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Abstract

Using a numerical approach, tradeoffs between code rate and decoding com-
plexity are studied for long-block-length irregular low-density parity-check codes
decoded using the sum-product algorithm under the usual parallel-update message-
passing schedule. The channel is an additive white Gaussian noise channel and the
modulation format is binary antipodal signalling, although the methodology can
be extended to any other channels for which a density evolution analysis may be
carried out. A measure is introduced that incorporates two factors that contribute
to the decoding complexity. One factor, which scales linearly with the number of
edges in the code’s factor graph, measures the number of operations required to
carry out a single decoding iteration. The other factor is an estimate of the number
of iterations required to reduce the the bit-error probability from that given by the
channel to a desired target. The decoding complexity measure is obtained from a
density-evolution analysis of the code, which is used to relate decoding complex-
ity with the code’s degree distribution and code rate. One natural optimization
problem that arises in this context is to maximize code rate for a given channel
subject to a constraint on decoding complexity. At one extreme (no constraint on
decoding complexity) one obtains the “threshold-optimized” LDPC codes that have
been the focus of much attention in recent years. Such codes themselves represent
one possible means of trading decoding complexity for rate, as such codes can be
applied in channels better than the one for which they are designed, achieving the
benefit of a reduced decoding complexity. However, it is found that the codes op-
timized using the methods described in this paper provide a better tradeoff, often
achieving the same code rate with approximately 1/3 the decoding complexity of
the threshold-optimized codes.

1 Introduction

The problem of designing capacity-approaching irregular low-density parity-check (LDPC)
codes under different decoding algorithms and channel models has been studied exten-
sively (e.g., as a starting point, see [1, 2, 3]). The usual design objective is to find a
code degree distribution that maximizes the decoding threshold (e.g., the largest noise
variance for which successful decoding is possible) for a given rate or, equivalently, to



find a degree distribution that maximizes the code rate for a given decoding threshold.
In practice, however, such codes would require an impractically large number of decoding
iterations. In fact, for decoding algorithms with the property that message distributions
can be described by a single parameter, it is proved that, in the limit, the required num-
ber of iterations for convergence approaches infinity as the rate of the code increases [4].
As a result, a threshold-optimized code in practice must be used over a channel different
(better) than the one for which the code is designed.

The problem with the threshold-optimization approach is that decoding complexity
is not considered in the process of code design. Put another way, if one wishes to design
a practically-decodable code, it may be best to further trade the decoding threshold for
a more desirable decoding trajectory. If decoding complexity could be incorporated in
the design process, one could find the highest-rate code for a certain affordable level of
complexity on a given channel condition or, the code with the minimum decoding com-
plexity for a required rate and a given channel condition. Clearly, these design objectives
better reflect the requirements of practical communication-system design. Towards this
end, we show in this paper how the decoding complexity of an irregular LDPC code can
be related to its degree distribution. We then formulate a methodology that is capable
of finding low-complexity degree distributions for a given code rate and channel.

Understanding the performance/complexity tradeoff has always been a central issue
in coding theory. In recent years, particularly since the discovery of capacity-approaching
codes, “performance” has come to mean the achievable code rate. For the binary erasure
channel (BEC), the rate/complexity issue is addressed by Shokrollahi [5] for LDPC codes,
and by Khandekar and McEliece [6] and also Sason and Urbanke [7] for irregular repeat-
accumulate codes. Decoding the output of an erasure channel is quite different than
decoding the output of a noisy channel, as the decoding procedure operates via an edge-
deletion process, whose complexity scales linearly with the number of edges in the code’s
factor graph. However, for other channel models, decoding is an iterative process, and so
a decoding complexity measure must also scale with the required number of iterations.
This observation has previously been made in the work of Richardson and Urbanke [2],
where a numerical design procedure for irregular LDPC codes involving a measure of the
number of iterations is proposed. Recently, in [8], we studied this problem for LDPC
coding under Gallager’s decoding Algorithm B [9] over the binary symmetric channel.
The results of [8] rely on the one-dimensional nature of decoding Algorithm B. This
paper addresses complexity-based designs for the general binary-input symmetric-output
channels, and symmetric decoding. That is to say, as long as a density evolution analysis
of the decoder is possible, our method of complexity optimization is applicable.

