to the limited number of RF chains,

the BS can observe the pilot symbols only through a lower-
dimensional analog beamformer Wt ∈ CN×Q. Therefore, the
received symbol at time t, 1 ≤ t ≤ T , can be expressed as

yt =
√
PWH

t h + WH
t zt, (1)

where h ∈ CN is a vector of channel gains between the user
and the BS, and zt ∼ CN (0, I) is the Gaussian noise.

We assume that the channel between the BS and the user
can be modeled geometrically by K paths [20], i.e.,

h =
1√
K

K∑
k=1

αka(φk), (2)

where φk is the AoA of the kth path, αk ∼ CN (0, 1) is the
small-scale fading coefficient affecting the kth path, and a(·) is
the array response vector. We consider a uniform linear array
configuration with N antenna elements and half-wavelength
antenna spacing for which the array response vector is

a(φk) =
[
1 ejπ sinφk · · · ej(N−1)π sinφk

]T
. (3)

For many applications, including target tracking [1], [2],
user localization [3]–[5], and downlink beamforming in TDD
systems [6], it is crucial that the BS computes precise esti-
mates of the AoAs {φ1, . . . , φK} from the received symbols.
Towards this end, we consider the simplifying assumption that
each AoA φk belongs to a grid of M points in the angular
space, i.e., we assume that φ ∈ Θ, where

Θ =

{
arcsin

(
−1 +

2i− 1

M

)
: i = 1, . . . ,M

}
, (4)

which is a set of M angles spanning the region [−π2 ,
π
2 ].

Furthermore, this paper considers the setting of XL-MIMO
systems, in which case we assume that the number of antennas
N is larger than the number of possible angles M .

This paper focuses on non-adaptive beamforming strategies,
i.e., the beamformers (W1, . . . ,WT ) are chosen a priori be-
fore any symbols are received, and hence, can only depend on
the array response a(·). In this setting, a system model with a
BS equipped with Q RF chains making T pilot measurements
is mathematically equivalent to that of a BS equipped with
a single RF chain making TQ pilot measurements. Hence,
without loss of generality, this paper considers the special case
of Q = 1, i.e., the BS is equipped with a single RF chain and
uses T beamforming vectors w1, . . . ,wT .

The goal of this paper is to design the beamformers
w1, . . . ,wT to obtain the best estimates {φ̂1, . . . , φ̂K} of the
AoAs from the received symbol vector y = (y1, . . . , yT ). The
performance of such an estimation is measured by the mean-
squared error (MSE) defined by

MSE =
1

K

K∑
k=1

E
[(
φk − φ̂k

)2]
. (5)

To find good estimates, the pre-designed beamformers
(w1, . . . ,wT ) should account for the known array response
structure, while mitigating the effect of the additive noise. The
main contribution of this paper is that, when N ≥ M , such
beamformers can be constructed by leveraging the error cor-
recting capabilities of codes designed for Gaussian channels.

III. A CODING PERSPECTIVE TO AOA ESTIMATION

This paper proposes to design beamforming strategies for
AoA estimation using codes that are designed for the additive
white Gaussian noise (AWGN) channel. In this section, we
establish the connection between the two problems, which
sets up the stage for the main result in the next section. For
illustrative purposes, we make two simplifying assumptions in
this and the subsequent sections. First, we consider a system
model with a single dominant path (i.e., K = 1) in which
case only one AoA φ is to be estimated. Second, we assume
that the channel fading coefficient α is perfectly known at the
BS. These assumptions are removed in Section V, where we
consider the more practical setting in which multiple AoAs
are to be estimated, and only the statistical information of the
fading coefficients is available at the BS.

A. Code for AoA Estimation

To aid in the exposition, it is useful to define the notion of
a code for AoA estimation as follows. An (M,N, T ) code for
AoA estimation consists of
• the set of angles Θ defined in (4) where |Θ| = M ,
• a sequence of beamformers (w1, . . . ,wT ) where wj ∈

CN ,
• an estimator f : CT × CN×T → Θ that assigns angle

estimate φ̂ to each received sequence y and beamformer
sequence (w1, . . . ,wT ).

The average probability of error of an AoA estimation code
is P (AoA)

e = P(φ̂ 6= φ).
As we shall see later, the probability of error metric allows

us to translate the performance guarantees from the channel
coding problem to the AoA estimation problem. Nonetheless,
in the simulation experiments of Section VI, the performance
of an AoA estimation code is reported through the MSE
defined in (5), which better matches the nature of the AoA
estimation problem.

