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Abstract—This paper considers the coded downlink massive
random access problem in which a base-station (BS) aims to
communicate descriptions of the sources (X1, · · · , Xk) to a
randomly activated subset of k users, among a large pool of
n potential users, via a common message in the downlink.
Assuming that the downlink channel is noiseless, this paper
investigates the lossy source coding setting where upon receiving
the common message from the BS, each active user aims to
recover a reconstruction X̂i of their intended source Xi, such that
the expected distortion between (X̂1, · · · , X̂k) and (X1, · · · , Xk)
is less than D. In this paper, we show that a previously
proposed lossless coding strategy and its corresponding codebook
construction for exchangeable sources, the urn codebook, can be
extended to the lossy source coding setting using the Poisson
functional representation. With this coding strategy, we show
that for exchangeable sources (X1, · · · , Xk), a common message
length of R(D) bits plus an overhead of O(k) bits, independent
of n, is achievable, where R(D) is the rate-distortion function for
compressing (X1, · · · , Xk). If the sources are i.i.d., this overhead
can be reduced to O(log(k)) bits.

I. INTRODUCTION

This paper considers the problem setting of coded downlink
massive random access [1], where a central base-station (BS)
aims to communicate sources (X1, · · · , Xk) to a randomly
activated subset of k users out of a large pool of n potential
users. Due to the sporadic activity of the users, only the
activated k � n users are listening to the BS. Although each
active user has no knowledge of the identities of the other
active users, the BS is assumed to know the identities of all
the active users. Using a common message transmitted over a
noiseless downlink channel, the BS aims to communicate to
each active user a lossy reconstruction of the source intended
for it. This problem arises naturally in the context of machine-
type communications or Internet-of-Things, where users are
often randomly activated and can request information from the
BS in the downlink upon being detected by the BS [2]–[5].

As in [1], we assume in this paper that the user activity pat-
terns are random and symmetric across the pool of all potential
users, resulting in no subset of users being preferred over any
other subset. Moreover, we assume that the sources intended
for the active users are independent of the user activity pattern,
and that for any fixed user activity pattern, all permutations
of any source sequence are equally probable. This symmetry
under permutations is known as exchangeability. Formally,

sources (X1, · · · , Xk) are exchangeable if their joint distri-
bution p(x1, · · · , xk) is invariant under permutations, i.e.,

p(x1, · · · , xk) = p(xσ(1), · · · , xσ(k)) (1)

for all (x1, · · · , xk) ∈ X k and σ ∈ Sk, where Sk is the set of
all bijections σ : [k]→ [k], where [k] = {1, · · · , k}.

The lossless coding setting of this problem is studied in [1],
where each active user is to recover their intended source Xi

without loss. It is shown that if the sources X = (X1, · · · , Xk)
are exchangeable, then a common message length of H(X)
bits plus an overhead independent of n is achievable. Specifi-
cally, for general exchangeable sources, an overhead of O(k)
bits is achievable. If the sources are i.i.d., then this overhead
can be reduced to O(log(k)) bits. This contrasts the naive
scheme, which would have required an overhead of k log(n)
bits to identify which users the sources are intended for.

This paper extends the results of [1] to the lossy source
coding setting, where instead of requiring each active user to
recover their intended source exactly, each active user is to
recover a lossy reconstruction of their intended source such
that a distortion criterion is satisfied. Let X̂i denote the lossy
reconstruction of source Xi. To quantify distortion, we use a
distortion measure δ : X k × X̂ k → [0,∞]. We require the
expected distortion to satisfy

E[δ((X1, · · · , Xk), (X̂1, · · · , X̂k))] ≤ D. (2)

Similar to why the sources are assumed to be exchangeable,
we also assume the distortion measure to be exchangeable,
i.e., for all σ ∈ Sk,

δ(x, x̂) = δ(xσ, x̂σ), (3)

where xσ = (xσ(1), · · · , xσ(k)).
The main question this paper aims to answer is the follow-

ing. Assuming that both the sources and the distortion measure
are exchangeable, what is the minimum common message
length needed to communicate lossy reconstructions of the
sources to the intended active users? In this paper we show
that a common message length of R(D) bits plus a small
overheard is achievable, where

R(D) = min
p(x̂|x): E[δ(X,X̂)]≤D

I(X; X̂) (4)

is the rate-distortion function for compressing (X1, · · · , Xk).
Analogous to the results of [1], if the sources are exchange-
able, then an overhead of O(k) bits is achievable. If the sources



are i.i.d., then this overhead can be reduced to O(log(k))
bits. In both cases, the overhead is independent of n, i.e., the
proposed coding strategy is able to communicate the sources
without explicitly transmitting the identities of the users for
which the sources are intended.

