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Abstract— Practical implementation of random binning is one
of the key challenges in achieving the largest available rate
regions for many multiuser channels. This paper explores the use
of low-density parity-check (LDPC) like codes for a particular
kind of deterministic broadcast channel called the Blackwell
channel and illustrates that random linear codes can be used
to construct practical binning schemes at rates close to the
capacity region of the Blackwell channel. The key ingredient is
an encoding algorithm known as “survey propagation” which is
a generalization of the well-known belief propagation algorithm
for LDPC codes. Survey propagation has been previously devised
for a class of constraint satisfaction problems called K-SAT. This
paper shows that the encoding problem for the Blackwell channel
contains the same features as the constraint satisfaction problem
and that the survey propagation algorithm, when concatenated
with an outer error correcting code, works well at rates close to
the Blackwell channel capacity region.

I. INTRODUCTION

In a broadcast channel, a single transmitter sends indepen-
dent information to multiple receivers at the same time. A
key idea in coding for the broadcast channel is the binning
strategy, which allows the transmitter to embed information
by selecting a codeword in an appropriate bin. The receivers
recover information by identifying the correct bin index rather
than the codeword itself. The largest achievable rate region
for the broadcast channel using the binning strategy is known
as the Marton’s region. For a discrete memoryless broadcast
channel p(y1, y2|x), the Marton’s region is the union of:

R1 ≤ I(U1;Y1)
R2 ≤ I(U2;Y2) (1)

R1 + R2 ≤ I(U1;Y1) + I(U2;Y2) − I(U1;U2)

over joint distributions p(u1, u2)p(x|u1, u2), where U1 and U2

are auxiliary random variables. Although a general converse
is not yet known, the Marton’s region has been proved to be
optimal for degraded, less noisy, more capable, deterministic,
semi-deterministic, and recently the Gaussian vector broadcast
channel [1] [2]. A comprehensive review of the broadcast
channel problem can be found in [1] and references therein.

A sketch of the achievability proof for the Marton’s region
goes as follows. The transmitter generates 2nI(U1;Y1) un

1 ’s and
2nI(U2;Y2) un

2 ’s at random. These un
1 ’s and un

2 ’s are binned
into 2nR1 and 2nR2 bins, respectively. To transmit a pair of
indices m1 ∈ {1, · · · , 2nR1} and m2 ∈ {1, · · · , 2nR2}, the
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r searches in the joint bin indexed by m1 and m2 and
jointly typical pair of (un

1 , un
2 ) in the joint bin. The

tter then finds an xn jointly typical with (un
1 , un

2 ), and
n. The decoders receive yn

1 and yn
2 respectively, look

jointly typical with yn
1 , and ûn

2 jointly typical with
recover the respective bin indices of ûn

1 and ûn
2 . The

ility of encoding and decoding error goes to zero as n
infinity if R1 and R2 are within the capacity region

n (1).
paper deals with practical implementation of random
for the broadcast channel. In addition to the broadcast

l problem, random binning is also at the heart of several
mportant results in multiuser information theory. For
e, binning is an essential part of the coding theorem
distributed source coding problem (the lossless version
ch is often referred to as the Slepian-Wolf problem.)
se, binning also plays a key role in source and channel
problems with side information. Thus, practical imple-
on of binning is of great interests.
ntly a great deal of progress has been made in the
l implementation of binning for lossless source coding.
case, the existing practical single-user channel coding
s based on low-density parity-check (LDPC) codes are
applicable. In the single-user channel coding problem,
LDPC codes with iterative sum-product decoding

m have been shown to achieve very close to the single-
pacity. This remarkable development in LDPC codes is

applicable to binning for the Slepian-Wolf problem
source coding with side information problem (e.g.

[5]), because the encoding process in source coding is
that of finding a closest codeword based on a correlated
tion sequence.
ever, results from LDPC codes do not translate di-
o practical implementation of binning for the broadcast
l problem or the channel coding with side information

. This is because the iterative sum-product decoder is
ue maximum likelihood decoder. The iterative decoding
m works whenever the received signal is a noisy
of the transmitted codeword. This is the case in single-
annel coding problems, where the decoding process

s of recovering the codeword based on a perturbed
tion sequence. Decoding is possible when the noise
due to the perturbation is sufficiently small. In contrast,



for the broadcast channel, the message is sent via the bin
index. The encoding process consists of finding a sequence
in a particular bin that is jointly typical with some existing
sequence. This is akin to the quantization process in which
the sequence to be quantized is not necessarily in a noise
sphere. While a true maximum likelihood decoder would have
been equally applicable to both problems, for an iterative sub-
optimal algorithm, the decoding of the single-user channel
code is considerably easier.

