0-7803-9151-9/05/$20.00 © 2005 IEEE

Density Evolution for the Simultaneous Decoding
of LDPC-based Slepian-Wolf Source Codes

Andrew W. Eckford and Wei Yu
The E. S. Rogers Sr. Dept. of Electrical and Computer Engineering, University of Toronto
10 King’s College Road, Toronto, Ontario, Canada MS5S 3G4
E-mail: andrew.eckford @utoronto.ca, weiyu@comm.utoronto.ca

Abstract— This paper deals with the design and analysis
of low-density parity-check (LDPC) codes for the Slepian-
Wolf problem. The main contribution is a code design method
based on a density evolution (DE) analysis for the cases
where multiple LDPC codes are simultaneously decoded at the
decoder. Good source codes are designed both for memoryless
sources and sources with Markov memory. Further, simulta-
neous decoding is generalized to the case of source splitting,
which allows non-corner points of the Slepian-Wolf region
to be achieved even for sources with equiprobable marginal
distributions.

I. INTRODUCTION

Interest in the elegant Slepian-Wolf theorem for coding
of correlated sources recently was invigorated by a prac-
tical scheme to achieve the theorem’s performance bound.
Inspired by some early work by Wyner [1], the method of
distributed source coding using syndromes (DISCUS) [2]
adapted channel codes to give a practical method to perform
both encoding and decoding for two (or more) sources, so
long as the encoders were restricted to particular points on
the boundary of allowed rates (known as corner points). As
a result, a large and growing body of research is adapting
Turbo codes and LDPC codes to approach the Slepian-
Wolf bound, much as they have been used to approach the
Shannon bound for channel coding.

It is well known that corner points are achievable with
LDPC codes, whether the source is memoryless [3] or has
Markov memory [4], [5]. Density evolution (DE) [6], a
technique for determining asymptotic performance of LDPC
codes, has been applied to both these cases. The question
of achieving non-corner points has been addressed in two
ways: the sources z and y can be split up into three virtual
sources = = (z(1), 2(?)) and y, to form virtual corner points
[7], [8], or one can encode both sources = and y as LDPC
codes and simultaneously decode the two encoded sources,
so the encoders can offset each others’ rates [9], [10].

Both approaches have certain drawbacks. In source split-
ting, the conventional approach is to decode the source codes
serially, obtaining (1 then y, then 22, Although this
approach can theoretically achieve the Slepian-Wolf bound,
it potentially sacrifices flexibility, performance, and code
length. On the other hand, the simultaneous decoding in [9],
[10] has limited applicability. It is only possible to decode
both codes for certain skewed source distributions, where
the marginal source distributions are far from equiprobable.

1401

We argue that a better approach is to do both rate splitting
and simultaneous decoding at once. That is, we can split
the sources into = = (z(1), 2(?)) and v, and simultaneously
decode x(z), and y (since, at a virtual corner point, @ s
encoded independently). In this paper, we combine source
splitting and simultaneous decoding and use this combined
framework to achieve non-corner points in the Slepian-Wolf
rate region, even for sources with an equiprobable marginal
distribution. Furthermore, this method applies to sources
both with and without memory.

This paper makes the following contributions:

o Simultaneous decoding for sources with memory. Previ-
ous work on coding for sources with memory (such as
in [4], [5]) has focused on corner points on the Slepian-
Wolf bound. Simultaneous decoding is used to avoid
this restriction.

o Density evolution analysis of simultaneous decoding.
Density evolution (DE) [6] has previously been used
in LDPC source code design (such as in [3], [5],
[9], [11]), but it has not been adapted to the case of
simultaneously decoding the LDPC codes.

e Design of LDPC codes using density evolution. We
use the density evolution algorithm we derived to
design good source codes for sources with and without
memory.

The remainder of this paper is organized as follows. In
Section II, we describe the system and discuss simultaneous
decoding of the LDPC codes. In Section III, we show
that source splitting can be included as a generalization of
our simultaneous decoding framework. In Section IV, we
discuss the extension of our framework to cases where the
sources have memory. In Section V, we present good degree
sequences for LDPC Slepian-Wolf codes that were found
using our techniques.