In this work, although the decoding complexity of an LDPC code is related to its
degree distribution via a one-dimensional representation of the decoder, the results are
not based on a one-dimensional analysis. We use density evolution for the analysis, yet
represent the convergence behavior in a one-dimensional format that we call an extrinsic
information transfer (EXIT) chart (despite the fact that it tracks the message error rate
rather than the mutual information, and the fact that it is based on a density evolution
analysis instead of a Gaussian approximation). A one-dimensional representation plays a
central role in the formulation of the code-design problem [10] as well as in the formulation
of complexity in terms of the code degree distribution [8].

The rest of this paper is organized as follows. In Sections 2 and 3, we briefly review
elementary EXIT charts and their role in irregular LDPC code design as well as a method
for obtaining elementary EXIT charts through density evolution. In Section 4 we define



the decoding complexity and we present a formula which relates the degree distribution of
the code to its decoding complexity for achieving a certain target error rate. In Section 5,
the optimization problem is formulated and the optimization methodology is described.
The numerically optimized degree distributions and the complexity-performance tradeoff
curves for a Gaussian channel are presented in Section 6 and the paper is concluded in
Section 7.

2 Preliminaries

Following the notation of [1], we define an ensemble of irregular LDPC codes by its
variable-degree distribution {λ2, λ3, . . .} and its check-degree distribution {ρ2, ρ3, . . .},
where λi denotes the fraction of edges incident on variable nodes of degree i and ρj

denotes the fraction of edges incident on check nodes of degree j. If all the parity
constraints are linearly independent, it is easy to see that the rate of an irregular LDPC
code is related to its degree distribution by

R(λ, ρ) = 1−
∑

i
ρi

i∑
i

λi

i

. (1)

If, due to the random construction of the code, some of the parity check constraints are
linearly dependent, the actual rate of the code will be slightly higher.

There are many decoding algorithms available for LDPC codes. If the decoding al-
gorithm and the channel satisfy some symmetry properties [11], performance of a given
code can be studied by density evolution. The inputs to the density evolution algorithm
[11] are the probability density function (pdf) of channel log-likelihood ratio (LLR) mes-
sages1 and the pdf of the extrinsic LLR messages from the previous iteration. The output
is the pdf of the extrinsic LLR messages at the current iterations. This density will be
used as input for finding the message density in the next iteration. The negative tail of
the LLR density is the message error rate. If decoding is successful, this tail vanishes as
the number of iterations tends to infinity.

In the above discussion, one iteration is defined as one round of message updates at
both the check nodes and the variable nodes. In other words, the input to one iteration
is the messages sent from variable nodes to check nodes and the output is the same set of
messages after being updated at check nodes and variable nodes. We assume that these
updates occur in parallel, even though it is possible that a serial updating schedule may
result in fewer iterations.

3 EXIT chart representation of density evolution

An EXIT chart based on message error rate is motivated by Gallager’s decoding Algo-
rithm B [9]. Using Algorithm B to decode a regular LDPC code, it is easy to establish
a recursive equation that provides an exact description of the message error rate after a
given number of iterations. In this case, a pin vs. pout EXIT chart is precisely a graphical
representation of this equation.

With this in mind, from density evolution we may obtain a pin vs. pout EXIT chart
for an arbitrary channel and decoder pair as follows. After performing N iterations of

1Under the assumption that the all-zero codeword is transmitted.



density evolution, one can visualize the convergence behavior of the decoder by plotting
the extrinsic message error rate of iteration m, m ∈ {1, 2, · · · , N} (let us call this p(m))
vs. the extrinsic message error rate of iteration m − 1, i.e., p(m−1). This resembles the
EXIT chart analysis of [12], hence we call it an EXIT chart. This can also be represented
as a mapping (a function)

p(m) = f(p(m−1), λ, ρ), m ∈ {1, 2, · · · , N}. (2)

Notice that the above defined method results in an EXIT chart which is defined on N
discrete points. Also notice that f as well as its domain and range are influenced by the
code parameters λ and ρ. Nevertheless, using Bayes’ rule we have

p(m) =
∑

i

λi · p(m)
i , (3)

where p
(m)
i is the message error rate at the output of degree i variable nodes at iteration

m. Equation (3) can be rewritten as

f(p, λ, ρ) =
∑

i

λi · fi(p, λ, ρ), (4)

where fi(p, λ, ρ) can be thought as an EXIT chart associated with degree i nodes. This
is similar to elementary EXIT charts of [4], where the EXIT chart of an irregular code
decomposes as a linear combination of EXIT charts of left-regular codes. This reduces
the problem of code design to the problem of shaping an EXIT chart out of some pre-
computed elementary EXIT charts. It is evident here that elementary EXIT charts are
central to the formulation of the optimization problem of interest.

