
Transformer Based Active Sensing for

Generalizable Two-Sided Beam Alignment

Zhongze Zhang∗,†, Wei Yu∗, Jingge Zhu† and Jamie Evans†

∗Department of Electrical and Computer Engineering, University of Toronto, Canada
†Department of Electrical and Electronic Engineering, University of Melbourne, Australia

ufo.zhang@mail.utoronto.ca, weiyu@ece.utoronto.ca, {jingge.zhu, jse}@unimelb.edu.au

Abstract—Efficient two-sided beam alignment is critical for
maximizing wireless communication performance in mmWave
systems. Recently, a ping-pong pilot-based active sensing method
has been proposed to enable iterative refinement of beam
alignment by alternating pilot transmissions between the trans-
mitter (Tx) and receiver (Rx), allowing both ends to update
their beam directions based on received signal measurements.
This existing state-of-the-art approach relies on using machine
learning algorithm based on long short-term memory (LSTM)
network to process the sequential updates, but their ability to
generalize across diverse channel conditions is still limited. In this
work, we propose a transformer-based active sensing framework
that leverages self-attention to model complex spatial-temporal
relationships and to adapt to varying channel conditions. The
proposed method efficiently processes dynamically growing pilot
measurements and focuses on the most informative input to
enhance generalization without retraining. Experimental results
demonstrate that this new approach outperforms the LSTM
baseline across a mixture of wireless environments.

I. INTRODUCTION

Millimeter-wave (mmWave) communication systems rely

on highly directional beamforming to overcome severe prop-

agation loss. Efficient beam alignment between the trans-

mitter (Tx) and receiver (Rx) is essential for maximizing

link quality, especially in dynamic wireless environments

where channel characteristics vary significantly due to mobility

and blockage. Traditional methods such as exhaustive beam

search and hierarchical codebook training incur high overhead

and limited adaptability. To address these limitations, active

sensing techniques have emerged as a promising solution. In

particular, the recent work [1] proposes the ping-pong pilot

protocol to enable two-sided beam refinement by alternating

pilot transmissions between the Tx and Rx. This sequential

feedback-driven scheme allows each side to iteratively up-

date its beamforming strategy based on its own local pilot

observations, without requiring channel state information or

explicit feedback exchange and has shown to have excellent

performance.

To model the sequential nature of the ping-pong protocol,

prior work has applied recurrent neural networks (RNNs),

particularly the long short-term memory (LSTM) based archi-

tectures, to learn beamforming policies from pilot feedback

[1]–[4]. However, RNNs face limitations that hinder their

ability to generalize across diverse wireless environments.

Most notably, they compress the entire observation history

into a single hidden state, which limits the model’s capacity to

selectively preserve useful past information—especially when

the environment exhibits sparse and non-stationary structure.

Moreover, the recurrence mechanism enforces a strict sequen-

tial processing structure and complicates the learning of long-

range dependencies, making it harder to reuse information

from earlier rounds when it becomes relevant later. These

factors may restrict the generalizability of RNN-based sens-

ing policies when evaluated across different channel models,

signal-to-noise ratio (SNR) regimes, or propagation sparsities.

Recently, transformers have rapidly become foundational

tools across machine learning, demonstrating impressive ca-

pabilities in large language models (LLMs). We recognize

a compelling analogy between active sensing and interaction

with LLM, where LLMs operate by generating responses con-

ditioned on a sequence of prior inputs, dynamically adapting to

context as interactions evolve. This iterative, feedback-driven

process closely mirrors the class of active sensing problem

in wireless communication, where each received pilot signal

informs the next beamforming or sensing decision. Just as an

LLM tailors its output to a sequence of user queries, an active

sensing system tailors its sensing strategy to the sequence of

received signals. Furthermore, LLMs have shown remarkdable

generalizability for a wide range of tasks.

