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Abstract—The Gaussian primitive relay channel (i.e., a relay
channel with a noiseless relay-to-receiver link) with perfectly
correlated noises exhibits an intriguing phenomenon: it is possible
to transmit at a strictly positive rate even at infinitesimal transmit
power. This paper introduces a simple modulo-quantization-
based scheme that achieves zero-error communication for the
considered channel, even at arbitrarily small (but non-zero)
power. This scheme operates at a rate equal to the relay-to-
receiver link capacity. Furthermore, the proposed scheme can be
superposed onto a Gaussian code defined on an integer lattice
to achieve the capacity of the Gaussian primitive relay channel
with perfectly correlated noise at any finite input power.

I. INTRODUCTION

The capacity of an additive white Gaussian noise chan-
nel under power constraint P , as depicted in Fig. 1(a), is
ψ(P ) ≜ 1

2 log(1 + P ). As P → 0, the capacity ψ(P ) → 0,
i.e., the achievable rate of reliable transmission goes down
to zero. Intriguingly, if the Gaussian channel is equipped
with a relay that can observe the noise Z perfectly and has
a noiseless relay-to-receiver link of finite positive capacity
R0 (see Fig. 1(b)), it can be shown that even at arbitrarily
small (but non-zero) power, the transmitter would be able
to communicate to the receiver reliably at a positive rate [1,
Remarks 2 & 3], [2]. In fact, as P approaches 0, the capacity
of this channel tends to the relay link capacity R0.

This intriguing phenomenon arises because of the perfect
correlation between the noises at the relay and the receiver.
A generalization of the model in which this phenomenon can
be observed is depicted in Fig. 1(c). Here, the relay observes
Y0. The receiver observes Y . Each is obtained by adding the
same Gaussian noise Z to some scaled version of the power-
constrained input X , with scaling factors α and β, respectively.
A noiseless relay link of capacity R0 connects the relay to the
receiver. Assuming that the channel gains of the relay and
the receiver are different, the capacity of this relay channel
is ψ(β2P ) + R0, i.e., the sum of the capacities of the direct
(transmitter-to-relay) channel and of the noiseless link [3]. As
the transmit power goes to zero, the capacity tends to R0. In
other words, the phenomenon discussed in the last paragraph
is again observed.

Perfectly (or, at least, near-perfectly) correlated noises can
occur in practice. Consider a setting where multiple receivers
are affected by a common and significant interference source.
When the interference massively overpowers the receiver
noise, the correlation of the effective noises approaches one.
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Fig. 1. (a) Gaussian channel with power constraint P ; (b) Gaussian channel
with a primitive relay link of finite capacity R0. (c) A general model of
Gaussian primitive relay channel with perfectly correlated noises.

The goal of this paper is to design a coding scheme that can
exploit the perfect noise correlation and achieve the capacity
of the channel in Fig. 1(c). This is done in two steps. First we
describe a particularly simple zero-error scalar coding scheme
called modulo quantization coding. This scheme achieves
the rate R0 at any positive transmit power (which is the
asymptotic capacity in the low-power limit). The main idea is
to forward the modulo quantization of the relay’s observation
to the receiver through the noiseless link. The receiver is able
to recover the transmitted message perfectly by performing
modular arithmetic operations on the relay’s message and the
modulo quantization of its own observation.

The previous coding scheme can be extended by superpos-
ing the modulo quantization scheme on a Gaussian channel
code supported on a scaled integer lattice. The rate of the
resulting superposed modulo quantization code equals R0 plus
the rate of the Gaussian channel code. This is because incorpo-
rating the modulo quantization scheme does not introduce any
error, and it is possible to construct a sequence of Gaussian
channel codes supported on a lattice with rates approaching the
direct channel capacity and probability of error approaching
zero. This superposed modulo quantization coding strategy is
in fact capacity achieving for the Gaussian primitive relay
channel in Fig. 1(c).

Modulo operations play important roles in a variety of
practical communication strategies. A well-known example



is Tomlinson-Harashima precoding (THP) [4], [5], which is
a practical scalar implementation of dirty paper coding [6].
However, the purpose of the modulo operation in THP differs
from that proposed herein. In THP, the main purpose of the
modulo operator is to reduce the transmit power. In contrast,
the main purpose of the modulo quantizer in this paper is to
reduce the rate of the relay transmission.