However, as the elementary EXIT charts of (4) are functions of λ, the EXIT chart of
the code is affected by λk in two ways. One is through the linear combination of (4) as
a multiplying factor and the other one is the effect of λ on fi(p, λ, ρ)’s, i.e.,

∂f(p, λ, ρ)

∂λk

= fk(p, λ, ρ) +
∑

i

λi
∂fi(p, λ, ρ)

∂λk

. (5)

In practice, the first term on the right hand of (5) is much larger than the second term.
Therefore, as long as λ undergoes a small change, we may disregard the dependency of
elementary EXIT charts on λ. Fixing ρ, (4) can be simplified to

f(p) =
∑

i

λi · fi(p), (6)

which is equivalent to the formulation of [4]. However, due to the dependency of elemen-
tary EXIT charts on λ, they have to be updated when λ undergoes a large change.

Another technical issue (which arises here but not in the case of Algorithm B) is that
the elementary EXIT charts cannot be computed individually from left-regular codes.
There are two reasons for this. First of all, the probability distribution associated with
Algorithm B can be described by a single parameter. Therefore, a particular value of pin

maps to a unique input distribution. However, in the case of the Gaussian channel, the
input distribution at a particular value of pin is dependent on λ, and can only be obtained
by performing full density evolution on the entire code at once. Secondly, analysis of
Algorithm B provides an explicit formula for the left-regular elementary EXIT charts.



Therefore, a component code that may not converge on its own during density evolution,
say a code which has exclusively degree-two variable nodes, nevertheless has an explicit
representation that allows one to construct a pin vs. pout curve over its entire domain.
For the case of the Gaussian channel, if one conducts density evolution on an elementary
degree-two variable code, the process would fail to converge for most cases of interest,
preventing us from obtaining an elementary EXIT chart defined over the full domain of
pin.

To overcome these problems, we obtain elementary EXIT charts by running density
evolution for the irregular code. At each iteration, we find the LLR message pdf at the
output of variable nodes of different degrees, and we extract the LLR message error rate
(negative tail of pdf) for each variable node degree. This forms fi(p, λ, ρ). Here, it is
assumed that the irregular code will converge to the specified target error rate, which
guarantees that the elementary EXIT charts are defined over a discrete set of p such that
min(p) ≤ pt, where pt is the target error rate specified in the code design problem. This
allows for shaping an EXIT chart of desired properties over the range of interest. By
interpolating, one can acquire a continuous version of the elementary EXIT charts over
the interval [pt, p0], where p0 is the initial message error rate (from the channel messages)
and pt is the target error rate.

4 Decoding Complexity Analysis

In this section, we first study the decoding complexity per iteration, and then we analyze
the required number of iterations for a target error rate.

4.1 Decoding complexity per iteration

For a message-passing decoder, it is not hard to see that the decoding complexity per
iteration scales roughly linearly with the number of edges. This is because each edge
carries a message, and each message has to be updated at each iteration, and such
an update requires essentially constant computational effort. A detailed study of this
complexity for the sum-product decoding (which can be extended to general message-
passing rules) is as follows.

At a variable node of degree dv, a maximum of 2dv operations is enough to compute
all the output messages. Notice that at each variable node, one can add all dv + 1 input
LLR messages in dv operations. To compute each outgoing message, one subtraction is
required. Since dv outgoing messages should be computed, the total number of operations
(addition and subtraction) per iteration at the variable nodes is 2

∑
v dv, or equivalently

2E, where E is the number of edges in the graph.
Similarly, at a check node of degree dc, a total of 2dc − 1 operations is needed. The

number of operations can be counted as follows: first (dc − 1) products (of tanh) need
to be performed, then one division per outgoing message (taking tanh and atanh is not
considered as an operation). Since there are dc outgoing messages, the total number of
operations is 2dc−1, which results in a total of 2E−C operations, where C is the number
of check nodes.

The overall complexity per iteration is then 4E − C, which is roughly proportional
to E, since usually 4E � C. Therefore, in this work we assume that the complexity
per iteration is simply proportional to E. This complexity has to be normalized per
information bit to be meaningful. The complexity per information bit per iteration is



then proportional to
E

Rn
, (7)

where R is the code rate and n is the block length.