II. SIMULTANEOUS DECODING

In this section, we discuss the simultaneous decoder first
outlined in [9] and [10], and show how to analyze it using
DE. The following definition will be useful in this section:
the function o : {0,1} — {+1,—1} converts between two
different types of binary alphabets, where o(0) = +1 and
o(l)=—-1.

ISIT 2005

ARRAANRKAR

LDPC edge permutation

0390070095075%0
RPPPPPPLIPPPPR

LDPC edge permutation
¥ ¥y ¥ Y Y yYwy

Fig. 1.

A depiction of a simultaneous LDPC source decoder.

A. Model

Let z € {0,1}™ and y € {0, 1}" represent binary sources
observed at different Slepian-Wolf encoders (expressed as
row vectors), where z; and xz; (resp., y; and y;) are
independent for all 4 # j. The joint PMF px, v, (%, y;)
is the same for all ¢, and parameterizes the source coding
problem by establishing the statistical relationship between
xT; and Yi-

Encoding is accomplished using LDPC codes, as follows.
An LDPC code is associated with both x and y, and in
general the two codes are different. Let H(*) and H®)
represent the parity check matrices of the LDPC code
associated with = and y, respectively. For each source vector,
we form the syndromes (i.e., the vectors of parity bits)
s = zH® and s = yH®. Each encoder transmits
only its syndrome, so the encoded sequence for z and y are
s(®) and s¥), respectively.

As usual for an LDPC code, the decoder may be repre-
sented using a factor graph, and decoded using the sum-
product algorithm (SPA) [12], with a couple of caveats:

o The syndromes s(*) and s(*) represent the parity checks
at which even parity is replaced with odd parity. If
the message m is calculated by the usual SPA at the
output of a parity check node, and the syndrome bit s
is associated with that parity check, the correct value
of the message becomes mo(s).

o The prior probabilities on the source letters (or intrin-
sic probabilities) are calculated by » . px, v;(zi,y:)
for y;, and 3 px,vi(@,y) for x;. At sub-
sequent iterations, extrinsic information messages
p()f)(azl) and pgf) (y;) are obtained from the de-
cociing of the LDPC code, and the prior proba-
bilities then become) px,v, (xz,yz)pgf)(%) and
>y PX.Yi (ziyyi)pgf)(yi) for y; and w;, respectively.
(Messages are passed as log-likelihood ratios.)

This setup is depicted in Fig. 1.

By simultaneous decoding, we mean that the two LDPC
codes are decoded at the same time, and that the two
decoders exchange SPA messages to help each other decode.
(The alternative would be to wait until one LDPC code
completes its decoding before passing messages to the
other, which we call serial decoding.) As a message-passing

LDPC subgraph

AARAARARARA

SIS S EEEETTTT

Linking subgraph

P22 RRRRRRRRR

LDPC edge permutation

E Y F Y Y

LDPC subgraph

Fig. 2.
decoder.

The three decoding subgraphs in a simultaneous LDPC source

schedule, we propose the parallel update schedule, in which
updates occur at each variable node simultaneously, and then
at each factor node simultaneously, regardless of type.

B. Message calculation and DE

The decoder may be broken down into three subgraphs:
the LDPC decoder for the symbols z, the LDPC decoder
for the symbols y, and the linking channel nodes linking
the two decoders, as in Fig. 2. The SPA is well understood
for the two decoder subgraphs. For the linking nodes, the
message passed from source symbol x; to source symbol
y;, written cgy), is a function of the extrinsic message for
x;, designated mgx). Let ¢ : {0,1} x R — [0, 1] represent
the function ¢(a,b) = 1 + o(a)tanh (%), and note that
pg(Ei) (2:) = t(x;,m ™). Then we have
og le PXx;.y; (l'i, Yi = 0)@[)(1‘17 mgx))

> e, DX (Tiy Y = 1)¢($i7m§z))’
and similarly for the message from y to z.