In this paper, we propose a generalization of the coding
scheme presented in [1] for the lossless setting to achieve the
aforementioned common message lengths for the lossy case.
The main idea behind the coding scheme of [1] is to use a
codebook comprised of many length-n codewords, each being
different realizations of the sources. Each of the n users is
assigned a unique location in the codewords apriori, so that
when the identities of the k active users are revealed to the
BS, the sources can be communicated to the active users
by searching over the codebook for the first codeword that
matches the sources intended for the k active users. The BS
can then transmit this index to the active users, who can then
decode by referencing their assigned entry in the specified
codeword.

The lossless coding scheme of [1] may lead one to a naive
generalization, where the BS and users share a codebook con-
sisting of many length-n codewords, each being realizations
of source reconstructions. Upon revealing the active users’
identities, the BS finds the index of the first codeword that
satisfies the distortion criterion and communicates this index
to the active users. Although seemingly reasonable, this coding
scheme fails to achieve a common message length on the order
of R(D). The main reason is that it enforces a maximum
distortion instead of the average distortion criterion.

This paper shows that a more sophisticated index selection
can remedy the above issue. Instead of selecting the first
codeword that satisfies the distortion criterion, this paper
proposes using a selection method inspired by the Poisson
functional representation [6], [7]. The main contribution of
this paper is to show that when the sources are exchangeable,
this index selection method is an effective strategy for lossy
source coding in the massive random access context.

The proposed coding strategy can be applied in a straight-
forward fashion to i.i.d. sources using an i.i.d. codebook.
For non-i.i.d., but exchangeable sources, we propose to use
the urn codebook construction from [1]. This paper analyzes
a resource allocation problem as an example to show that
the proposed coding scheme can achieve a common message
length that can be significantly better than using an i.i.d.
codebook.

II. PROBLEM FORMULATION

This paper considers a massive random access setting in
which a random subset of k users becomes active among a
large pool of n users. We assume that both k and n are fixed
and known. The identities of the active users are known by
the BS, but not by the other active users. Using a noiseless
downlink channel, the BS aims to communicate lossy recon-
structions X̂ = (X̂1, · · · , X̂k) of sources X = (X1, · · · , Xk)
to the k active users via a downlink common message.

This paper aims to find the minimum length of common
message required for the active users to produce reconstruc-
tions X̂ of the sources such that the expected distortion is less
than D, i.e.,

E[δ(X, X̂)] ≤ D, (5)

where δ : X k × X̂ k → [0,∞] is the distortion measure, X
is the source alphabet, X̂ is the reconstruction alphabet, and
the expectation is taken over (X, X̂). This paper considers the
lossy coding setting where both the sources and the distortion
measure are exchangeable, as defined in (1) and (3).

Let the random variable A ∈ A(n,k) denote the identities
of the k active users, where

A(n,k) = {a ∈ [n]k | ai 6= aj ,∀i 6= j}. (6)

Here, ai ∈ [n] is the index of the ith active user. While X
describes the source contents, the activity pattern A indicates
the target user for each source, i.e., we want each user ai to
reconstruct xi ∀i ∈ [k]. Together, they form a source-activity
pair (X,A). We assume that X and A are independent. No-
tationally, we use (x,a) to represent a realization of (X,A).

We assume the availability of infinite common randomness,
with a fixed but arbitrary distribution, between the BS and
active users, denoted as M ∈M. Upon learning the identities
of the active users and their respective sources, the BS uses
encoder

f : X k ×A(n,k) ×M→ {0, 1}∗ (7)

to map the source-activity pair as well as the realization of the
common randomness to a binary string. This binary string is
then broadcast to all the active users, who then use

dai : {0, 1}∗ ×M→ X̂ (8)

to recover a reconstruction of their intended source. The
encoder and the decoders (f, d1, · · · , dn) satisfy the distortion
criterion if E[δ(X, X̂)] ≤ D, where

X̂ = (da1(f(X,A,M),M), · · · , dak(f(X,A,M),M)) (9)

are the reconstructions of the sources by the active users.
To ensure unique decodability, we require that the set

of all possible output binary strings of the encoder to be
a prefix-free code. An optimal encoding scheme is defined
as the encoder and decoders (f∗, d∗1, · · · , d∗n) that minimize
E[len(f(X,A,M))] with len(·) denoting the length of a
string, while satisfying the distortion criterion. The optimal
common message length is

R∗ , E [len (f∗(X,A,M))] , (10)

where f∗ is the optimal encoder.