B. Coding for Binary-Input AWGN Channel

We begin by reviewing the channel coding problem over
binary-input AWGN channels. Suppose a transmitter wishes
to communicate a message S to a receiver over an AWGN
channel with binary inputs, BI-AWGN(P ), defined by

Yt = α
√
PXt +Nt, (6)

for t = 1, . . . , T , where Xt ∈ {−1,+1} denotes the channel
input symbol at time t that encodes the message S, α ∈ C is a
channel gain that is known to the receiver, and Nt ∼ CN (0, 1)
is a sequence of i.i.d. circularly-symmetric complex-valued
Gaussian random variables with unit variance. Upon receiving
Y1, . . . , YT , the receiver wishes to find an estimate Ŝ of the



transmitted message. The effective signal-to-noise ratio (SNR)
in this model is γ = |α|2P .

An (R, T ) code for the BI-AWGN(P ) channel consists of
• a message set S = [1 : 2RT ],
• an encoding function f : S → {−1,+1}T that assigns a

codeword x = (x1, . . . , xT ) to each message s ∈ S,
• a decoding function g : CT → S that assigns a message

estimate ŝ to each received sequence y = (y1, . . . , yT ).
The message S is assumed to be uniformly distributed over
the message set. The performance of the code is measured by
the average probability of error P (AWGN)

e = P(Ŝ 6= S).
We define the channel codebook matrix C ∈

{−1,+1}T×2RT as the matrix whose columns are the
codewords of the code, i.e.,

C =

 | |
f(1) · · · f(2RT )
| |

 , (7)

where f(·) is the encoding function.

C. Connections Between AoA Estimation and Channel Coding

Now, we are ready to establish a connection between
the AoA estimation problem and the coding problem over
Gaussian channels. First, notice that, in the single path case
(K = 1), the system model (1) for AoA estimation can be
alternatively written as

yt = α
√
PwH

t Du + wH
t zt, (8)

where u ∈ {0, 1}M is a 1-sparse vector of length M , and

D =

 | |
a(θ1) . . . a(θM )
| |

 , (9)

where θi = arcsin
(
−1 + 2i−1

M

)
is the ith angle in the set Θ

defined in (4). Since φ = θk∗ for some k∗, the AoA estimation
problem can now be cast as the problem of finding the support
of u from the sequence of measurements (y1, . . . , yT ) [15].

By contrasting (8) with the channel model in (6), one
can make the following key connections between the two
problems1:

1) The AoA φ can be represented by the message S in the
channel coding problem.

2) The fading coefficient α, when perfectly known at the
BS, plays the role of a channel gain in the coding
problem.

3) The choice of the beamforming vector wt can be made
so that the baseband source signal wH

t Du is represented
by the channel input symbol Xt in the coding problem.

4) The average probability of error is a common perfor-
mance metric between the two problems.

However, there is a key distinction between the two problems.
The distribution of the effective noise term ñt , wH

t zt in

1These connections are analogous to the connections that relate channel
coding to the support recovery problem in the compressive sensing litera-
ture [21], with a key distinction as highlighted in this section.

the AoA estimation problem is different than that of the noise
term in the channel coding problem. In the following, we show
that this distinction can be properly accounted for through
a careful choice of the beamforming vectors (w1, . . . ,wT )
designed specifically with the structure of the array response
matrix D in mind. This established connection between the
two problems makes available a variety of coding techniques
for AoA estimation in XL-MIMO systems. We present the
main result of this paper in the next section.

IV. MAIN RESULT

The main result of this paper is the following theorem that
shows how a code for the binary-input AWGN channel can be
used to design a code for AoA estimation.

Theorem 1. Let (M,N, T ) be such that N ≥ M , and let
R = log2M

T . Let ε > 0. If there exists an (R, T ) code for
the BI-AWGN

(⌊
N
M

⌋
P
)

channel whose average probability of
error is P (AWGN)

e = ε, then we can construct an (M,N, T )
code for the AoA estimation problem with average probability
of error P (AoA)

e ≤ ε.

Proof. We give an explicit construction of the AoA estimation
code using the code for the BI-AWGN

(⌊
N
M

⌋
P
)

channel. Let
C ∈ {−1,+1}T×M be the codebook matrix of the channel
code, as defined in (7). Let cH1 , . . ., cHT denote the rows of C.