II. PROBLEM FORMULATION

Consider the channel model depicted in Fig. 1(c). The trans-
mitter sends signal X subject to power constraint E[X2] ≤ P .
The relay observation Y0 and the receiver observation Y are
obtained by passing scaled versions of X through additive
white Gaussian channels with identical noises Z. This model
is a special case of primitive relay channel, i.e., the relay can
communicate to the receiver via a separate noiseless link with
capacity R0. Specifically, the channel model is defined by{

Y0 = αX + Z

Y = βX + Z
, (1)

where Z ∼ N (0, 1) is a standard normal random variable,
and α, β ∈ R are distinct real-valued channel gains, i.e.,
α ̸= β. We require the channel gains to be distinct, because
otherwise the relay would have the exact same observation as
the receiver, and relaying would be useless.

For this channel model, an (n,R)-code consists of an
encoding function f (n) : [2nR] → Rn, a relay function
ρ(n) : Rn → [2nR0 ], and a decoding function g(n) :
Rn × [2nR0 ] → [2nR], where [k] stands for the integer set
{0, 1, · · · , k − 1}. Let Xn = f (n)(M) be the input, where
M is the message index uniformly distributed over [2nR]. Let
Y n
0 and Y n be the respective observations of the relay and

the receiver. The probability of decoding error is defined by
P

(n)
e = Pr{M ̸= g(n)(Y n, ρ(n)(Y n

0 ))}, The capacity C(R0)

is the supremum of rates such that the error probability P (n)
e

can be made to approach zero as n→ ∞.
The capacity of this channel is known. Observe that the

relay observation Y0 is a deterministic function of the trans-
mitted signal X and the receiver observation Y , i.e., there
exists a function φ : R× R → R such that

Y0 = φ(X,Y ). (2)

The capacity of primitive relay channels for which the deter-
ministic relation (2) holds is given in [3] as follows:

C = sup
p(x)

min{I(X;Y ) +R0, I(X;Y, Y1)}. (3)

By specializing (3) to the channel model in Fig. 1(c), we have
the following theorem.

Theorem 1. The capacity of the deterministic Gaussian prim-
itive relay channel depicted in Fig. 1(c) is

C(R0) = C(0) +R0 = ψ(β2P ) +R0. (4)

In particular, as P → 0, C(R0) → R0.
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Fig. 2. Illustration of the coding scheme for the model in Fig. 1(b).

The capacity of deterministic primitive relay channels sat-
isfying (3) can be achieved by compress-and-forward (CF),
introduced by Cover and El Gamal in [7]. In the CF scheme,
Wyner-Ziv coding [8] is used to compress the relay ob-
servation, while accounting for the receiver observation (as
side information for source coding), and the compressed
observation is then sent to the receiver. The receiver recovers
the transmitted message based on its own observation and
the compressed version of the relay’s observation. However,
the vector nature of the quantization involved makes the
implementation of CF very complex.

An alternative scheme called hash-and-forward (HF) is pro-
posed in [9] to achieve the capacity for deterministic primitive
relay channels. However, this scheme involves performing
random hashing on all possible relay observations, making
it impossible to directly implement for channels defined over
continuous alphabets, wherein the space of relay observations
is uncountably large.

The main question this paper aims to answer is the fol-
lowing. If we restrict attention to the Gaussian deterministic
primitive relay channel, i.e., the channel model in Fig. 1(c),
is it possible to design a low-complexity coding scheme to
achieve the channel capacity?

III. MODULO QUANTIZATION CODING SCHEMES

A. Motivating Example

To help understand the proposed schemes, consider first the
channel model depicted in Fig. 1(b), which is a special case of
Fig. 1(c) with α = 0 and β = 1. For pedagogical simplicity,
suppose the relay can transmit one bit to the receiver per
channel use, i.e., R0 = 1. We now show how to leverage the
relay link to convey 1 bit of information from the transmitter
to the receiver in each channel use in a zero-error fashion,
regardless of the (non-zero) transmit power.