III. ENCODER AND DECODER DESIGN

In this section, we develop a lossy coding scheme for
downlink massive random access. We begin by introducing
a one-shot lossy source coding scheme based on the Poisson
functional representation [6], [7]. We then generalize this
coding scheme towards downlink massive random access by
integrating it with the codebook construction of [1].



A. One-Shot Coding via Poisson Functional Representation

Consider the following two-stage strategy for the one-shot
single-user lossy source coding problem. Upon observing
source realization x ∈ X and common randomness realization
m ∈ M, the encoder first maps x and m to a positive index
using

l : X ×M→ N. (11)

This positive index is then compressed into a binary string
using an optimal prefix-free code f(x,m). The binary string
is then transmitted to the decoder, which first recovers the
index l(x,m) from the binary string and then, along with the
common randomness, decodes to a source reconstruction. This
two-stage decoding process is represented by the map

s : {0, 1}∗ ×M→ X̂ . (12)

One approach towards one-shot lossy source coding is
through the lens of the following distributed sampling prob-
lem. Given source X ∼ p(x), fix a conditional distribution
p(x̂|x) such that E[δ(X, X̂)] ≤ D. Upon observing source
realization x and common randomness, the encoder transmits
a message to the decoder. Using this message along with the
observed common randomness, the decoder generates a sample
distributed according to p(x̂|X = x). Since the conditional
distribution p(x̂|x) satisfies the distortion criterion, a coding
scheme for this sampling problem is also a valid coding
scheme for one-shot lossy source coding.

Although we assume the availability of infinite common
randomness between the encoder and decoder, the distribution
of the common randomness must be fixed beforehand. Taking
inspiration from [6] and [7], we use points from a marked
Poisson point process (PPP) as the common randomness. Let
U (1) ≤ U (2) ≤ · · · be real-valued random variables such that
the differences U (t+1) − U (t) are i.i.d. Exp(1) for all t ∈ N.
The sequence {U (t)}t=1,2,··· defined this way is known as a
PPP with rate 1. Next, we mark each point U (t) with a sample
X̂(t) drawn i.i.d. from an arbitrary fixed distribution q(x̂). We
let this marked PPP be denoted as

M = {(X̂(t), U (t))}t=1,2,···. (13)

Using the observed common randomness m, the encoder
can communicate a lossy reconstruction x̂ by specifying an
index l(x,m). Upon receiving the index and observing m,
the decoder recovers a reconstruction by referencing x̂(l(x,m))

in m. The index selection l(x,m) must simultaneously satisfy
two objectives. The first is that the distortion criterion must be
satisfied. Supposing that M is random, then the output l(x,M)
is also random. As the decoded reconstruction is described
by the random variable X̂(l(x,M)), one way to satisfy the
distortion criterion is to require that

X̂(l(x,M)) ∼ p(x̂|X = x). (14)

The second objective is for the entropy H(l(X,M)) to be
small. This ensures that the expected message length R is
small because

R < H(l(X,M)) + 1, (15)

assuming that an optimal prefix-free code is used to compress
the index l(x,m),

Leveraging the marking and displacement properties of
PPPs (see [8]), we propose the following index selection
inspired by [6]:

l(x,m) = argmin
t

{
u(t) ·

q
(
x̂(t)
)

p
(
x̂(t)|X = x

)} . (16)

This index selection satisfies both of the aforementioned ob-
jectives. The first being that X̂(l(x,M)) ∼ p(x̂|X = x) and the
second being that the entropy H(l(X,M)) is approximately
I(X; X̂) + DKL(p(x̂)‖q(x̂)) bits plus a log factor. This is
captured formally in Lemma 1, which states a result similar to
that of [6, Theorem 2], but with the added detail of accounting
for the setting where the distribution of the marking process
q(x̂) is mismatched from the distribution p(x̂).