4.2 Analysis of Number of Iterations

As mentioned earlier, for the binary erasure channel, since decoding is an edge deletion
process, the total complexity is measured as the number of edges. However, in all other
message-passing decoding algorithms, the number of iterations directly affects the total
decoding complexity. The complexity discussion in the previous section was only for one
iteration. Considering N decoding iterations, from (7) and (1), the overall complexity
per information bit, X, can be measured as

X =
N∑

i λi/i−
∑

i ρi/i
. (8)

Therefore, to find the total complexity, the required number of iterations, N , should be
estimated.

The number of iteration strongly depends on the shape of the EXIT chart f(p) and
the target message error rate. It is shown in [8] that the number of required iterations
can be closely approximated as

N =

∫ p0

pt

dp

p log
(

p
f(p)

) . (9)

This formula is a very accurate estimate of the number of iterations for a wide range of
f(p)’s. Some examples are provided in [8].

We finish this section by rewriting (8), explicitly in terms of the code degree distri-
bution. That is

X(λ, ρ) =
1∑

i λi/i−
∑

i ρi/i

∫ p0

pt

dp

p log
(

p∑
i λifi(p)

) . (10)

It is also shown in [8] that for a fixed ρ this complexity measure is a convex function of
λ over the set {

λ : ∀p
(

1

e2
≤

∑
λifi(p)

p
≤ 1

)}
.

5 Optimization Methodology

Following the approach of [8], we minimize the complexity of a code subject to a rate
constraint. By varying the target rate and solving the sequence of optimization problems,
we obtain the complexity-rate tradeoff curve.

For simplicity, let us assume that ρ is fixed. There exists convincing evidence that
conventional rate/threshold optimization techniques are not very sensitive to ρ. For
instance, it is shown that codes with regular check degree can achieve the capacity of
the binary erasure channel [5] and can perform very close to the Shannon limit on the
Gaussian channel [10]. Recall that the fixed ρ assumption, together with the assumption
of keeping λ in a small region of space, results in (6), which defines a linear relation



between the design parameters, i.e., λ’s, and the shape of the EXIT chart of the irregular
code. However, it should be noted that for a given target rate, varying ρ affects both
the number of decoding iterations as well as the number of edges in the code’s graph.
Therefore, evidence indicating that concentrated check degrees are sufficient for threshold
optimized codes may not extend to complexity optimized codes, for which we can further
trade decoding iterations for the density of edges. A joint optimization of both ρ and λ
may be beneficial, but we focus on the optimization of λ herein.

To solve the optimization problem, we suggest solving a sequence of problems of the
following form:

minimize

(
1−R0

R0

∑
i ρi/i

) ∫ p0

pt

dp

p log
(

p∑
i λifi(p)

) (11)

subject to
∑

i

λi/i ≥
1

1−R0

∑
i

ρi/i∑
i

λi = 1

λi ≥ 0

‖λ− λ̄‖2 ≤ ε

Here, ρi is fixed, ε is the radius of a search sphere, R0 is some target rate, λ̄ is the initial
value of λ, and λ is the optimization variable.

We begin with λ̄ set to the variable degree distribution of the maximum rate code
for the desired channel condition, with its corresponding elementary EXIT charts fi(p).
Such a distribution can be found by an iterative linear programming formulation that
similarly considers elementary EXIT charts to be invariant under small changes in λ.
Next, we set R0 to our target rate, and solve a sequence of optimization problems (11)
iteratively until we obtain a minimal complexity code. As shown in [8], with a fixed set
of fi(p), the optimization problem (11) is convex in λi. Thus, a global optimum solution
may be found efficiently at each iteration step. At the end of each iteration, which is
typically limited in progress due to ε, we set λ̄ to the most recently computed λ, and
recompute the elementary EXIT charts. In practice, we choose a larger ε in earlier stages
and a smaller one in later stages.