Existing practical binning schemes for channel coding are
often based on structured codes and maximum likelihood
decoding. In [6], Zamir, Shamai and Erez explored the use
of lattice codes for multiterminal binning. It is shown that
lattice codes are capacity achieving. However, the complexity
of lattice decoding grows rapidly with the dimension of the
code. In [7], Erez and ten Brink used nested convolutional and
turbo codes to approach the Gaussian channel capacity with
side information where the binning process is implemented
using maximum likelihood Viterbi algorithm at the encoder.
Likewise, a related problem is solved in [8] for the binary
symmetric channel with side information. All the above work
use structured codes for binning.

Random practical codes are first used for quantization
in the recent work of Martinian and Yedidia [9]. In [9],
random codes and the iterative decoding algorithm are used
for the quantization of a binary erasure source. However, the
quantization process of [9] works for erasure sources only and
is not applicable to the general broadcast channel.

This paper takes a different direction and directly explores
practical random binning methods for the broadcast channel.
Toward this end, we illustrate that low-density parity-check
codes can be used as a practical binning scheme for a particular
kind of deterministic broadcast channel called the Blackwell
channel. Our use of the LDPC codes for binning in a broadcast
channel is different from the use of LDPC codes for binning in
the Slepian-Wolf problem. As mentioned earlier, the former is
similar to a quantization process which is more difficult than
the decoding of channel codes in the Slepian-Wolf setting.
Consequently, decoding algorithms which are more powerful
than the iterative sum-product algorithm (which works well in
the Slepian-Wolf problem) is needed. The sum-product algo-
rithm is also known as the belief propagation algorithm. The
main contribution of this paper is the use of a new algorithm
called “survey propagation” for binning. Survey propagation
was first proposed for solving constraint satisfaction problems
[10] [11]. This paper shows that binning for the broadcast
channel is similar to constraint satisfaction, and that survey
propagation, when combined with random parity-check codes
and with a concatenated outer code, works well at rates close
to the Blackwell channel capacity region.

Our work is most related to the previous algebraic construc-
tion of zero-error codes for the Blackwell channel by Vanroose
and van der Meulen [12] where optimal codes with small block
length (of less than 10) are constructed. Our approach is quite
different in that random codes with large block length are
constructed and a probabilistic decoding algorithm is used.
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Fig. 1. The Blackwell Channel

II. BLACKWELL CHANNEL

acity Region

Blackwell channel belongs to a class of deterministic
own as noiseless) broadcast channels, where the chan-
sition is deterministic (or p(y1, y2|x) is a 0-1 function.)
deterministic broadcast channel, the Marton’s region is

l [13]. This can be seen as follows. Choose the auxiliary
variables U1 and U2 in (1) as U1 = Y1 and U2 = Y2.
choice is possible because Y1 and Y2 are known at

smitter.) In this case, the Marton’s region reduces to:

R1 ≤ H(Y1)
R2 ≤ H(Y2)

R1 + R2 ≤ H(Y1, Y2). (2)

, this is the best possible region under any fixed input
tion p(x). The entire capacity region is then the union
bove region over all p(x).
ll-known example of the deterministic broadcast chan-
the Blackwell channel as illustrated in Fig. 1. In

kwell channel, the input has three symbols and the
have two symbols each. Out of four possible output

ations, one of them is not allowed. The other three
ations can be reached by selecting one of the three
mbols. As shown in Fig. 1, the disallowed combination

). The Blackwell channel is one of the first non-trivial
st channels studied in depth. The Blackwell channel

esting because it clearly illustrates the conflict between
tting information to Y1 and transmitting to Y2.
e Blackwell channel, X can be directly determined
1, Y2). Thus, H(Y1, Y2) = H(X). It is then easy to see
input distribution p(x) = {1

3 , 1
3 , 1

3} maximizes the sum
the Blackwell channel. For the rest of this paper, we fix
ticular choice of input distribution and aim to approach
lting rate region with practical coding methods. With
ut distribution, the Marton’s region becomes:

R1 ≤ H

(
1
3

)

R2 ≤ H

(
1
3

)