This mismatch results in a penalty of DKL(p(x̂)‖q(x̂)) bits.
As seen in the next section, when coding for exchangeable
sources in massive random access, it is not always possible to
set the distribution of the marking process q(x̂) to be equal
to the optimal distribution of the reconstructions. Hence, it is
important to quantify the penalty for having such a mismatch.

Lemma 1: Let source X have distribution p(x) and fix a con-
ditional distribution p(x̂|x). Let M = {(X̂(t), U (t))}t=1,2,···,
where X̂(t) are i.i.d. according to q(x̂) and U (t) are points
from a PPP with rate 1. Let l(x,m) be defined as in (16).
Then, X̂(l(x,M)) ∼ p(x̂|X = x) and

H(l(X,M)) ≤ I(X; X̂) +DKL(p(x̂)‖q(x̂))
+ log(I(X; X̂) +DKL(p(x̂)‖q(x̂)) + 1) + 4.

(17)

Proof: We present only a proof outline, as the proof is
largely similar to that of [6, Theorem 1]. The distribution of
X̂(l(x,M)) can be shown to be p(x̂|X = x) using the definition
of l(x,m) and the displacement property of PPPs (see [8]).
To upper bound H(l(X,M)), we use an intermediate result
from [6, Appendix A], which implies that

E[log(l(x,M))] ≤ DKL(p(x̂|X = x)‖q) + log(e)

e
+ 1. (18)

By expanding the divergence term, taking an expectation with
respect to X , and applying the maximum entropy argument
of [6, Proposition 4], we get the desired upper bound on
H(l(X,M)).

B. Encoder for Downlink Massive Random Access

We now utilize the coding scheme from the previous section
for downlink massive random access in a two-stage process.
In the first stage, the BS uses a function g to map the source-
activity pair to a positive index

g : X k ×A(n,k) ×M→ N. (19)

In the second stage, the BS compresses the output of
g(x,a,m) into a variable-length binary string f(x,a,m)
using an optimal prefix-free code. On the decoding side,
each active user ai first recovers g(x,a,m) based on the



received binary string, then recovers its respective source
reconstructions.

For the common randomness, we use a PPP marked
with length-n vectors of possible reconstructions. Let
{U (t)}t=1,2,··· be points from a PPP with rate 1. For each
point U (t), we mark it with a n-vector C(t) ∈ X̂n, where
each C(t) is distributed i.i.d. according to an i.i.d. mixture
distribution

q(x̂1, · · · x̂n) =
∫
θ

w(θ)

(
n∏
i=1

q(x̂i|θ)

)
dθ. (20)

Putting these together, the common randomness is

M = {(C(t), U (t))}t=1,2,··· (21)

Note that C(t) is made to take values in X̂n so that a unique
entry location can be assigned to each of the n users. Since
C(t) is distributed according to an i.i.d. mixture, every k
distinct entries of C(t) is distributed according to q(x̂1, · · · x̂k).

To encode a realization of (x,a) and m, the BS computes

g(x,a,m) = argmin
t

u(t) · q
(
c
(t)
a1 , · · · , c

(t)
ak

)
p∗
(
c
(t)
a1 , · · · , c

(t)
ak |X = x

)
 ,

(22)
where p∗(x̂|x) is a conditional distribution that satisfies the
distortion criterion. The index g(x,a,m) is then compressed
using an optimal variable-length prefix-free code and broadcast
to the active users. Since an optimal prefix-free code is used,
the common message length is bounded from above as

R < H(g(X,A,M)) + 1. (23)

Each active user first recovers the index t = g(x,a,m), then
decodes by referencing their entry of c(t) in the common
randomness m, i.e., each active user ai decodes by computing

dai(t,m) = c(t)ai . (24)

IV. ACHIEVABLE COMMON MESSAGE LENGTH

In this section, we discuss the common message length
achievable by the coding scheme introduced in Section III-B.
Applying Lemma 1 to the coding scheme, we have the
following result.