Our preceeding analysis suggests that ε should be quite small in order to provide
valid results, thus requiring frequent calls to the density evolution routine. However, a
slightly different and empirically more efficient optimization approach is also possible.
Consider a modified version of the above optimization problem that omits the search
sphere constraint on λ, but that solves a series of problems with a rate constraint R0

that is successively decreased between iterations, say by 1%, until a target rate is reached.
Note that a small change in rate does not necessarily imply a small change in λ, and fur-
thermore that the computed minimum will generally not be equal to the true minimum.
Nevertheless, the results achieved using such an approach are strikingly similar to those
achieved with a restrictive search sphere constraint. Therefore as long as the change in
rate between iterations is relatively small, this more efficient method generates nearly
equivalent results. In both cases, we find that the complexity metric imposes an aversion
to low-degree variable nodes.
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Figure 1: Complexity-rate tradeoff on an AWGN channel with noise σ = 0.9 for an irregular
LDPC code with check degree 9 and sum-product decoding. The lower curve is the complexity-rate
optimized code design. The upper curve is produced by designing the highest threshold code for
each rate.

6 Numerical Results and Discussion

In this section, we present the results of our numerical optimization on a binary-input
additive white Gaussian noise channel with noise σ = 0.9. The target error rate is set to
10−7. To allow for a fair comparison between our design method and conventional design
methods, threshold optimized codes of different rates, as produced by LdpcOpt [13], are
tested on the channel of study and their rate is plotted versus their complexity in Fig.
1. The results of the rate-complexity tradeoff after performing our optimization are also
plotted on the same figure. As can be seen, the new code-design technique results in
significantly more efficient codes. In many cases, the decoding complexity is reduced by
a factor of three or more. All the codes are limited to a maximum variable node degree
of 30. Additionally, regular check degrees of degree 8, 9 and 10 were used. The plotted
results consist of the best of the three codes at each value of the rate. Table 1 compares
the degree distribution of a rate half code found through the new optimization technique
for the above channel, with a rate half code found through conventional design methods.
Both codes have a regular check degree of 9.

Fig. 2(a) compares the EXIT charts of the codes presented in Table 1. Fig. 2(b) shows
the same EXIT charts but in log scale. Observe that the rate-complexity optimized code
has a tighter EXIT chart in the earlier iterations and a wider EXIT chart at the later
iterations. It is proved in [4] that, for a wide class of decoding algorithms, when the EXIT
chart of two codes, f (1)(p) and f (2)(p) satisfy f (1)(p) ≥ f (2)(p),∀p ∈ (0, p0] then f (1)(p)
corresponds to a higher rate. Also in [14] it is proved that for the binary erasure channel,
the area underneath the EXIT chart scales with the code rate. In this example, since both
codes have the same rate, one EXIT chart cannot dominate the other one everywhere,
but the optimization program carefully trades the area underneath the EXIT chart for
the complexity. By opening up the EXIT chart close to the origin, we do not expect a



Deg. TO RCO Deg. TO RCO Deg. TO RCO
2 0.2124 0.0623 11 0.0000 0.0173 19 0.0000 0.0255
3 0.1985 0.4948 12 0.0000 0.0260 20 0.0003 0.0217
5 0.0084 0.0000 13 0.0000 0.0313 21 0.0000 0.0176
6 0.0747 0.0000 14 0.0000 0.0340 22 0.0000 0.0132
7 0.0142 0.0000 15 0.0000 0.0346 23 0.0000 0.0086
8 0.1665 0.0118 16 0.0000 0.0337 24 0.0000 0.0038
9 0.0091 0.0000 17 0.0000 0.0317 25 0.0000 0.0008
10 0.0200 0.0048 18 0.0000 0.0288 30 0.2959 0.0975

Table 1: Degree distributions of two rate-1/2 codes, one optimized for threshold (TO) and the
other optimized for rate and complexity (RCO). Total decoding complexity per information bit is
estimated at 1143 (with 127 iterations) for the former and 342 (with 38 iterations) for the latter.

significant rate loss, yet we obtain a significant complexity gain. The small rate loss is
then compensated for by slightly tightening up the EXIT chart in early iterations (which
have no considerable impact on the complexity).
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Figure 2: EXIT charts for complexity-rate optimized codes: (a) linear scale, (b) log scale.

7 Concluding Remarks

This paper proposes a new LDPC code-design objective based on a joint optimization of
rate and complexity. The paper argues that the conventional LDPC code-design which
maximizes the code rate alone is not the best approach for practical purposes. The central
observation is that, through a one-dimensional representation of convergence behavior,
the decoding complexity of an irregular LDPC code can be related to its degree distribu-
tion in a closed form, hence a joint optimization of rate and complexity is possible. Our
technique is applicable to all binary-input symmetric-output channels, where a density
evolution analysis is possible. Numerical results on a Gaussian channel show substantial
complexity reduction using the new optimization technique.
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