When operating at a corner point of the Slepian-Wolf
rate region, there is a clear equivalence between a source
and a binary noise sequence in a binary symmetric channel.
A similar equivalence exists for joint decoding. Define a
joint binary symmetric channel (JBSC) as a channel with
two binary inputs [uj ;,us2;], two binary outputs [v ;, v 4],
and binary noise [z1,,%2;], so that vi; = u1,; ® 21,
and Vo = U2; D 29;. Let PI’le’ZZJ (21’1',2’277;) represent
the noise process PMF for this JBSC. If the channel
inputs are LDPC codewords from the codes in Fig. 1,
and Prx; v, (21,4, 22;) = Pr(z1,,22,) for every setting of
[#1,i, 22,;], then it is straightforward to show that the two
decoders have the same probability of error. In particular, for
a joint binary source (z,y), we say that the source decoder is
equivalent to a channel decoder for a joint binary symmetric
channel where (x,y) is the pair of noise sequences.

cl(-y) =1

oY)

1402

As a consequence of this equivalence, we can perform DE
with respect to a JBSC rather than the more complicated
case of an LDPC coset code, and the decoder structure
remains the same as in Fig. 2. For the joint nodes, the
message passed from a symbol u; ; to a symbol us ;, written
cgw), is a function of the channel outputs [v; ;,v2;], and
the extrinsic message for uy ;, designated mgul). Thus, this
message is given by

o" = @
1 qul PVy . Vo (v1,i,v2,i|u1,i,u2,;=0)(u1,:,m (ul))
0og

Zul PVvy 5.Va; (V16,0240 i,u2, i =1) 9 (ua, um(vy’

DE in each decoder subgraph is well understood. For the
nodes in the linking subgraph, which calculate the function
in (2), given an input density for mgul) and [v; 1, v; 2], many
methods exist for obtaining the density of CEW . As one
simple example, the input densities could be sampled, and
each sample associated with a probability. That probability
is then associated with the probability of the corresponding
output cz(-"Z). Furthermore, it is straightforward to show that
the cycle-free assumption is satisfied in a graph such as in
Fig. 1.

C. A remark on SPA decoding

Suppose we had a source distribution given by
r=y=0z=y=1;

0.49,
pxy(z,y) = vy

0.01,

It is easy to calculate that the conditional entropies for this
source are H(X|Y) = H(Y|X) = 0.141, which is low
enough to make it an excellent candidate for Slepian-Wolf
encoding. However, the marginal distributions of z and y
are equiprobable, so from the perspective of the decoder in
Fig. 1, the system starts off with no prior information at
all about = or y — in fact, their prior information behaves
exactly like erasures.

Under SPA decoding, for a parity check node with degree
greater than one, if any input message is an erasure, the
output message will always be an erasure. Thus, when
all the input prior information is initially “erased,” such
as in a case like (3), the SPA can never begin decoding,
because the output messages at the parity check nodes will
always be erasures. To initiate the SPA process, there must
be some way of receiving prior information about at least
some fraction of the source symbols. This suggests the use
of source splitting, and in the next section we introduce
a generalization of the simultaneous decoder that we call
source splitting with simultaneous decoding.

3

III. SOURCE SPLITTING WITH SIMULTANEOUS
DECODING

Source splitting (also called rate splitting) is a technique
used in Slepian-Wolf coding [7]. In the case with two
sources (as before, designated = and y), the source x is
broken into two sub-sources: z(!) and z(?). This is done
using a random sequence ¢ € {0, 1}", which is available to

2 233582883

LDPC edge permutation

IR ERRE:
0000039000

LDPC edge permutation

A A1

e

Fig. 3. A depiction of source splitting with simultaneous decoding.

both the encoder and decoder (for example, using a pseudo-
random sequence with the same seed), where ¢ := Pr(t; =
1) is the source splitting parameter. The source alphabets
for (1) and 2 are ternary, so that z(*) € {0, 1,E¥" and
@ € {0,1,E}". If t; = 0, then 9351) =z; and wEQ =FE;
otherwise, if t; = 1, then x(l) F and xz(?) = ;.

The key observation is that these three pseudo-sources,
M, 2(®) and y, can be encoded as a vertex point in
their Slepian-Wolf rate region. We firstly encode z(!) as an
independent source, then we encode y assuming knowledge
of (1), and finally we encode x(?) assuming knowledge of
=M and y.

Notice that the shared random vector ¢ tells the decoder
exactly when the letter £ occurs in both z(!) and z(?),
so only the {0,1} portions need to be encoded. Since the
sources are assumed memoryless, and letting w; represent
the Hamming weight of ¢, without loss of generality we can
re-arrange the elements of 2(!) so that the first w; are the
{0,1} elements. Similarly, we can re-arrange z(?) so that
the first n — w, are the {0, 1} elements. The E elements of
2 and 2 need not be encoded, and are thus ignored.