Motivated by the recent advances in LLMs, we propose

a transformer-based active sensing architecture for two-sided

beam alignment in mmWave MIMO systems. By framing

beam alignment as a sequence-to-decision problem, our ap-

proach uses masked self-attention to recursively process the

full pilot-beamformer history and infer the next beamforming

action at each round. The transformer’s ability to attend to all

previous rounds—rather than compressing them—enables the

model to extract invariant structures from the pilot observa-

tions, even as the number of paths, SNR, and angular char-

acteristics vary across environments. We hypothesize that this

inductive bias—assigning adaptive importance to past mea-

surements—is key to improving generalization. Recent works

have explored the use of transformers in wireless communica-

tion, including symbol detection via in-context learning [5]–[7]

and the development of foundation models for physical-layer

tasks [8]–[10], showing that transformer architectures are well-

suited to capturing complex spatiotemporal dependencies and

adapting across heterogeneous environments.

The proposed architecture introduces a pair of causal trans-

former decoders—one at the Tx and one at the Rx—each
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Fig. 1: Beam alignment using ping-pong pilot protocol. The sensing beam-
formers designed at Tx and Rx are highlighted as blue and orange, respec-
tively. The initial sensing beamformers are fixed, hence not colored.

of which processes a growing sequence of locally observed

pilot responses and beamformer vectors. At every pilot round,

the model constructs position-indexed input tokens from prior

rounds, embeds them into a latent space, and applies masked

self-attention to extract context-aware representations of the

history. The final attended history is then decoded into a pair

of beamformers: one used to transmit the current pilot and one

used to receive in the subsequent round. After several rounds

of pilot exchange, each side processes the full observation

history to synthesize a data-phase beamformer that maximizes

end-to-end gain.

To evaluate generalization, we consider a mixture of channel

environments, each characterized by a different number of

propagation paths and operating SNR. The transformer de-

coders are trained end-to-end over this mixture to maximize

the expected beamforming gain, without access to environment

labels. Transformer-based architecture offers two key advan-

tages over recurrent models: i) self-attention allows the model

to revisit and prioritize informative pilot-beamformer interac-

tions throughout the sequence, unlike RNNs which compress

all past information into a fixed-size hidden state; and ii) the

architecture accommodates variable-length input by design,

enabling seamless adaptation as the number of pilot rounds

increases. Numerical results demonstrate that the proposed

method outperforms LSTM-based baselines, particularly in

few-pilot regimes under diverse channel conditions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a narrowband mmWave MIMO system con-

sisting of a Tx and a Rx, each equipped with a uniform linear

array (ULA) of NTx and NRx antennas, respectively. Both

transceivers operate under a single radio frequency (RF) chain

hybrid beamforming architecture. We use vTx ∈ C
NTx and

vRx ∈ C
NRx to denote the beamforming vectors at the Tx and

the Rx, respectively. To ensure a strong communication link,

the beamforming pair {vTx,vRx} should be jointly designed

based on the channel state information (CSI) to maximize the

achievable rate. This joint optimization task is known as the

two-sided beam alignment problem.

Here, we denote H ∈ C
NTx×NRx as the uplink channel

matrix from the Rx to the Tx, and HH as the downlink chan-

nel, where we assume that the system follows a time-division

duplex (TDD) protocol with channel reciprocity. Further, a

block-fading channel model is adopted in which the channel

coefficients are assumed to remain constant over multiple time

frames during a coherence block, but change independently

from block to block. We model the mmWave channel as a

sparse multipath channel

H =

Lp
∑

i=1

βiuTx(θi)u
H
Rx(ϕi), (1)

where Lp denotes the number of propagation paths, βi denotes

the complex channel gain, θi and ϕi denotes the angle-of-

departure (AoD) and the angle-of-arrival (AoA) for the i-th

path, and uTx(·), uRx(·) are the transmit and receive steering

vectors.