The proposed approach is as follows. First, fix any ∆ > 0.
Partition the real line into contiguous intervals of length ∆ and
color them alternately with white and gray as shown in Fig. 2.
In each channel use, the transmitter sends 1 bit of information
by setting X = 0 or X = ∆. Observe that if X = 0 then
Y = Z while if X = ∆, Y = Z+∆. Now, the relay observes
Y0 = Z. If the relay and the receiver compare the colors of
the intervals in which their observations are located, they get
matching colors if X = 0 (since Y = Y0 = Z); otherwise
they get different colors if X = ∆ (since Y0 = Z, Y =
Z +∆ and the interval-width is ∆). This holds regardless of
the realization of the noise Z. Hence, if the relay sends to the
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Fig. 3. Illustration of the modulo quantizer ⌈·⌋∆,3. Each color corresponds
to one modulo quantization output.

receiver the color of the interval in which Y0 = Z is situated,
upon receiving Y , the receiver would be able to decode X by
checking whether Y and Y0 belong to same color intervals.

The scheme is error-free regardless of the value of ∆, as
long as ∆ is strictly positive. Hence ∆ can be made arbitrarily
small. The average transmit power of this scheme is P =
∆2/2. Thus, infinitesimally small amount of transmit power
already suffices to attain error-free communication of 1 bit per
channel use for this channel.

B. Modulo Quantization Coding

The idea in the previous subsection can be generalized to
construct a coding scheme for the model in Fig. 1(c). In this
section, we propose a modulo quantization coding scheme to
achieve rate R0 with arbitrary non-zero power.

We first introduce some notation. Fix positive real number
∆ > 0 and positive integer k ∈ N. The (∆, k)-modulo
quantizer is the function ⌈·⌋∆,k : R → [k] defined as

⌈x⌋∆,k :=
⌊ x
∆

⌋
mod k. (5)

The floor function ⌊·⌋ : R → Z returns the largest integer
less than or equal to its argument. The modulo-k operation
(·)mod k : Z → [k] returns the remainder of the argument
divided by k.

The modulo quantization operation can be interpreted as
follows: ⌊ x

∆⌋ is the output of an infinite-support scalar quan-
tizer with step-size ∆ with input x, and ⌈x⌋∆,k can be seen
as the mod-k “wrapped” version of the quantized output.
Alternatively, ⌈x⌋∆,k can be viewed as an instance of one-
dimensional deterministic binning, where points are put into
bins according to the colors of the intervals they belong to, as
illustrated in Fig. 3. Using this notation, the relay’s strategy
in Section III-A can be expressed as sending the modulo
quantization ⌈Z⌋∆,2 to the receiver.

A few properties of the floor function and the modulo
operation are listed below. For all x ∈ R, a, b ∈ Z, and k ∈ N,
the following relations hold:

⌊x+ a⌋ = ⌊x⌋+ a, (6)
(amod k)mod k = amod k, (7)

(a+ b)mod k = [(amod k) + b] mod k. (8)

The following lemma is a direct consequence of the above.

Lemma 1. For any a ∈ Z, ∆ > 0 and k ∈ N,

⌈x+ a∆⌋∆,k = (⌈x⌋∆,k + a)mod k. (9)

In particular,
⌈x+ ak∆⌋∆,k = ⌈x⌋∆,k. (10)

The modulo quantization coding scheme is specified as
follows. For now, assume R0 = log k for some positive integer

k ∈ N. The quantity k is the number of messages that the relay
can communicate to the receiver per channel use. We also let
k be the size of the transmitter’s message set, so the overall
rate of this scheme is also R0.

Let ∆ > 0 be a positive constant to be decided later.
To transmit a message M ∈ [k], the transmitter sets X =
M∆. The relay observes Y0 = αX + Z and sends U0 =
⌈Y0⌋|β−α|∆,k, the (|β − α|∆, k)-modulo quantization of its
observation, to the receiver. The receiver observes Y =
βX+Z and computes U = ⌈Y ⌋|β−α|∆,k. It then declares the
transmitted message to be M̂ = (U −U0)mod k if β > α, or
M̂ = (U0 − U)mod k if β < α.

The above scalar scheme is error-free, i.e., M̂ =M always
holds. First consider the case where β > α, in which

Y = βX + Z (11)
= (αX + Z) + (β − α)X (12)
= Y0 + (β − α)M∆. (13)

By Lemma 1,

U = ⌈Y0 +M · (β − α)∆⌋(β−α)∆,k (14)
= (⌈Y0⌋(β−α)∆,k +M)mod k (15)
= (U0 +M)mod k. (16)

The decoded message is thus exactly the transmitted message:

M̂ = (U − U0)mod k (17)
= ((M + U0) mod k − U0) mod k (18)
= (M + U0 − U0)mod k (19)
=M, (20)

where (19) is due to (8), and (20) is due to the fact that M ∈
[k] implies M mod k = M . For the case where α > β, a
similar calculation gives M̂ = (U0 − U)mod k =M .