Theorem 1: Consider a massive access scenario with a total
of n users and a random subset of k active users. Let sources
X = (X1, · · · , Xk) ∈ X k be exchangeable with distribution
p(x) and δ : X k × X̂ k → [0,∞] be an exchangeable
distortion measure, where X̂ is the reconstruction alphabet.
The minimum common message length is bounded above by

R∗ <min
q∈Q

(
R(D) +DKL(p

∗(x̂)‖q(x̂))

+ log(R(D) +DKL(p
∗(x̂)‖q(x̂)) + 1) + 5

)
,

(25)

where Q is the family of all i.i.d. mixture distributions on X̂ k
and p∗ is the marginal distribution that attains R(D), i.e.,

p∗(x̂|x) = argmin
p(x̂|x): E[δ(X,X̂)]≤D

I(X; X̂) (26)

and

p∗(x̂) =
∑
x

p∗(x̂|x)p(x). (27)

From Theorem 1, a common message length of R(D) +
DKL(p

∗(x̂)‖q(x̂)) bits plus a logarithmic term is achievable,
where q(x̂) is an arbitrary i.i.d. mixture distribution on X̂ k.
The divergence term depends not only on the choice of
q(x̂), but also on the distribution p∗(x̂) which attains R(D).
We further analyze some properties of p∗(x̂) under different
assumptions on the sources and distortion measure.

Lemma 2: Let (X1, · · · , Xk) be exchangeable sources tak-
ing values from alphabet X and δ : X k × X̂ k → [0,∞]
be an exchangeable distortion measure, where X̂ is the re-
construction alphabet. There exists a conditional distribution
p∗(x̂|x) which attains the rate-distortion function R(D) and
has a marginal distribution p∗(x̂) which is exchangeable.

Further, if the sources are i.i.d. and the distortion measure
δ(·, ·) is not only exchangeable but also tensorizable, i.e.,

δ(x, x̂) =

k∑
i=1

δ̃(xi, x̂i) (28)

for some δ̃ : X × X̂ → [0,∞], then there exists a conditional
distribution p∗(x̂|x) which attains the rate-distortion function
R(D) and has marginal distribution p∗(x̂) which is i.i.d..

Proof: Let p̃(x̂|x) be a conditional distribution that attains
R(D). Let

p∗(x̂|x) =
∑
σ∈Sk

1

k!
p̃(x̂σ|xσ), (29)

where Sk is the set of all bijections σ : [k] → [k]. We claim
that p∗(x̂|x) attains R(D). We begin by showing that p∗(x̂|x)
satisfies the distortion criterion. Let (X, X̂) ∼ p(x)p∗(x̂|x).
By the exchangeability of the sources and the distortion
measure,

E[δ(X,X̂)] =

∫
δ(x, x̂)p(x)p∗(x̂|x) (30)

=
∑
σ∈Sk

1

k!

∫
δ(xσ, x̂σ)p(xσ)p̃(x̂σ|xσ) (31)

≤ D, (32)

where the integrals are taken over X k × X̂ k. Since all terms
are non-negative, the order of integration and summation can
be swapped.

We now argue that I(X; X̂) = R(D). Let (X, X̃σ) ∼
p(x)p̃(x̂σ|xσ). Since p(x) is exchangeable, p(x)p̃(x̂σ|xσ) =
p(xσ)p̃(x̂σ|xσ), which implies that I(X; X̃σ) = I(X; X̃), as
permuting indices does not affect mutual information. By the
convexity of mutual information,

I(X; X̂) ≤
∑
σ∈Sk

1

k!
I(X; X̃σ) = R(D). (33)



Lastly, we verify that p∗(x̂) is exchangeable. Notice that

p∗(x̂) =

∫
Xk

p(x)
∑
σ∈Sk

1

k!
p̃(x̂σ|xσ) (34)

=

∫
Xk

∑
σ∈Sk

1

k!
p(xσ)p̃(x̂σ|xσ). (35)

Since the summation is over all permutations, p∗(x̂) = p∗(x̂σ)
for all σ ∈ Sk. Therefore, p∗(x̂) is exchangeable.

Next, consider the setting where the sources are i.i.d. and
the distortion measure is exchangeable and tensorizable. Let
R̃(D) be the single source rate-distortion function

R̃(D) = min
p(x̂|x): E[δ̃(X,X̂)]≤D

I(X; X̂). (36)

Since the sources are i.i.d., we have that

I(X; X̂) ≥
k∑
i=1

h(Xi)−
k∑
i=1

h(Xi|X̂i) ≥ kR̃
(
D

k

)
. (37)

Let p∗(x̂|x) be the conditional distribution that attains R̃
(
D
k

)
.