We assume the channel model is drawn from a mixture

of dataset. To promote generalization capability across de-

ployment environments, we generate a finite mixture of K

fixed environment models, denoted by E1, · · · , EK . In each

environment Ek, the channel is generated from some sparse

multipath channel model with a distinct number of propagation

paths at some operating SNR. Parameters such as angular

distribution and antenna configurations are fixed across en-

vironments. The environment model Ek, k ∈ {1, 2, · · · ,K} is

sampled uniformly at random. A channel realization H is then

generated accordingly. The alignment strategy must operate

without the knowledge of the environment model.

During data transmission, the received signal at the Rx is

modeled as:

z = vH
RxH

HvTxs+ n, (2)

where s ∈ C is the transmit data symbol with E[|s|2] = P ,

and n ∼ CN (0, σ2) is the complex Gaussian noise. The beam

alignment objective is to maximize the squared beamforming

gain |vH
RxH

HvTx|2.
If H is known, the optimal transmit and receive beamform-

ing vectors should align with the left and right singular vectors

associated with the largest singular value of H . However, in

practice, H is unknown and must be estimated through pilot

training. Conventional pilot training strategies typically use

randomly selected beamformers from a codebook to probe

the channel, but the performance is restricted by the quality

of the codebook [11]. To overcome these limitations, authors

of [1] propose a novel ping-pong pilot transmission protocol

that operates without feedback and demonstrates strong beam

alignment performance with reduced pilot training overhead.

We adopt this protocol in this paper.

B. Ping-Pong Pilot Protocol

The ping-pong pilot protocol enables adaptive beam refine-

ment by sending pilots back and forth between the Tx and Rx.

Each side iteratively accumulates measurements to update its

beampatterns to improve alignment. Here, we remark that the

beamforming vectors during the pilot training phase are known



as sensing vectors to distinguish them from the beamforming

vectors {vTx,vRx} in the data transmission phase.

In each round, the Tx transmits a pilot to the Rx. The Rx,

upon receiving the pilot, transmits a return pilot back to the

Tx, as shown in Fig. 1. Specifically, in the t-th round, the Tx

transmits a known pilot symbol s
(t)
Tx (under a power constraint

E[|s(t)Tx|2] ≤ P1) using a transmit sensing beamforming vector

f
(t)
Tx ∈ C

NTx . The Rx receives the pilot with a receive sensing

beamforming vector w
(t)
Rx ∈ C

NRx . The received pilot at the

Rx is given by

y
(t)
Rx = (w

(t)
Rx)

HHHf
(t)
Txs

(t)
Tx + n

(t)
Rx, t = 0, · · · , T − 1, (3)

where n
(t)
Rx ∼ CN (0, σ2) denotes the additive Gaussian noise.

Upon receiving the pilot, the Rx transmits a return pilot

using its transmit sensing beamforming vector f
(t)
Rx , received

at the Tx with receive sensing beamforming vector w
(t)
Tx. The

received return pilot at the Tx is as follows

y
(t)
Tx = (w

(t)
Tx)

HHf
(t)
Rxs

(t)
Rx + n

(t)
Tx, t = 0, · · · , T − 1, (4)

where s
(t)
Rx denotes the return pilot symbol under a power

constraint E[|s(t)Rx|2] ≤ P2, and n
(t)
Tx ∼ CN (0, σ2) denotes

the additive Gaussian noise.

As t increases, the Tx and the Rx log their own received

pilots and sensing vectors, forming local observation histories:

O
(t)
Tx =

{(

y
(0)
Tx ,w

(0)
Tx ,f

(0)
Tx

)

, · · · ,
(

y
(t)
Tx,w

(t)
Tx,f

(t)
Tx

)}

, (5a)

O
(t)
Rx =

{(

y
(0)
Rx ,w

(0)
Rx ,f

(0)
Rx

)

, · · · ,
(

y
(t)
Rx,w

(t)
Rx,f

(t)
Rx

)}

. (5b)

After T rounds of pilot transmission, a total of 2T pilot

symbols are transmitted between the Tx and the Rx. Each of

the Tx and Rx acquires sufficient information from their local

histories, O
(T−1)
Tx and O

(T−1)
Rx , to design their beamforming

vectors for the data transmission phase.