A. A simultaneous decoding view of source splitting

We can encode z(!) in an arbitrary manner (so long as its
rate is at the source entropy), but we wish to encode z(%)
and y using LDPC codes. From the perspective of y, all the
values of z(1) are perfectly known, but the values of z(?)
are provided via an LDPC decoder. From the perspective
of z(®, all its inputs are related to values of y, which are
provided by its LDPC decoder. This setup is depicted in
Fig. 3.

Concerning the encoding of multiple sources, [11] and
[14] suggest that the decoders should not decode seri-
ally, since under the source-splitting assumption, entropy-
approaching codes likely exist that do not require simul-
taneous decoding. We take a different approach, explicitly
requiring the decoders to operate simultaneously, and de-
signing them accordingly. This gives the system designer
flexibility: if serial decoding is enforced, then once ¢ is
fixed, the required rates of 2!, 2(2), and y are also fixed;

1403

however, simultaneous decoding permits a range of possible
rates of the three sources for a given ¢. Fixing ¢ may lead
to lower complexity at the encoder by, for instance, fixing
the memory sizes for () and 23, Certainly, simultaneous
decoding will have a positive impact on probability of error
and required code length.

B. Message calculation and DE

To take the perfectly known source symbols z(!) into
account, we notice that perfect knowledge of one source
letter is equivalent to perfect knowledge of the correspond-
ing symbol z;. Let égy) represent the message from x to y
if z; is perfectly known. Then

px..vi (i, yi = 0)

px.yi (i, yi = 1)

The actual value of the overall message from x to y is a
function of ¢;, as follows:

() = {
(v)

;- is the quantity calculated in (1). Meanwhile, the
message ch) from y to x is always given by the value from
(1), since the values of y are never revealed.

Once again, we may invoke the equivalence of this
decoder to that of a JBSC to simplify DE for this system,
and maintain the analogy of u;; to = and ug; to y. The
case where t; = 0 is equivalent to exact knowledge of the
element z;; (or the symbol u;), and égw) is a function
of [v1,;,v2,]. In density evolution, we perform a mixture
of the densities of these two message, weighted by the
source-splitting parameter ¢. Techniques such as those used
to calculate DE in section II may be re-used in this case.

él(.y) = log

~(y) _
C;my fi = 0,

4)
ng), ti = 1;

where ¢

IV. SOURCES WITH MEMORY
A. Model

Although it is commonly assumed for convenience’s sake
that consecutive source values are memoryless, in reality it
is extremely common for physical phenomena to be time-
correlated. Once again, let z € {0,1}" and y € {0,1}"
represent binary sources observed at different encoders.
Furthermore, for some discrete, finite alphabet S, let s € S™
represent a vector of hidden source states, and we assume
that s forms a Markov chain with transition probability
matrix P, where the state transition probabilities are inde-
pendent of = and y. For each possible state p € S, there
exist source statistics px; v, (%;, yi|si = p), so the source is
parameterized by the matrix P and the set of source statistics
{px.v;(xi,yilsi = p) : p € S}. For the remainder of the
paper, we will be concerned with the case where S = {1, 2},
and as a slight generalization of the model in [4], we allow
the two conditional joint source PMFs to be arbitrary.

Encoding is performed in the same manner as in the
memoryless case. In terms of decoding, the operations in the
LDPC subgraphs are clearly the same as before, but the joint
channel nodes must contend with the hidden Markov chain.

There are two new messages passed through the Markov
chain: the forward message «, passed from state s; to s;41;
the backward message (3, passed from state s; 1 to state s;,
which are functions of the extrinsic messages pgf)(acz) and

pg,?) (y;). These messages are given by

alsis) = K Y pxvi(@iyilsi)als)
Ti,YiySq
E E
D.r (101150 ()05 ()
Blsi) = K Z px,,v; (Tis Yilsi) B(Sit1)

TirYirSi+1

FE E
Psia (511500 (@) (v:)

where K represents an optional normalization constant. The
calculation of the messages c;,; and cp; are also modified,
but we omit them for reasons of space.