To construct a code for AoA estimation, consider the
following optimization problem:

minimize
wt

‖wt‖2 (10a)

subject to DHwt = ct. (10b)

Since N ≥M , DH has full row rank, so the solution to (10)
is

w∗t =
(
DH

)†
ct, (11)

where (·)† denotes the pseudoinverse of a matrix. For this
choice of w∗t , the system model (8) can be written as

yt = α
√
Pct,k∗ + ñt, (12)

where k∗ denotes the position of the non-zero entry in u, ct,k∗
denotes the k∗-th entry of ct, and ñt = (w∗t )

H
zt is a zero-

mean Gaussian random variable with variance ‖w∗t ‖22.
Notice the similarity of (12) with the BI-AWGN channel

model given in (6). The only difference is that the effective
SNR in (12) is

γ(AoA) = |α|2P
‖w∗

t ‖22
, (13)

whereas for the channel code designed for a BI-
AWGN

(⌊
N
M

⌋
P
)

channel, the effective SNR is

γ(AWGN) = |α|2
⌊
N
M

⌋
P. (14)

If we can show that γ(AoA) ≥ γ(AWGN), then one can leverage
the decoder of the channel code to find an estimate of the
codeword indexed by k∗. Hence, by (13) and (14), it is
sufficient to show that

‖w∗t ‖22 ≤
1⌊
N
M

⌋ . (15)



To this end, notice that

‖w∗t ‖22 = ‖(DH)†ct‖22 ≤ σ2
max

(
(DH)†

)
‖ct‖22 = M

σ2
min(D)

,

(16)
where σmax(·) and σmin(·) denote the largest and smallest
singular value, respectively, and ‖ct‖22 = M since each entry
in ct is a symbol in the matrix C. Next, we show that

σ2
min(D) = M

⌊
N
M

⌋
, (17)

which implies the desired inequality (15).
One can show (17) by observing the resemblance of the

matrix D to the discrete Fourier transform (DFT) matrix. In
particular, notice that

D =


1 1 · · · 1
z1 z2 · · · zM
...

...
. . .

...
zN−11 zN−12 · · · zN−1M

 , (18)

where zi = ejπ(−1+ 2i−1
M ) for i = 1, . . . ,M . Recall that the

M ×M DFT matrix is a matrix F with [F]i,j = ω(i−1)(j−1)
√
M

for i, j = 1, . . . ,M , where ω = e−j
2π
M . It can be checked that

D = ΦD̃, where Φ is an N ×N unitary matrix, and

D̃H =
√
M
[
F F · · · F︸ ︷︷ ︸⌊

N
M

⌋
times

G
]
, (19)

where G is the submatrix of F consisting of the first N −
M
⌊
N
M

⌋
columns. Note that, since D = ΦD̃ with unitary Φ,

D and D̃ have the same singular values. Furthermore,

D̃HD̃ = M
⌊
N
M

⌋
FFH +MGGH = M

⌊
N
M

⌋
IM +MGGH,

(20)
where the last equality holds since F is a unitary matrix. It
follows that the minimum eigenvalue of D̃HD̃ (or, equiva-
lently, σ2

min(D)) is M
⌊
N
M

⌋
. In fact, the only other nonzero

eigenvalue is M
⌈
N
M

⌉
. This implies the equality in (17), and

thus, the inequality in (15), which in turn implies the fact that
γ(AoA) ≥ γ(AWGN). Thus, the decoder of the channel code
can be utilized over the channel model in (12) to recover an
estimate k̂ corresponding to the AoA. The output of the AoA
estimator is φ̂ = θk̂, and its average probability of error is at
most that of the channel code, i.e., P (AoA)

e ≤ ε.

The proof of Theorem 1 gives an explicit construction of
the beamformers and the AoA estimator based on a code for a
BI-AWGN channel. The analysis suggests that when N ≥M ,
designing the beamformers to be in the range space of (DH)†

according to (11) boosts the SNR by at least a factor of
⌊
N
M

⌋
.

V. PRACTICAL CONSIDERATIONS

A. Unknown Channel Fading Coefficient

So far, we restricted attention to the case when the fading
coefficient α is known to the BS. Now, we consider the
practical scenario when α is unknown. One way to approach
this setting is by using some of the received symbols to get an

estimate α̂ of the fading coefficient, prior to AoA estimation.
Then, the estimate α̂ is used in the AoA estimation phase.

In particular, we consider a fading coefficient estimation
phase consisting of T̃ time frames that precede the mea-
surements made for AoA estimation. Inspired by (11), the
beamforming vectors in this phase are set to

w̃ =
(
DH

)†
1M , (21)

for each t = 1, . . . , T̃ , where 1M is the all-ones vector of
length M . For this choice of beamforming vector, the received
symbol can be expressed as

ỹt = α
√
P + ñt, (22)

which is independent of the AoA φ. Hence, the received
symbols in this phase can be used to compute an estimate
of the fading coefficient. For example, the minimum mean-
squared error (MMSE) estimate of α given the received sym-
bols ỹ1, . . . , ỹT̃ can be written as α̂ =

√
P

T̃P+‖w̃‖2
∑T̃
t=1 ỹt. This

estimate can then be used for AoA estimation by regarding it
as the true value of the fading coefficient.