C. Problem Formulation

The task of two-sided beam alignment is formulated as

a sequential decision-making problem, where the Tx and

the Rx adaptively design their transmit and receive sensing

beamformers over multiple rounds of pilot exchange, as more

measurements become available.

At the t-th transmission round, the Tx transmits a pilot to the

Rx. The Rx, based on the complete local observation history

up to round t, selects a transmit sensing beamforming vector

to be used in the same round as well as a receive sensing

beamforming vector for use in the subsequent round. These

decisions are expressed as follows.

f
(t)
Rx = G(t)

Rx

(

O
(t)
Rx

)

, w
(t+1)
Rx = G̃(t)

Rx

(

O
(t)
Rx

)

, (6)

where G(t)
Rx(·) and G̃(t)

Rx(·) are functions that map the Rx

observation histories up to round t to transmit and receive

sensing beamforming vectors, respectively.

Likewise, the Tx designs a transmit sensing beamforming

vector as well as a receive sensing beamforming vector for

use in the round t+1, based on the local observation histories

up to round t, as follows

f
(t+1)
Tx = G(t)

Tx

(

O
(t)
Tx

)

, w
(t+1)
Tx = G̃(t)

Tx

(

O
(t)
Tx

)

, (7)

where G(t)
Tx(·) and G̃(t)

Tx(·) are mapping from the Tx observa-

tion histories up to round t to transmit and receive sensing

beamforming vectors respectively.

After T pilot rounds, the Tx and the Rx generate their final

beamforming vector for data transmission

vTx = FTx

(

O
(T−1)
Tx

)

, vRx = FRx

(

O
(T−1)
Rx

)

, (8)

where FTx(·) and FRx(·) denote the mapping from full

observation histories to the final data beamforming vectors.

The beamforming alignment task is to jointly design the

sensing beamformer mapping in (6), (7) and the final beam-

forming mapping in (8), such that the average beamforming

gain is maximized over the mixture of environments:

maximize
S

E |vH
RxH

HvTx|2 (9a)

subject to (6), (7), (8), (9b)

where the optimization variables are a set of functions

S : {FTx(·),FRx(·), {G
(t)
Rx(·)}

T−1
t=0 , {G

(t)
Tx(·), G̃

(t)
Tx(·), G̃

(t)
Rx(·)}

T−2
t=0 }.

(10)

III. PROPOSED TRANSFORMER-BASED SOLUTION

We adopt a data-driven approach to beam alignment by

learning a mapping from previously observed pilot responses

and beamformer actions to the next beamforming decision.

This formulation aligns naturally with the transformer decoder

architecture, which is well-suited for autoregressive sequence

modeling. Unlike recurrent models such as LSTMs, which

compress the entire sequence into a single hidden state,

transformers use self-attention to maintain direct access to the

full input history. This design is better suited for generaliza-

tion, particularly in variable environments, because it allows

the model to focus on informative parts of the observation

history, even if they appear early in the sequence. In our

application, this means that the model can dynamically attend

to pilot-beamformer interactions that reveal stable channel

features—such as dominant paths or angular structure—even

as the SNR or path count changes.

A. Overview of the Transformer Model

At the core of the transformer architecture is the query-key-

value attention mechanism. The transformer decoder operates

by embedding each token into a fixed-dimensional vector

space and adding a positional encoding to preserve sequence

order. Each embedded token is then projected into query,

key, and value vectors. The attention mechanism computes a

similarity between the current token’s query and all previous

keys to determine which values to attend to. Conceptually,

the values contain knowledge from prior rounds, the keys

determine which pieces of that knowledge are relevant, and

the query defines what the model is currently looking for. As
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Fig. 2: Neural network architecture.

the sequence grows over time and passes through successive

transformer layers, the query, key and value representations

evolve from shallow encodings of direct measurements into

more abstract and aggregated forms that capture structural

channel information. This mechanism enables context-aware

decision making without compressing the entire history.