Then R(D) is attained by p∗(x̂|x) =
∏k
i=1 p

∗(x̂i|xi).
Following immediately from Theorem 1 and Lemma 2, we

have the following result for i.i.d. sources.
Corollary 1: Under the setting of Theorem 1, if the sources

are i.i.d. and the distortion measure is exchangeable and
tensorizable, then the minimum common message length is
bounded from above as

R∗ < R(D) + log(R(D) + 1) + 5. (38)

Beyond the i.i.d. case, we know from Lemma 2 that if the
sources and the distortion measure are both exchangeable,
then there exists a p∗(x̂) that is exchangeable. But being
exchangeable is not sufficient to allow us to set q = p∗,
since the codebook construction requires q(x̂) to be an i.i.d.
mixture. To deal with this issue, we adopt the urn codebook
of [1], which constructs an i.i.d. mixture distribution through
sampling with replacement from realizations of p∗(x̂). From
[1, Theorem 2], we know that if the urn codebook distribution
is used, then the divergence term is bounded from above as

DKL(p
∗(x̂)‖qurn(x̂)) ≤ min{k log(e), |X̂| log(k + 1)}. (39)

This leads to the following result for general exchangeable
sources and distortion measures.

Corollary 2: Under the setting of Theorem 1, if both the
sources and the distortion measure are exchangeable, then the
minimum common message length is bounded from above by

R∗ < R(D) + η + log(R(D) + η + 1) + 5, (40)

where η = min{k log(e), |X̂| log(k + 1)}.
Corollaries 1 and 2 are the main results of this paper.

Together they show that i.i.d. sources can be communicated
to the k active users in a downlink massive random access
setting using R(D) bits plus an overhead of O(log(k)) bits,
and general exchangeable sources incur an overhead of at most
O(k) bits — in both cases, the overhead is independent of n.

V. EXAMPLES

In this section, we give a non-trivial example of com-
municating exchangeable, but non-i.i.d. sources in a massive
random access setting.

Suppose that X = (X1, · · · , Xk) represents an allocation of
r units of resource among the k active users, i.e.,

∑k
i=1Xi = r

and Xi ≥ 0. Let X be uniformly distributed on the simplex

T (k−1) =

{
x ∈ Rk :

k∑
i=1

xi = r, xi ≥ 0

}
(41)

and let the distortion measure δ(·, ·) be the `1-distance

δ(x, x̂) =

k∑
i=1

|xi − x̂i|. (42)

From Corollary 2, the urn codebook can be used to achieve a
common message length of

Rurn ≈ R(D) + k log(e). (43)

If instead, we restrict ourselves to using an i.i.d. codebook,
the achievable common message length would be

Ri.i.d. ≈ kR̃
(
D

k

)
, (44)

where

R̃

(
D

k

)
= min
p(x̂1|x1): E[|X1−X̂1|]≤D

k

I(X1; X̂1). (45)

We now show that Rurn can be less than Ri.i.d.. Consider the
case of k = 2. We can upper bound R(D) using the following
coding scheme. The encoder uses R̃

(
D
2

)
bits which allows the

decoder to recover X̂1 such that E[|X1−X̂1|] ≤ D
2 . Instead of

encoding X2, the decoder first recovers X̂1 and then computes
X̂2 = r − X̂1. The distortion criterion is satisfied since

E[|X2 − X̂2|] = E[|(r −X1)− (r − X̂1)|] ≤
D

2
. (46)

Therefore, R(D) ≤ R̃
(
D
2

)
and Rurn ≈ R̃

(
D
2

)
+ 2 log(e).

Comparing this to Ri.i.d. ≈ 2R̃
(
D
2

)
, we can see that

Ri.i.d. −Rurn ≈ R̃
(
D

2

)
− 2 log(e). (47)

Since R̃
(
D
2

)
→∞ as D → 0, we see that in the low distortion

regime the urn codebook significantly outperforms an i.i.d.
codebook.

VI. CONCLUSION

This paper develops a coding scheme for lossy coding in the
downlink massive random access which is inspired by both the
Poisson functional representation and prior work on lossless
coding for downlink massive random access. Using this coding
scheme, we show that lossy reconstructions of sources can be
communicated to a random subset of k users out of a large
pool of n users using R(D) bits, plus an overhead independent
of n. For general exchangeable sources, the overhead is shown
to be O(k) bits. If the sources are i.i.d., then the overhead can
be reduced to O(log(k)) bits.
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