R1 + R2 ≤ log2(3). (3)

gion is a pentagon as shown in Fig. 2. One of its corner
is R1 = H

(
1
3

)
and R2 = log2(3) − H

(
1
3

)
= 2

3 . Note
sum rate is as high as if the receivers also cooperate.
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Fig. 3. Coding for the Blackwell channel

B. Coding Scheme

The main coding idea for the Blackwell channel is binning.
As mentioned earlier, the optimal U1 and U2 for the Blackwell
channel is U1 = Y1 and U2 = Y2. The code construction
involves the generation of 2nH(Y1) yn

1 sequences and 2nH(Y2)

yn
2 sequences, and a random assignment of these sequences

into 2nR1 and 2nR2 bins, respectively. To transmit a particular
pair of bin indices (i, j), the transmitter looks for a pair of yn

1

in bin i and yn
2 in bin j such that they are jointly typical. The

transmitter then selects the input symbols to produce this pair
of (yn

1 , yn
2 ) at the output.

In this paper, we consider the use of linear coset codes for
binning. In this case, binning can be accomplished via parity-
check codes. The set of yn

1 ’s in a bin is defined as the set of
n-sequences that satisfy a particular set of parity-check values.
Thus, the values of parity checks (or the syndrome) is exactly
the bin index. In Marton’s coding scheme, the bin indices are
message bits. Thus, with linear coset codes the messages are
the values of parity checks.

For the Blackwell channel, the joint typicality of yn
1 and

yn
2 (or equivalently that of un

1 and un
2 ) is equivalent to being

consistent with respect to the channel constraint. Since an
output (1, 1) cannot occur in a Blackwell channel, the problem
of finding a jointly typical (yn

1 , yn
2 ) is precisely the problem of

finding yn
1 and yn

2 such that (1, 1) never occurs in any position.
Fig. 3 illustrates the graphical coding structure for achieving

an arbitrary rate pair (R1, R2). In the figure, circles are
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2 . There are two types of constraint nodes. The
int nodes at the top are essentially NAND constraints
ivalently product constraints), ensuring that the (1, 1)
ation does not occur. The bottom constraints are the
arity check constraints. They are connected to the
nodes at random. The values of these bottom parities

bin indices, which are the message bits sent through
nnel. The encoding process consists of the following.
formation bits nR1 and nR2 are placed at the parity
at the bottom. The encoding task is to find the set

able assignments that satisfy the parity checks and at
e time satisfy the product constraints at the top, i.e.,

n = 0 ∀n. These two sets of constraints ensure that a
(yn

1 , yn
2 ) that belongs to the appropriate bins can be

o that there exists an input xn that can produce this
(yn

1 , yn
2 ) at the output.

error events occur exclusively in the encoding process.
or occurs when the encoder fails to find a set of

assignments that are consistent with both constraints.
coding process is simple and error free. The decoder
(yn

1 , yn
2 ) from the channel and recovers the message

ing the parity checks.
that the two parity-check matrices at the bottom can be
ly chosen, while the product constraints at the top are

inistic. It is interesting to note that in spite of sharing
f the same structures, this type of codes considered for
ckwell channel is quite different from the usual LDPC
For example, in the usual LDPC codes the values of the
hecks are always zero. Also, because of the constraint
1) can never occur, the variable nodes in Fig. 3 have
bility of 1

3 to be 1 and a probability of 2
3 to be 0.

III. ENCODING ALGORITHM

ef Propagation

llustrated in the previous section, the linear-code en-
problem for the Blackwell channel is equivalent to

traint satisfaction problem with two different kinds
straints. Therefore, the performance of a Blackwell
l encoding scheme hinges strongly on the ability for the
g algorithm to solve the constraint satisfaction problem
tly. Clearly exhaustive search is not feasible when the
ength is large.
proposed random linear coding scheme is inspired by
nomenal success of iterative message-passing decoding
ms for low-density parity-check codes for channel
In the message-passing algorithm, the variable nodes
constraint nodes pass messages back and forth, where

ssages represent the beliefs whether a variable node
be assigned 0 or 1. The message-passing algorithm is
own as the belief propagation algorithm.
ite the similarity between the encoding problem out-

the previous section and the decoding problem for
codes in a single-user channel, strong differences also
n belief propagation decoding of LDPC codes, a prior



bias is available to the decoder based on the channel output.
The decoding task is equivalent to finding a codeword that
is closest to the observation sequence. Such a strong bias is
crucial and is absent in the Blackwell encoding problem. In the
Blackwell channel, the encoder needs to find a satisfying se-
quence without knowing approximately where such a sequence
is. Without a strong prior bias, the belief propagation algorithm
usually fails. This is akin to the quantization problem where
iterative decoding is also not known to perform well. Thus,
belief propagation is not suitable for the broadcast channel.