We use a causal transformer decoder, rather than an encoder

architecture, because beam alignment is inherently sequential

and autoregressive: the received pilot at round t depends on the

beamformer chosen at round t, and that beamformer must be

selected based on observations from rounds < t. A transformer

encoder, by contrast, assumes access to the full input sequence

and allows bidirectional attention across tokens. The causal

mask in the decoder ensures that each output depends only

on past and current tokens. As the number of pilot rounds

increases, the architecture processes longer sequences while

retaining fixed model parameters, enabling the model to adapt

naturally to different sensing horizons.

B. Input Representation and Tokenization

We construct observation tokens from observation histories

(historical pilot measurements and beamforming vectors) to

serve as input to the transformer decoder. Recall that O
(t)
Tx

denotes the observation histories at the Tx up to round t. We

group the information available at the Tx at the i-th round to

a tuple

T
(i)
Tx = (y

(i)
Tx,w

(i)
Tx,f

(i)
Tx), i = 0, · · · , t. (11)

Subsequently, the tuple is embedded into a real-valued vector

space using a learned linear projection. Specifically, let R(·)
and I(·) denote the real and imaginary components of a

complex value. The embedded observation at round i is

e
(i)
Tx = WTx,E

(

R(T
(i)
Tx), I(T

(i)
Tx)
)

, (12)

where WTx,E(·) : R2+4NTx → R
d is a learned linear map,

and d is the model’s hidden dimension. Similarly, WRx,E(·) :
R

2+4NRx → R
d is a learned linear map with the same hidden

dimension at the Rx transformer decoder.

Finally, as transformers are inherently permutation-

invariant, we incorporate sinusoidal positional encodings

p(i) ∈ R
d into embedded observation to preserve the order

of observations across rounds. An observation token is given

by

ẽ
(i)
Tx = e

(i)
Tx + p(i). (13)

C. Causal Attention-based Sequence Processing

At the round t, the input to the transformer decoder at the

Tx is a sequence of observation tokens

Ẽ
(t)
Tx = [ẽ

(0)
Tx, ẽ

(1)
Tx, · · · , ẽ

(t)
Tx] ∈ R

(t+1)×d. (14)

Within the transformer decoder, the self-attention mecha-

nism operates on Ẽ
(t)
Tx as

Q
(t)
Tx = WTx,Q(Ẽ

(t)
Tx), (15a)

K
(t)
Tx = WTx,K(Ẽ

(t)
Tx), (15b)

V
(t)
Tx = WTx,V(Ẽ

(t)
Tx), (15c)

where WTx,Q,WTx,K,WTx,V ∈ R
d×d are learned linear

maps. The attention matrix A
(t)
Tx is computed:

A
(t)
Tx = softmax

(

Q
(t)
Tx(K

(t)
Tx)

⊤

√
d

+M (t)

)

, (16)

where M (t) ∈ R
(t+1)×(t+1) is the causal mask to ensure

[A
(t)
Tx]ij = 0 for j > i. We use causal mask to ensure that

the token at position i only attends to current and past tokens,

preserving the temporal structure of the beam alignment task.

This is achieved by constructing the mask as a lower triangular

matrix with −∞ above the main diagonal, effectively masking

out the upper triangle of the attention matrix.

The attended history matrix at the Tx is as follows:

Z
(t)
Tx = A

(t)
TxV

(t)
Tx ∈ R

(t+1)×d. (17)

Each row z
(i)
Tx ∈ R

d represents the attended history vector up

to round i. We can interpret z
(i)
Tx as an evolving representation

of the belief about the channel. The attention matrix A
(t)
Tx

plays a central role in updating this belief by computing

weighted averages over previous observations to filter the more

informative observations. The final row z
(t)
Tx contains the latest

attended history and is used to generate the transmit sensing

beamformer and receive sensing beamformer in the round t+1:

f
(t+1)
Tx = WTx,f(z

(t)
Tx) ∈ C

NTx , (18a)

w
(t+1)
Tx = WTx,w(z

(t)
Tx) ∈ C

NTx , (18b)

where WTx,f and WTx,w are deep neural networks (DNNs)

that perform such a mapping R
d → C

NTx . The transformer de-

coder at the Rx follows the same methodology from (11)-(18)

to design its own sensing beamformer pairs {f (t+1)
Rx ,w

(t+1)
Rx }

from its attended history z
(t)
Rx up to round t.