Let P be an arbitrarily small positive power. Set ∆ =√
3P/k2. Since the k messages are equiprobable, the average

transmission power is upper bounded as:

1

k

k−1∑
m=0

(m∆)2 =
1

6
(k − 1)(2k − 1)∆2 ≤ k2∆2

3
= P. (21)

The power constraint is therefore satisfied.
When k = 2R0 is not an integer, the rate R0 can be achieved

using time-sharing. Find positive integers k1, k2 ∈ N and
n1, n2 ∈ N such that

R′ =
n1

n1 + n2
log k1 +

n2
n1 + n2

log k2 (22)

is arbitrarily close to R0 from below. For i = 1, 2, use the
above scalar scheme with ki messages and ∆i =

√
3P/k2i

for ni channel uses. The average power constraint is satisfied.
The time-shared relay rate is R′ ≤ R0, and the time-shared
overall achieved rate is R′, which can approach R0.

We summarize the above results in the following theorem.

Theorem 2. For the deterministic Gaussian primitive relay
channel depicted in Fig. 1(c), the rate R0 is achievable using
modulo quantization coding at any average transmit power
P > 0.



C. Superposed modulo quantization coding

In the last subsection, a simple coding scheme that achieves
capacity for the deterministic Gaussian primitive relay channel
in the low-power limit is developed. In order to achieve
capacity at any power, we propose the following extension
called superposed modulo quantization coding.

The main idea of the extended scheme is to encode two mes-
sages simultaneously into one signal. The transmitted message
is separated into two parts, which are encoded independently
via separate codebooks into auxiliary sequences. The trans-
mitted codeword corresponding to the message is obtained by
superposing the two auxiliary sequences. In particular, one part
of the message is encoded via a Gaussian codebook supported
on a scaled integer lattice, and the other part is encoded via the
previously described modulo quantization codebook, which
resides on a finer lattice. Note that even though two lattices are
used here, the proposed structure is quite different from the
nested lattice code [10], [11]. In nested lattice coding, only the
finer lattice is used for channel coding, and the coarser lattice
is used for source coding; however in our proposed scheme,
both lattices are used for channel coding.

The relay computes the (symbol-wise) modulo quantization
of its received signal and forwards it to the receiver. The
receiver is able to decode the message encoded with the
modulo quantization codebook perfectly by comparing the
relay’s transmission to the modulo quantization of its own
observed signal. It can then subtract off the effect of the
modulo quantization codebook and proceed to decode the
message encoded with the Gaussian codebook. The coding
process is reminiscent of the superposition coding technique
and the successive cancellation decoding method for the
broadcast channel [12].

We now specify the superposed modulo quantization cod-
ing scheme in detail. Let C̃ be an (n, R̃, P̃ )-Gaussian code
for the direct channel, i.e., the channel with input X and
output Y = βX + Z. The parameters n, R̃, P̃ respectively
stand for the blocklength, rate, and maximum codeword
power of the code. Specifically, let the codewords of C̃ be
{X̃n(1), · · · , X̃n(2nR̃)} and the decoding function be g̃ :

Rn → [2nR̃]. The squared norm of each codeword is upper
bounded by P̃ , i.e.,

1

n
∥X̃n(M̃)∥2 ≤ P̃ , ∀ M̃ ∈ [2nR̃]. (23)

We require that the code C̃ to be supported on a scaled integer
lattice, i.e., there exists ∆̃ > 0 such that

X̃n(M̃) ∈ (∆̃Z)n, ∀ M̃ ∈ [2nR̃]. (24)

As a remark, the scaling factor ∆̃ can be chosen to be
arbitrarily small, since

C̃ ⊂ (∆̃Z)n ⇒ C̃ ⊂ ( ∆̃a Z)
n, ∀ a ∈ N. (25)

The average probability of error for the code C̃ on the direct
channel Y = βX + Z is denoted by Pe(C̃):

Pe(C̃) := 2−nR̃
2nR̃∑
i=1

Pr{i ̸= g̃(βX̃n(i) + Zn)}. (26)

Given an (n, R̃, P̃ ) lattice-support Gaussian code C̃, we
show in the following how to construct an (n, R̃+R0, P )-code
for the relay channel depicted in Fig. 1(c) for any P > P̃ with
error probability Pe = Pe(C̃).