B. Survey Propagation

In this paper, we advocate an alternative approach based
on a recent advance in algorithms for the constraint satisfac-
tion problem called “survey propagation” [10] [11]. Survey
propagation is initially devised to solve the well-known NP-
complete K-SAT problem. In a K-SAT problem, a large
number of OR-clauses need to be satisfied at the same time.
Each OR-clause consists of K variables. The key problem
parameter is the ratio of the number of clauses and the number
of variables. The K-SAT problem becomes exponentially
complex as the ratio parameter approaches a critical value.
The region just below the critical value is considered the hard
region. Recently, based on statistical physics considerations,
Braunstein, Mezard, Weigt and Zecchina [10] [11] proposed
an algorithm called survey propagation and found that it
outperforms traditional algorithms in the hard region. In the
following, we give a briefly synopsis of survey propagation
for the K-SAT problem, followed by our proposed algorithm
for the Blackwell channel.

For K-SAT, standard belief propagation (BP) works well
in finding solutions in the so-called easy region, where the
solutions are all concentrated within one big cluster (i.e. the
Hamming distance between solutions are small). As the ratio
of the number of constraints and the number of variables rises,
the solution space breaks up into an exponential number of
distinct clusters. Here belief propagation fares poorly because
for example, two adjacent parts of the factor graph can end up
finding solutions which are in different clusters, and are thus
incompatible. With neither side having enough momentum at
the boundary, the BP algorithm fails to converge.

Survey propagation (SP) gets around this failing by in-
troducing the concept of a joker state in addition to the 0
and 1 states. Early in the iterative process, where BP would
choose an available state for a particular variable (say either
0 or 1), and thus localize itself within a particular cluster,
SP introduces the joker (or * state) which represents the fact
that the variable is free to be either 0 or 1. This allows SP
to create “histograms of solutions across clusters” [10] [11].
After the probability histograms have converged, SP makes
hard decision only on variables that are most biased toward 0
or 1. The algorithm then freezes the values of these variables.
The graph is now reduced to a smaller one. SP then proceeds
by repeating the same process for the rest of the factor graph
until all variables are frozen.
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key to the success of survey propagation on the K-
oblem is the inclusion of the joker state. Without the
tate, survey propagation reduces to belief propagation.
clusion of joker state makes sense for the K-SAT

because constraints in the K-SAT problem is an
straint. The OR-constraint is satisfied whenever one
connected to the constraint is 1. When this happens,

er variables connecting to the constraint are in the
care” state where they are free to be assigned to be

or 1. This corresponds to the joker state.

inclusion of the joker state is not directly applicable to
decoding where constraints are parity-check (or XOR)
ints in which no “don’t-care” state exists. In this case,
ropagation remains to be the best decoding algorithm
to date.

of the main points of this paper is the recognition that
n’t-care” states are natural for the Blackwell channel.
er the factor graph as illustrated in Fig. 3, although the
heck constraints at the bottom of the graph are XOR
ints, the top product constraints have the property that if
he variables connecting to it is 0, then the other variable
either 0 or 1. So, it can be assigned to the “don’t-care”
n the other hand, if the variable is 1, then the other
connecting to the constraint must be assigned a 0. The

ce of these “don’t-care” configurations strongly suggest
vey propagation may outperform belief propagation for
ckwell channel encoding problem.

e following, we present the survey propagation equa-
Let constraint nodes be denoted as {a, b, · · · } and

nodes be denoted as {i, j, · · · }. Let A(i) be the set
straint nodes connecting to variable i. Let B(a) be
of variable nodes connecting to the constraint node
message from the variable node j to the constraint
consists of three probabilities: αj→a, βj→a and δj→a,
g the probabilities of 0, 1 or joker states, respectively.
essage from the constraint node a to variable node i
s of uα

a→i, uβ
a→i and uδ

a→i, representing beliefs for 0,
joker states, respectively.

survey propagation equations for the even parity XOR-
ints are as follows (the odd parity equations are analo-

=

∏
j∈B(a)/i

(αj→a + βj→a) +
∏

j∈B(a)/i

(αj→a − βj→a)