B. Estimation of Multiple Angles

The proposed framework can be extended to the case where
multiple angles are to be estimated. In particular, consider the
setting in (1) in which the channel gain vector h is modeled
with K ≥ 2 paths, and there are K angles {φ1, . . . , φK} to
be estimated. In this setting, one can make the connection
to the K-user multiple access channel (MAC), in the special
case where the users of the MAC are restricted to use the
same codebook. This is reminiscent of the connection between
coding for MACs and the support recovery problem in com-
pressive sensing [21]. However, practical codes and decoding
strategies for such a MAC are difficult to design. Instead, one
can use a single-user code and leverage a successive decoder
for the MAC [22], in which case the single-path code described
in previous sections can be applied. We remark that, when the
fading coefficients α1, . . . , αK are unknown, it becomes more
challenging to incorporate a training procedure to estimate the
fading coefficients prior to AoA estimation.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
AoA estimation strategy over an XL-MIMO system equipped
with N = 1024 antennas. We assume that the AoA is uni-
formly drawn over the grid set of size M = 256. The number
of measurements made is T = 16. For the channel code, we
use a Reed-Muller code [23], [24] with a rate R = log2M

T = 1
2 .

Since there are only M = 256 codewords in this code, we can
efficiently implement the maximum likelihood (ML) decoder.

We compare the proposed strategy with two common beam-
forming strategies for AoA estimation: 1) Random Gaussian
beamforming, and 2) Adaptive Bayesian CRB method. In
random Gaussian beamforming, the beamformers are ran-
domly and independently chosen according to a complex
Gaussian distribution with unit variance, and an ML decoder
is employed to recover the AoA. For the adaptive Bayesian
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Fig. 1. Average MSE versus SNR for a single-path model with N = 1024
antennas, M = 256 possible AoAs, and T = 16 time frames.
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Fig. 2. Average MSE versus T for a single-path model with N = 1024
antennas and M = 256 possible AoAs at a power level P = 10 dB.

CRB method, the beamformers are designed sequentially to
minimize the Bayesian CRB metric [14], which is a lower
bound on the MSE of any unbiased estimator. In this case, we
use an MMSE estimator to estimate the AoA.

Fig. 1 shows the plot of the average MSE for the different
beamforming strategies versus the SNR in the case of a
single dominant path (i.e., a single AoA to estimate) when
the fading coefficient α is known. The performance of the
proposed strategy when the fading coefficient α is unknown
(Section V-A) is also shown, where T̃ = 2 symbols are
used for the estimation of α. The proposed Reed-Muller-
based beamforming strategy achieves better AoA estimation
performance compared to the other baseline strategies, even
when the fading coefficient is unknown, and only two pilot
symbols are used to estimate it. This highlights the potential
of the proposed coding-based framework in AoA estimation.

Fig. 2 shows the average MSE performance of the beam-
forming strategies as a function of the number of measure-
ments T for a single-path model and a fixed power level

-10 -5 0 5 10 15 20 25

Power P (dB)

10
-4

10
-3

10
-2

10
-1

10
0

M
S

E

Fig. 3. Average MSE versus SNR for a system model with N = 1024
antennas, M = 256 possible AoAs, and K = 2 paths.

P = 10 dB. The results show that the baseline strategies
require much more measurements to achieve a given MSE
performance compared to Reed-Muller-based beamforming.
For example, at an MSE of 8×10−3, random Gaussian beam-
forming requires almost 4 times more measurements while the
adaptive Bayesian CRB method requires around 2 times more
measurements. This demonstrates that the proposed approach
can significantly reduce the pilot overhead for AoA estimation.

Fig. 3 considers the average MSE performance of the beam-
forming strategies when there are two AoAs to be estimated
(i.e., K = 2 paths). We assume that the two fading coefficients
α1 and α2 are known at the BS. As highlighted in Section V-B,
the proposed strategy in this case boils down to successive
decoding of single-user codes, where the angle with the largest
fading coefficient magnitude is decoded first. We again use
a Reed-Muller code of rate R = 1

2 . For random Gaussian
beamforming, we employ the orthogonal matching pursuit
(OMP) [25] algorithm, a widely-used method in compressive
sensing. As for the adaptive Bayesian CRB method, it has
a high computational complexity due to the need to track
the two-dimensional posterior distribution of the AoAs, which
limits its practicality in the multipath scenario, particularly
when the number of antennas is large (N = 1024 in our setup).
The simulation results of Fig. 3 show a significant performance
advantage of Reed-Muller-based beamforming compared to
random Gaussian beamforming. This highlights the potential
of the proposed beamforming approach in multipath settings.

VII. CONCLUDING REMARKS

In this paper, we develop a channel-coding-based technique
to design receive beamformers for on-grid AoA estimation.
The designed beamformers combine the received symbols at
the antennas according to a prescribed channel codebook,
while accounting for the structure of the array response. The
proposed method shows superior performance compared to
conventional methods, especially when multiple angles are to
be estimated.
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