Consider first the case where R0 = log k for some k ∈ N.
Identify the message set [2n(R̃+R0)] with the Cartesian product
[2nR̃] × [k]n, i.e., consider messages of the form (m̃,mn),
where m̃ ∈ [2nR̃] and mn = (m1, · · · ,mn) ∈ [k]n.

As remarked above, let ∆̃ > 0 be such that C̃ ⊂ (∆̃Z)n.
Set P̃ ≤ P − ∆̃2. Let ∆ := ∆̃/k. The proposed encoding
function f (n) : [2nR̃]× [k]n → Rn is

f (n)(m̃,mn) = Xn(m̃,mn) := X̃n(m̃) + ∆ ·mn. (27)

The above choice of ∆̃ ensures that the power constraint is
satisfied for the relay channel, i.e., ∀ (m̃,mn) ∈ [2nR̃]× [k]n,

1
n∥Xn(m̃,mn)∥2 ≤ 1

n (∥X̃n(m̃)∥2 +∆2∥mn∥2) (28)

≤ P̃ + 1
n · nk2∆2 (29)

≤ (P − ∆̃2) + ∆̃2 (30)
= P. (31)

Given message (M̃,Mn), the relay observes Y n
0 =

αXn(M̃,Mn) + Zn. The relay forwards the symbol-wise
(|β − α|∆, k)-modulo quantization Un

0 to the receiver, where
U0,i = ⌈Y0,i⌋|β−α|∆,k,∀ 1 ≤ i ≤ n. The receiver receives Un

0

from the relay and observes Y n = βXn(M̃,Mn)+Zn. It first
aims to recover Mn. To do this, it computes the symbol-wise
(|β − α|∆, k)-modulo quantization Un of its received signal
Y n, i.e., Ui = ⌈Yi⌋|β−α|∆,k,∀ 1 ≤ i ≤ n. Then it declares

M̂i = (sgn(β − α) · (U − U0))mod k. (32)

The receiver is able to decode the Mn part of the message
perfectly, i.e., M̂i = Mi holds for all 1 ≤ i ≤ n. Consider
first the case where β > α. For any i,

Yi = Y0,i + (β − α) · (X̃i(M̃) + ∆ ·Mi) (33)

is obtained in a similar fashion to (11)-(13). The lattice support
condition (24) ensures X̃i(M̃) ∈ ∆̃Z. Since ∆̃ = k∆, there
exists some a ∈ Z such that (β−α) · X̃i(M̃) = ak(β−α)∆.
By (10) in Lemma 1,

Ui = ⌈Y0,i + (β − α) · (X̃i(M̃) + ∆ ·Mi)⌋(β−α)∆,k (34)
= ⌈Y0,i + (β − α)∆ ·Mi)⌋(β−α)∆,k, (35)

which further simplifies to the following (cf. (14)-(16)):

Ui = (U0,i +Mi)mod k. (36)

Using the same argument in (17)-(20),we conclude that M̂i =
Mi. When α > β, a similar calculation shows M̂i =Mi.



Upon recovering Mn, the receiver can subtract β∆ ·Mn

from Y n and get

Ỹ n = Y n − β∆ ·Mn = βX̃n(M̃) + Zn. (37)

Observe that Ỹ n is exactly the output of the direct channel
when X̃n(M̃) is sent. Averaging over the choice of M̃ ,
the receiver can decode M̃ correctly with error probability
Pe(C̃) by (26). Since the recovery of Mn is perfect, the
overall average error probability for this superposed modulo
quantization coding scheme is Pe = Pe(C̃).

To see that the capacity (4) is indeed achievable, it suffices
to show the existence of a sequence of capacity-achieving
codes supported on lattice for the direct channel. Using a
random coding argument, the problem can be reduced to
finding a sequence of distributions {µ(j)}j∈N with support on
some one-dimensional lattice and second moment strictly less
than P , such that the following mutual information converges
to the Gaussian channel capacity:

lim
j→∞

I(X̃(j);βX̃(j) + Z) → ψ(β2P ), X̃(j) ∼ µ(j). (38)

One choice of such sequence of distributions has been explored
in [13, Section VII]. In particular, µ(j) is chosen to be a scaled
and centered version of Binomial(j−1, 1/2) distribution. The
convergence (38) follows from the asymptotic normality of
binomial distributions.