2

=

∏
j∈B(a)/i

(αj→a + βj→a) −
∏

j∈B(a)/i

(αj→a − βj→a)

2
= 1 − uα

a→i − uβ
a→i. (4)

uα
a→i and uβ

a→i represents the probability that con-
node a requires variable i to be 0 or 1, respectively. If
is the case, a joker probability is assigned.

messages αj→a βj→a and δj→a for the XOR-



constraints are computed as follows:

αj→a =
∏

b∈A(j)/a

(1 − uβ
b→j) −

∏
b∈A(j)/a

(1 − uβ
b→j − uα

b→j),

βj→a =
∏

b∈A(j)/a

(1 − uα
b→j) −

∏
b∈A(j)/a

(1 − uβ
b→j − uα

b→j),

δj→a =
∏

b∈A(j)/a

(1 − uβ
b→j − uα

b→j) (5)

Briefly, αj→a is the probability that no constraints (other than
a) request variable node j to be 1 and at least one constraint
requests j to be 0 (by subtracting from it the probability
that all messages are jokers.) Similar interpretation exists for
βj→a and δj→a. Note that αj→a, βj→a, and δj→a need to be
normalized to be 1 to exclude contradictory messages.

The survey propagation equations for the product (or
NAND) constraints are as follows. As all such constraints are
of degree 2, the equations are simply:

uα
a→i = βj→a (6)

uβ
a→i = 0 (7)

uδ
a→i = 1 − βj→a (8)

As (1, 1) configuration can never occur, the message from
the constraint to variable nodes is either 0 or “don’t-care”,
depending on whether the incoming message is 1 or not.

Taking these equations together, survey propagation runs
as follows. All variable nodes are assigned (0.5, 0.5, 0) at the
beginning. The survey equations are allowed to propagate until
the surveys converge (or a maximum number of iterations, typ-
ically 100, is reached.) We then compute the overall (α, β, δ)
using (5) but without the exclusion of a in A(j) in the product
operation. We then find the most biased variable nodes (i.e.
the node whose overall |α−β| is the largest) and freeze these
variables accordingly. The factor graph is now reduced to a
smaller one, on which survey propagation may be run again.
The second iteration freezes more variables. The process goes
on until all variables are set.

IV. RESULTS

We experimented with random code constructions using
survey propagation for encoding on the Blackwell channel.
Random codes with small degree distributions have been found
to work well experimentally. We experimented with several
rate pairs with R1 + R2 = 1.5, which is about 95% of the
sum capacity. (The sum capacity is log2(3) = 1.5850.) One
variable is frozen per iteration.

At the middle point R1 = R2 = 0.75, the two random
parity check matrices are chosen so that all variable nodes
have degree 2, with 1

3 of the parity checks have degree 3 and
2
3 of the parity checks have degree 2. The graphs are checked
to remove cycles of length 4. The probability of bit error is
5 · 10−3 at a moderate block length 4,000.

Near the corner point with R1 = 0.6 and R2 = 0.9, the
random parity check matrix associated with R1 is chosen so
that 2

3 of the parity checks have degree 3 and 1
3 of the parity

checks have degree 4. The parity check matrix associated with
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lar results are obtained at R1 = 0.85 and R2 = 0.65.
case, a fraction of (0.647, 0.353) of the parity checks
ted with R1 are chosen to have degrees 2 and 3
ively, and a fraction of (0.232, 0.461, 0.307) of the
hecks associated with R2 are chosen to have degrees
d 4, respectively. The average probability of error is
−3 at block length 4,000.
probability of bit error goes down with a larger block
For the middle point, the probability of bit error is
to 10−3 at a block length of 40,000 in 10 simulation

imilar results are obtained for other points as well.
ld be noted that survey propagation is O(n) slower
lief propagation, as it consists of O(n) steps, each
a complexity approximately equal to that of belief

ation. Thus, it is difficult to drive the probability of bit
own with very large block lengths. Nevertheless, our
s promising as it appears to be the first attempt in the
ction and the encoding/decoding of random codes for
inistic broadcast channels. Comparing to the algebraic
approach of [12], where zero-error codes up to a block
of 10 are constructed, our approach is more flexible
ieves a higher rate. To further reduce the probability of
the present scheme, a high-rate outer error-correcting

ay be concatenated with the survey propagation based
ode at a small rate loss.
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