B. A comment on source splitting

In the memoryless case, the source was split using a
random sequence ¢, which divided the original source x into
two sub-sources. In a source with memory with length n, we
take the first n¢ source symbols as (!), and the remaining
n(1 — ¢) source symbols as 2(?). Since x is an arbitrarily
long hidden Markov source, then if ¢ > 0 and for almost
all P, the entropy rates and conditional entropy rates for the
subsets (1) and z(?) will be H(XM) = H(XM| X)) =
SH(X), and H(X®?) = H(XPA|XxD) = (1 — ¢)H(X).
Thus their combined entropy rate will be H(X™M) +
HX@|XW) = 6H(X) + (1 - §)H(X) = H(X).
Practically, the asymptotically small loss in splitting the
source * down the middle can be mitigated by using the
decoded version of z(!) to aid in decoding z(?), which is
permitted under source splitting.

From the perspective of source y, splitting x into two
chunks seems to lead to two different channels, one benefit-
ing from the perfectly known (1), and the other having no
such benefit. We instead create a single equivalent channel
by implementing an interleaver (known by the decoder) at
the encoder for y. Because the interleaver is known at the
decoder, the source memory is preserved, but the known
instants of z(1) are spread randomly throughout the source
from the perspective of the decoder for y. This step is
optional, and we do it to reduce the complexity of density
evolution.

C. Density evolution

We firstly extend our observation on decoder equivalence
to the case of joint sources with Markov memory. De-
fine a Markov-modulated joint binary symmetric channel
(MMIBSC) as a generalization of the JBSC to the case
where a hidden Markov channel state selects the joint
inversion probabilities. That is, there exists a hidden Markov
state sequence s with transition probability matrix P, and
conditioned on the state s;, the channel at any given time
is a JBSC with noise process PMF Prz, | 7, (21, 22,4 | 53).-

1404

In particular, letting Prx, vy, (z;,v:|s;) represent the joint
conditional source statistics, if Prx,y;(z1,,224]%) =
Pryz, , z,.(21,, 22,i|5:) for every setting of [z; 1,2 2] and
si, and the transition probability matrices P are the same,
then it is easy to show that the two decoders have the same
probability of error.

Armed with this observation, we can use density evolution
to analyze the simultaneous decoder for a source with mem-
ory. There are many possible ways to do so; for instance, the
density evolution may be computed explicitly, as in the case
of the Gilbert-Elliott channel in [15]. Another possibility is
to use Monte Carlo simulation to obtain a histogram of the
output messages for the source state estimator. We used the
Monte Carlo method, since it easily scales to a large number
of states.

V. RESULTS

We are given two correlated sources, possibly with time
dependence. In designing our two encoders, we fix the
two check degree sequences, p(*) and p(¥), and vary the
variable degree sequences, A(*) and A(%), to minimize the
transmission rate for a given source and a given rate-splitting
parameter ¢. A maximum variable degree was enforced, and
differential evolution was used to search for good codes. The
total rate of the Slepian-Wolf encoder is given by

poZip)i | S i

@ () /:

Zj >‘j /3 Zj)‘j /3

where R_ (1) is the rate used in encoding the independently

coded portion of z. The objective is then to get as close

to the Slepian-Wolf bound as possible while preserving the

ability to decode the codes. For each candidate, consisting

of (A®) p®), (AW p®) and ¢, we use DE to verify
successful decoding.

For a memoryless source with joint probabilities given by

¢ + Rz(l) ’

0.473,
0.027,

T = Yi,
Ti 7 Yis
with joint entropy H(X,Y) = 1.3032. Setting ¢ = 0.2, we
have found degree sequences given as follows:

b

Px, v (%i, ¥s) = {

M@ =]00.4068 0.4347 0.0425 0 0 0.0804 0.0356]
p® = [000001]
AW = [00.43330.2866 0.0357 0 0 0.1132 0.1312)
p¥) [000001]

with rates R,z = 0.4446 and R, = 0.4712. Assuming
(M is encoded at entropy, the overall rate is R = 1.3602,
roughly 4% greater than the joint entropy. For higher check
degrees, we have found a code

@) = [00.31190.4255 0.125 0 0 0.0843 0.04 0.0133)
P = [0000001]

AW = [00.33170.2722 0.0078 0 0 0.0678 0.2783 0.0422]
p) [0000001]

with rates R, = 0.4110 and R, = 0.4643. Assuming
(1) is encoded at entropy, the overall rate is R = 1.3465,
roughly 3% greater than the joint entropy.