For non-integer 2R0 , time-sharing is applied similarly as in
Section III-B. Pick k1, k2, n1, n2 ∈ N such that R′ (defined in
(22)) is arbitrarily close to R0. Consider (n1+n2) transmission
blocks of blocklength n each. For i = 1, 2, the (∆̃Z)n-
supported (n, R̃, P̃ )-Gaussian code C̃ is superposed with the
modulo quantization scheme with ki messages and ∆i = ∆̃/ki
for ni transmission blocks. The average transmit power is still
upper bounded by P , and the overall average error probability
is still Pe(C̃). The time-shared relay rate is R′ ≤ R0 while the
overall achieved rate is R̃ + R′, which can be made as close
as possible to R̃+R0. Note that the achievable rate depends
linearly on the relay link capacity, i.e., the former is the sum
of the latter and the Gaussian code rate, therefore no loss is
incurred by time-sharing.

The results of this subsection is summarized as follows.

Theorem 3. For the deterministic Gaussian primitive relay
channel depicted in Fig. 1(c), the channel capacity ψ(β2P )+
R0 is achievable using superposed modulo quantization cod-
ing under any average transmit power constraint P > 0.

IV. DISCUSSIONS AND FUTURE WORK

This paper proposes a practical scalar modulo quantiza-
tion coding scheme for the Gaussian primitive relay channel
with perfectly correlated noises. When the noiseless relay-to-
receiver link has capacity R0, the modulo quantization scheme
is able to achieve an overall rate of R0 without error. By
superposing the modulo quantization code onto a Gaussian
code supported on a scaled integer lattice, the full capacity of
this relay channel can be achieved.

· · · · · ·
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pXi
(·|Mi)

Fig. 4. Illustration of the Xi-marginal input distribution pXi
(·|Mi) of

the codebook (27) conditioned on the modulo quantization message Mi ∈
{0, 1, · · · , k − 1}. (Here, pXi

(·|Mn) = pXi
(·|Mi), i = 1, · · · , n.) The

relay rate is R0 = log 3, i.e., k = 3 and ∆ = ∆̃/3. In the decoding
process, after Mi is used to subtract the correlated noise, we obtain a shifted
codebook whose Xi-marginals are plotted in purple (solid line). As ∆̃ → 0,
this marginal distribution approaches the centered Gaussian distribution with
variance P , which is capacity achieving for the direct channel.

The proposed modulo quantization scheme is not restricted
to the relay channel with Gaussian noise. The proof of
achievability depends only on the additive-noise structure of
the channel and the fact that the noises are identical. For
a primitive relay channel with generic additive noises that
are perfectly correlated, the superposed modulo quantization
scheme can also achieve channel capacity as long as there
exists a sequence of capacity-achieving lattice-supported codes
for the direct channel.

The proposed scheme resembles the HF scheme discussed
earlier, which is only applicable to discrete-alphabet channels.
The proposed modulo quantization scheme can be viewed
as a modification of the hash-and-forward scheme, as the
quantization process converts the continuous-alphabet channel
to a discrete-alphabet channel, and then the modulo operation
is used as a structured hashing method. We show in this paper
that when perfect noise correlation is present, this modified
HF scheme is able to achieve the capacity of the channel in
Fig. 1(c).

The proposed modulo quantization scheme in Section III-B
is related to a previously proposed color-and-forward scheme
[14]. Color-and-forward is a coding strategy for discrete-
alphabet primitive relay channels based on graph coloring that
ensures zero error probability. While it may be possible to
interpret the modulo quantization strategy proposed in this
paper as a generalized form of coloring, the focus of this paper
is quite different from that of [14]. Our aim is on how to take
advantage of the noise correlation for a continuous-alphabet
channel and how to superpose an error-correcting code for the
Gaussian channel onto a modulo quantization scheme.

While most of the discussions in this paper are restricted to
the case where the noises are perfectly correlated, we comment
here that the modulo quantization coding scheme can still be
applied when the noise correlation is not perfect. In this case,
the decoding would not be error free; a channel code would
need to be applied on top of the modulo quantization scheme.
This is left as future work.
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