Here, we note that the model parameter WTx,∆, ∆ ∈
{E, Q, K, V, f, w} are all independent of t. This design choice

allows a single transformer decoder to be applied recurrently,

even as the input sequence grows with time. While the input
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Fig. 3: Beamforming gain vs. pilot rounds, K = 25, NTx = 64, NRx = 32.

length increases linearly with t, the dimensionality per token

stays fixed at d which does not change the model architecture.

This is analogous to how LLMs handle user inputs of varying

lengths without modifying the underlying architecture.

After T rounds of pilot transmission, the final beamformer

for data transmission at the Tx and Rx are produced based on

the complete attended histories z
(T−1)
Tx and z

(T−1)
Rx

vTx = ℓTx(z
(T−1)
Tx ) ∈ C

NTx , (19a)

vRx = ℓRx(z
(T−1)
Rx ) ∈ C

NRx , (19b)

where ℓTx(·) and ℓRx(·) are DNNs. The entire model is trained

end-to-end to maximize the final beamforming gain after T

rounds of ping-pong pilot exchange over a mixture of dataset

with K environments of different number of probation paths

and operating SNR.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

algorithm for the two-sided beam alignment problem. We

consider a system with NTx = 64 antennas at the Tx and

NRx = 32 antennas at the Rx. The number of paths between

the Tx and Rx is set to {3, 5, 8, 10, 15}. The operating SNR (in

dB) ranges in {−10,−5, 0, 5, 10}. For each channel realiza-

tion. the AoAs/AoDs are uniformly distributed in [−60◦, 60◦],
and the complex fading coefficients are randomly drawn from

the distribution CN (0, 1).
Compressive sensing with random vector [12]: This method

adopts the compressive sensing method in which the orthog-

onal matching pursuit (OMP) algorithm is used to estimate

the channel H . The sensing vectors are randomly generated.

Given the estimated channel, the beamformer for data trans-

mission are given by SVD method.

DNN with learned RIS configurations: The sequence

of sensing beamformers is non-adaptive and is learned

from the channel statistics in the training data. Two deep

neural network of dimensions [200, 200, 200, 2NTx] and

[200, 200, 200, 2NRx] map received pilots over T time frames

to Tx beamformer and Rx beamformer respectively.

When evaluating in a single-environment setting (K = 1),

the transformer performs similarly to the LSTM, suggesting

limited advantage in homogeneous conditions. To evaluate

generalization, we consider a multi-environment setting (K =
25) where each channel realization is drawn from a mixture

of different path counts and SNR values. As shown in Fig. 3,

the proposed transformer model outperforms LSTM and non-

adaptive baselines across all pilot lengths. The performance

gap between the transformer and LSTM persists even as

the number of pilot rounds increases, suggesting that the

transformer’s inductive bias and ability to attend over full

observation sequences provide better generalization across

heterogeneous environments.

V. CONCLUSION

This paper presents a transformer-based architecture for

two-sided active beam alignment in mmWave MIMO systems.

Building on a sequential pilot exchange protocol, we formulate

the beam alignment problem as a sequential decision process

and propose a pair of causal transformer decoders—one at

the Tx and one at the Rx—to generate adaptive sensing

strategies. By processing sequences of past pilot observations

and beamformers using masked self-attention, the proposed ar-

chitecture learns to generalize across a mixture of propagation

environments with varying SNR and path sparsity.
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