For a source with memory, with px, v, (z;, y;|s;) given
by

Ty Y 0,0 0,1 1,0 1,1
s;=110.86|0.02]0.02] 0.1
s;i=21 06 |005]|0.05]03

and transition probability matrix P with 0.95 in the diagonal
elements and 0.05 in the off-diagonal elements, we have
found degree sequences given by AS” = 0.1661, A\ =
0.7183, AL = 0.0024, A% = 0.1132; A} = 0.2608,
AP = 06356, AY = 0.0024, AY) = 0.0988, A
0.0024; and péx) = péy) = 1, again with ¢ = 0.2. The joint
entropy rate of the source is given by H(X,Y) = 1.1154,
and the two given codes have rates of R) = 0.4914 and
R, = 0.4665 (assuming (M) is encoded at entropy rate),
which approaches to about 6% of the bound.

REFERENCES

[1] A.D. Wyner, “Recent results in the Shannon theory,” IEEE Trans. In-
form. Theory, vol. 44, no. 1, pp. 2-10, Jan. 1974.

S. S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (DISCUS): Design and construction,” IEEE Trans. In-
form. Theory, vol. 49, no. 3, pp. 626-643, Mar. 2003.

D. Schonberg, K. Ramchandran, and S. S. Pradhan, “LDPC codes
can approach the Slepian Wolf bound for general binary sources,”
Proc. 40th Allerton Conf. on Commun., Control, and Computing,
Monticello, 1L, 2002.

J. Garcia-Frias and W. Zhong, “LDPC codes for compression of
multi-terminal sources with hidden Markov correlation,” IEEE Com-
mun. Letters, vol. 7, no. 3, pp. 115-117, Mar. 2003.

T. Tian, J. Garcia-Frias, and W. Zhong, “Density evolution analysis of
correlated sources compressed with LDPC codes,” Proc. 2003 ISIT,
Yokohama, Japan, 2003.

T. J. Richardson and R. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,” IEEE Trans. In-
form. Theory, vol. 47, no. 2, pp. 599-618, Feb. 2001.

B. Rimoldi and R. Urbanke, “Asynchronous Slepian-Wolf coding via
source-splitting,” Proc. 1997 ISIT, Ulm, Germany, 1997.

F. Cabarcas and J. Garcia-Frias, “Approaching the Slepian-Wolf
boundary using practical channel codes,” Proc. 2004 ISIT, Chicago,
IL, 2004.

D. Schonberg, K. Ramchandran, and S. S. Pradhan, “Distributed
code constructions for the entire Slepian-Wolf rate region for arbi-
trarily correlated sources,” Proc. 2004 Data Compression Conference
(DCC), Snowbird, UT, 2004.

T. P. Coleman, A. H. Lee, M. Médard, and M. Effros, “On some
new approaches to practical Slepian-Wolf compression inspired by
channel coding,” Proc. 2004 DCC, Snowbird, UT, 2004.

A. D. Liveris, C.-F. Lan, K. R. Narayanan, Z. Xiong, and
C. N. Georghiades, “Slepian-Wolf coding of three binary sources
using LDPC codes,” Proc. 3rd Intl. Symp. on Turbo codes, pp. 63-66,
Brest, France, 2003.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47,
no. 2, pp. 498-519, Feb. 2001.

S. Cheng and Z. Xiong, “Channel symmetry in Slepian-Wolf code
design based on LDPC codes with application to the quadratic
Gaussian Wyner-Ziv problem,” Proc. 2004 ITW, San Antonio, TX,
2004.

C.-F. Lan, A. D. Liveris, K. R. Narayanan, Z. Xiong, and
C. N. Georghiades, “Slepian-Wolf coding of multiple M-ary sources
using LDPC codes,” Proc. 2004 DCC, Snowbird, UT, 2004.

A. W. Eckford, F. R. Kschischang, and S. Pasupathy, “Analysis of low-
density parity-check codes for the Gilbert-Elliott channel,” to appear
in IEEE Trans. Inform. Theory.

[2]

[3]

(4]

(5]

[6]

(71
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

1405

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Andrew W. Eckford
	Also by Wei Yu

	blhs:
	pg1401:
	brhs:
	pg1402:
	pg1403:
	pg1404:
	pg1405:

