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Abstract—The mitigation of intercell interference is an impor-
tance issue for current and next-generation wireless cellar net-
works where frequencies are aggressively reused and hiertrical
cellular structures may heavily overlap. The paper examine
the benefit of coordinating transmission strategies and remirce
allocation schemes across multiple base-stations for infer-
ence mitigation. Two different wireless cellular architedures
are studied: a multicell network where base-stations coorithate
in their transmission strategies, and a mixed macrocell and
femtocell/picocell deployment with coordination among maro
and femto/pico base-stations. For both scenarios, this pap
proposes a heuristic joint proportionally fair scheduling, spatial
multiplexing, and power spectrum adaptation algorithm that
coordinates multiple base-stations with an objective of ofimizing
the overall network utility. The proposed scheme optimizeghe
user schedule, transmit and receive beamforming vectors, nal
transmit power spectra jointly, while taking into consideration
both the intercell and intracell interference and the fairness
among the users. System-level simulation results show thabor-
dination at the transmission strategy and resource allocabn level
can already significantly improve the overall network throughput
as compared to a conventional network design with fixed tranit
power and per-cell zero-forcing beamforming.

Index Terms—Beamforming, cellular networks, coordinated
multiple-point (CoMP), femtocell, intercell coordination, network
multiple-input multiple-output (MIMO), picocell, power ¢ ontrol,
scheduling.

|. INTRODUCTION

I NTERFERENCE is a fundamental limiting factor in wire
less cellular networks. While intracell interference ma

be mitigated by separating subscribers in orthogonal ti

so for wireless networks where frequencies are reused
gressively and where hierarchical cellular structureshsas

femtoeells heavily overlap with macrocell deployment. &'h
paper explores the idea of intercell coordination as a me

for interference mitigation.

Coordination can take place at different levels. For exampﬁ

in a fully coordinated network multiple-input multiple-tut
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(MIMO) system, the multiple antennas across the multiple
base-stations (BSs) can be thought of as forming a large
antenna array, where intercell interference can be agtivel
exploited. The realization of such a fully coordinated syst
however, also requires high-capacity backhaul commuinicat

As antennas from across multiple BSs need to jointly trahsmi
and receive signals for multiple mobile users, data streaims
multiple users must be shared among the multiple BSs.

This paper explores a different level of coordination where
user transmission strategies and resource allocatiomsde
rather than data signals, are coordinated across the B®s. Th
coordination of transmission strategies clearly requinesh
less backhaul communication, and is much easier to implemen
in a practical deployment. The goal of this paper is to show
that by jointly setting the scheduling, power allocationda
beamforming strategies of multiple BSs and multiple mobile
users, intercell interference can already be alleviated,the
overall performance of the network can already be improved
significantly as compared to the current generation of el
networks where cells operate independently.

Resource management has been the focus of extensive
studies for cellular networks in the past, but traditionatiges
typically focus on per-cell strategies. This is in part doe t
the fact that coordination across the multiple cells presan
significant challenge not only from an implementation point
of view, but also in optimization, as the presence of intirce
interference leads to inherent nonconvexity in the problem
diructure. This paper adopts a network utility maximizatio

. . . o . MFamework and makes progress on this front. We show that
frequency or spatial dimensions, the mitigation of intérce

interference is much more challenging. This is especial

etwork-wide optimization can be performed on each of
He scheduling, beamforming, and power allocation modules

%%barately and iteratively, and that distributed impletagon

iis possible with reasonable amount of intercell messaging.

ans

We utilize ideas such as interference pricing for multicell
power spectrum adaptation and uplink-downlink duality for
oordinated beamforming to devise an efficient and disteitbu
euristic optimization algorithm that goes toward a nekwor
wide (albeit at best local) optimum.

One of the main objectives of this paper is to provide
system-level simulation results to quantify the benefit of
multicell resource management. While previous works ig thi
area typically focus on the performance evaluation of iitdiv
ual optimization components (e.g. power control, schedpli
or beamforming), this paper takes a system approach and
analyzes the interaction among them. We show that under
realistic cellular deployment scenarios, the coordimatid
transmission and resource allocation strategies acrokphau
cells or between the macro- ard-femtecells can already bring
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significant throughput benefit to users at the cell edge and fan the multicell joint optimization problem can alreadysi
overall utility improvement to the entire network. nificantly improve the performance of practical networks. A
main ingredient of the proposed approach is an incremental
update of user schedule for each fixed beamforming and
A. Related Work power allocation. This gives a graceful way of dealing with
Scheduling, beamforming and power allocation methodse combinatorial nature of the scheduling problem, while
have been the subject of extensive studies in the single-adlowing practical and locally optimal methods to be used fo
multiuser MIMO environment. For example, proportionallpower control, thereby providing a reasonably good sofutio
fair scheduling [3] has been widely used in practice. The ufer the overall system.
of joint zero-forcing beamforming and user scheduling has The proposed system treats the beamforming problem using
been considered in [4]-[6]. From a more rigorous perspecgtivthe uplink-downlink duality technique, and treats the stie
a concept known as uplink-downlink duality has emergddg problem using a proportionally fair scheduler [3]. In
as a key solution to the problem of finding the optimadddition, power spectrum adaptation is performed using a
beamforming vectors to minimize transmit power subject toncept called interference pricing [43]-[47], which alkthe
signal-to-interference-and-noise-ratio (SINR) coriatsa[7]- effect of interference among the multiple transmitterereer
[16]. The use of this duality-based beamforming, togeth#r w pairs to be quantified. In particular, this paper uses Nelaton
power control and branch-and-bound heuristic schedulasy hmethod for fast convergence in power adaptation. Several
been considered in [17]. works have considered Newton's method in power control
In the multicell context, the use of scheduling, beamfornfer interference mitigation [48]-[50], but they typicallgo
ing and power allocation for intercell interference mitiga not consider a joint design of beamforming, scheduling, and
has been considered in standardization efforts such as Li®wer adaptation. Further, this paper also proposes method
Advanced [18]. However, the design of optimal algorithmt simplify the inversion of the Hessian matrix to reduce the
for coordination is quite challenging, and most of the &ter complexity of the Newton’s method.
ture (with a notable exception of [19]) considers schedylin It should be noted that the proposed approach of decoupling
beamforming and power allocation separately. For exampggheduling, beamforming and power optimization can be con-
the joint design of beamforming across multiple cells hanbetrasted with the joint optimization approach of [19], which
considered in [20]-[24], but these studies typically foams is based a weighted minimum mean squared error (MMSE)
the minimization of transmit power for a fixed set of selecte@chnique [51]. The decoupled approach of this paper is more
users, instead of the optimization of network utility. Therw modular and can potentially be easier to implement, whiée th
[25] proposes beamforming algorithms to maximize SINReighted MMSE approach of [19] has the advantage that it
based on uplink-downlink channel reciprocity, but it doesan guarantee convergence to a stationary point of the lbvera
not consider scheduling or power allocation. The joint poweptimization problem.
control and coordinated beamforming problem for maxingzin It is worth emphasizing that the proposed system allows
the weighted rate sum has also been addressed in [26], uiltiple cells to coordinate in their signaling strategyg(e
without scheduling. Intercell scheduling has been comsidle power, beamforming and scheduling), but does not allow the
in [27]-[30], intercell power control has been considerad isharing of the actual data streams. We show that transmissio
[31]-[34], joint scheduling and power control is considkrestrategy and resource allocation coordination alreadggsri
in [35]-[39], but these studies do not include beamformingignificant improvement to existing cellular systems. Rert
Likewise, in the femtocell context, existing studies oroigge improvement is possible by implementing a network MIMO
coordination also typically focus on power control only J40 system with full signal-level coordination, which wouldpre
[41] and not scheduling or beamforming. Finally, the workesent the ultimate capacity limit of cellular networks.
[42] proposes a branch-and-bound algorithm to maximize
the total number of users that a multicell system can serge Organization
under SINR constraints while coordinating scheduling and
beamforming. This is yet another different design objegtiv
in contrast to the network utility maximization approackea

in this paper. ation problem. Section Il presents a joint proportiopdglir

The joint optimization of scheduling, beamforming an(icheduling, spatial multiplexing, and power spectrum adap

power allocation is a challenging problem mathematicallyation algorithm that aims to maximize the overall network
The problem of selecting the best set of active users within

. ) - " - Uftiity. Section IV analyzes and discusses the performance
sector is combinatorial in nature. In addition, the optiatian Y y b

of power and beamformers (with fixed user schedule) iSof proposed methods through computer simulation. Finally,

@nclusions are drawn in Section V.
well-known nonconvex problem. Thus, components of the

proposed optimization problem are already difficult to solv
It is therefore not surprising that techniques for reachéng
globally optimal solution of the joint optimization prole A. System Model

have not emerged in the literature. Instead of aiming for This paper considers two distinct cellular architectuies:
global optimality, this paper shows via system-level simuraditional cellular deployment such as the one shown in
lation that efficient and component-wise optimal technguéig. 1(a), and a hierarchical deployment where the deployme

The remainder of this paper is organized as follows: Sec-
tion Il describes the system models for two different celtul
deployment scenarios and states the coordinated resdlace a

Il. SYSTEM MODEL AND PROBLEM STATEMENT
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Base Station
Mobile User
Femto Station
Femto User
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(a) Macro Deployment (b) Macro/Pico Deployment

Fig. 1. Two distinct cellular architectures: (a) A cellulaetwork with 7 cells, 3 sectors per cell, and 10 users peosefti) An overlap mixed macrocell
and femto/picocell deployment with 3 macro BSs and 3 fentofell BSs each serving 10 users.

of femtocells or picocells can heavily overlap with that ofn addition, because of spatial multiplexing in which niki
macrocells, for example, as shown in Fig. 1(b). In both casesers are served in the same time/frequency slot simultane-
full frequency reuse is assumed. In the rest of the paperpasly, mobile users can also experience intracell interfee.
cell may refer to either a macrocell or-a—femtegellpase- Thus, the above resource allocation problem is coupled both
station (BS) may refer to either a macro BS or—a—femto BSacross the users within each cell and across the cells. Tdle go
A cell may consist of one omni-directional sector or mutiplof this paper is to devise efficient optimization techniqtres
directional sectors depending on the deployment scenario.strike a balance between maximizing each user’s own daa rat
This paper considers a multiple-input multiple-outpu’l‘nd minimizing the effect of its interference on its neighde-
(MIMO) deployment, where both the BSs and the mobil@ task that can be facilitated by multicell coordination.
users are equipped with multiple antennas and where naultipl
users within each cell are separated either in frequency via
_orth_ogonal fre_quency-div_ision mu_ItipIe-a<_:cess (QFDMA), 'B. Problem Statement
in timeslots via scheduling, or via spatial multiplexingavi
beamforming. We assume that the network employs an initialConsider a wireless cellular MIMO-OFDMA network with
channel estimation and synchronization phase, in which thgatial multiplexing within each cell, where multiple BSs
MIMO multipath fading channels between every pair of trangoordinate in their resource allocation strategies, bugtise
mitter and receiver are estimated across the frequency.tongansmit and receive data streams independently, the joint
This includes both uplink and downlink direct channels with scheduling, spatial multiplexing, and power spectrum adap
each cell as well as the interfering channels between any p@ition problem can be stated as follows:
of transmitter and receiver (which can be either the BS or the
remote terminal) in neighboring cells. For example, donkli
channel estimation may be performed using orthogonal pilot
sequences synchronously transmitted by the BSs. The mobiI%
users may then estimate all the downlink channels at the
same time by matching to the different sequences. In time-
division duplex systems, the uplink channel may be inferred
from downlink channel (and vice versa.). Further, the clehnn
state information is assumed to be perfect in this papes Thh general, these three questions must be answgietly.
is an idealistic assumption, but is adopted here in order Farther, the optimization must be performed repeatedly ove
quantify the benefit of adaptive intercell resource allmrat time as channels vary, and a separate optimization proeedur
This paper aims to tackle the following network-widénust be performed for each of the uplink and the downlink.
resource allocation question. Given the total amount oéfim Throughout this paper, we assume that the association of the
frequency and spatial resources in each cell, how shouid thesers to the BSs are already determined and are fixed (e.g.,
be distributed across the users to maximize the total n&twdrased on pathloss or distances to BSs). The schedulinggsroce
utility? This question is important for wireless networkghw here involves only the optimal assignment of users withchea
maximal frequency reuse and/or for networks with overlagpi cell to the physical resource blocks. The optimization of BS
hierarchical structures, as intercell (and intersectot@rfer- association brings in another set of variables, which ate no
ence is often the dominant limiting factor in these systemsonsidered in this paper.

1) Beamforming: What are the appropriate transmit and
receive beamforming vectors at the BSs and at the
mobile users?

) Scheduling: Which user should be served in each fre-
quency and time slot for each beam?

3) Power spectrum allocation: What is the appropriate

power spectrum for each beam?
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This papers adopts a network utility maximization frame- The system under consideration uses a spatial multiplexing
work in which the optimization objective is to maximize  scheme. We assume that each BS serves exdttlysers
_ simultaneously, but each user is assigned at most one data
maXZUlsk(Rlsk) (1) stream in each given tone. Serving as many users as there
- ok are BS antennas is a reasonable design choice in a mod-
where R;;, is the long term average rate of tii¢h user in erate interference environment. Also, while in a singlerus
the/th cell and thesth sector, and/.(-) is a utility function MIMO channel, having multiple data streams for a user is
typically chosen to be concave and increasing. A commailvantageous from a capacity point of view, one data stream
choice of the utility function i/ (-) = log(+), which leads per user is sensible in a multiuser environment where mul-
to a proportional fairness resource allocation across $eesu tiuser diversity ensures that such a restriction is neanmt
The rest of the paper assumes this log-utility function,thet Further, we assume that the BS does not employ nonlinear
development is equally applicable to other utility choi@ss interference pre-subtraction (i.e. dirty-paper coding)this
well. Finally, the transmit signals are subject to some tgpe case, theP users in the downlink are separated by linear
transmit power-spectral-density (PSD) constraints actbe transmit beamforming vectors}, ,,, which denotes théth
antennas at either the BSs for the downlink, or the mobitkownlink transmit beamformer in thigh cell andsth sector,
terminals for the uplink. and linear receive beamforming vectary , ., which denotes
the downlink receive beamformer applied at tkta mobile
I1l. JOINT SCHEDULING, BEAMFORMING, AND POWER user in thelth cell, thesth sector. The beamforming vectors
ALLOCATION have unit norm. Here, the superscriptdenotes subcarrier
o ) . _index. The notation for the uplink is similar.
The joint scheduling, beamforming and power allocation 5 ey issue in the OFDMA system is user scheduling. We
problem is a complex optimization problem for which finding,qe 41 assignment functidn= fp(l, s, b,n) to assign usek
the global optimal solution is likely to be quite difficult.;y the pth beamformer in théth cell, thesth sector, thenth

The main idea of this paper is that one can exploit thge in the downlink, and likewisg; (i, s, b, ) for the uplink.

structure of the optimization problem setup and use antivera | Pz, and P4, be the uplink and downlink transmit

approach to solve the problem. Our key observation is thakps in theith cell, thesth sector, thebth beamformer, the

the three questions above can be decoupled and solved in giyone at the assigned remote user for uplink and at the BS
iterative fashion. Specifically, the proposed solutionolmes ¢, downlink, respectively. The downlink proportionallgif

the following steps: joint scheduling, beamforming, and transmit power speatru
« Fixing the beamforming vectors and power allocatioradaptation problem is that of choosing the user scheduling
the assignment of users to each beam can be done ifuaction fp(l,s,b,n), the beamforming vectorsp, ., and
greedy fashion via proportionally fair scheduling; u? 1o @nd the downlink transmit powef}; ., to maximize
o Fixing the assignment of users and power for eagh):
transmit beam, the beamforming vectors can be updated _
in a coordinated fashion across the cells via uplink- 13X Zlog (Rp.1sk)

downlink duality; Ls:k
ixi i SINR?
« Fixing the beamformers and user assignment, _th(_a power_ Rpjer — Z log (1 + D,lsbk
updates can be coordinated across the cells via interfer- ’ r
ence pricing {(byn)ik=fp (L,s,b,m)}
' 0< PPy <SE™  Vis,bn 2)

The above three steps can be iterated to reach an (at best
locally) optimal solution of the joint optimization prolste Where
Although not necessarily globally optimal, such a solution
already allows multiple cells to coordinate in alleviatinger- SINRD 150 =
cell interference, thereby improving the overall netwotikity. PB,zsb|(UE,zsk)HHﬁ,zskUE,zsbP
Another advantage of the proposed approach is modularity.;2 Z(jt o)
Individual optimization components can be plugged into the T
overall framework independently. Here, Rp s is the time averaged rate anelp ;. is the
instantaneous downlink rate for thgh user in thelth cell
) ) and the sth sector,I" is the SNR gap accounting for the

A. Mathematical Formulation realistic choices of modulation and coding scheme,is

Consider an interference-limited multicell environmeithw the background noise. The uplink problem formulation is
L cells, S sectors per celllX users per sector, and an OFDMAsimilar. Note that the SINR expression includes the intiace
multiplexing scheme withV tones over a fixed bandwidth.interference due to the power leakage from other transmit
The BS is equipped witlP? antennas, and the remote userBeams within each sector as well as intercell interference
are equipped with) antennas each. L&t ., denote the coming from neighboring cells or neighboring sectors.
P x Q matrix channel between thih BS, thesth sector,  The above formulation assumes that a peak power constraint
and thekth remote user in thenth cell, thetth sector for S7;** is imposed on each beamforming vector separately. This
both uplink and downlink in tone. The system is assumedis a simplified box-type constraint, which is attractivenfro
to operate in a time-division duplex (TDD) mode. the view of developing power control algorithms and already

3)
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illustrates the essential feature of the optimization pob (2). The above scheduling policy maximizes log utility as
Alternatively, the solution method proposed in this papan c the derivative of the log utility isl/Rp ;5. The scheduling
also be applied to problem settings with per BS sum-powpolicy (4) is essentially the solution to a weighted rate sum
constraints, or peak-power constraints on each of the aatemaximization problem with weights chosen EISRDJS,C.
elements, as will be discussed later the paper. The proposed algorithm can be thought of as a MIMO
The optimization problem (2) is a mixed discrete (usesxtension of the joint scheduling and power control aldyonit
scheduling) and continuous (beamforming and power allproposed in [37]-[39] for the OFDMA network, where the
cation) optimization problem. Due to its combinatorial andcheduling step is done in each frequency tone. The proposed
nonconvex nature, finding the global optimal solution to (2jlgorithm is also similar to the work [52] where scheduling
is likely to be difficult. Instead of aiming at the global optiis done on a per-beam basis for each physical resource block.
mality, this paper proposes an approach based on iterativ€he proposed scheduling policy (4) can also be implemented
solving the scheduling, beamforming, and power allocatian each cell/sector in a distributed fashion as intercetrin
subproblems. The main contribution of this paper is theeefoference can be easily measured locally.
a system-level network optimization algorithm suitable fo A main novelty of the proposed policy is that scheduling
implementation in practical networks. is done on a per-beam basis, so it naturally takes the ifkerce
interference and the channel orthogonality of the spatiat m
B. Proportionally Fair Scheduling with Spatial Multiplexing  tiplex system into account through the computation of SINR
A key question in the design of spatial multiplexing systenfer each beam. The proposed scheduling policy also nagurall
is that of selecting the set of active users in each cellBsecaiccounts for the temporally varying channels and user draffi
and for each frequency tone. Clearly, it is desirable todatee demands. As the channels and consequently the associated
users whose channels are nearly orthogonal. In additi@n, #chievable rate region vary over time, different users are
scheduler also needs to balance the user traffic demandandsttheduled to account for the different user prioritiegess,
individual user channel gains. Solving this problem optiyna channel gains and orthogonality, and intercell interfeeen
would require a combinatorial search, which is clearly ndthe proposed scheduling policy depends critically on tlo fa
feasible in practice. This paper proposes an approach tbét the user assignment at each beam does not affect the
gracefully switching users in and out of the active set usirigterference elsewhere in the network. But, this is trug 6o
proportionally fair scheduling. The idea is that instead dhe downlink, and not for the uplink. However, in this paper,
selecting the best set of users then designing beamformers we propose to use theame scheduling policy for both uplink
allocating power for them, we iteratively select the besras and downlink in a TDD system. This can be justified in part
according to the proportionally fairness criterion assugni by uplink-downlink duality, i.e. under the same sum-power
a fixed power allocation and beamformers, then update thenstraint, the uplink and downlink rate regions are theesam
power allocation and beamformers assuming a fixed ugdlthough practical networks are not necessarily sum-power
schedule. constrained, system-level simulation shows that this @gr
The proposed user scheduling strategy relies on the folloig-reasonable.
ing observation. In the downlink, the interference prodalce
by each beamformer to users both within its own sector arefj Bearrformi
in neighboring sectors is a function of the beamformer and 'ng
its associated transmit power only, and is independentef th The next step is to find the optimal beamforming vector
user assignment for this beam. Thus, at ttrecell, thesth and the optimal power allocation for the fixed active user set
sector, and théth beam, if the beamforming vectof, ,, and The proportional fairness objective gives rise to the follg
the power allocatiorP} ,,, are fixed, user scheduling can balownlink weighted rate sum maximization problem
done independently in each cell orper-beam basis without 1
affecting the interference level elsewhere in the netwdhis maXZwD,lskRD,lskv where  wp,sk = R (6)
enables a simple search algorithm for finding the user that Lsk Dlsk
maximizes the proportional fairness objective: for fixedine over the power and beamforming vectors. Note that this
forming vectors and their power allocation in each subearri problem can be decomposed along the frequency tones, and it
the algorithm finds the user who benefits the most from beiigyknown to be a difficult problem because of its underlying

scheduled in that beamformer and subcarrier: nonconvex structure. Here, we again propose a separated
. approach, i.e. iteratively finding a set of good beamforming
NZ: - . . .
fp(l,s,b,n) = argmax;, = (4) vectors for fixed power allocation, then finding a set of good
D,lsk

power allocations for fixed beamformers. This section deals
where7}, ;.. denotes the instantaneous rate of uges, k) with the beamforming design for fixed power, where the
if it is served by beamformeb on subcarriern. Here, the peamforming vectors are normalized to unit norm.
long-term average rate for the usérs, k), Rp sk, is updated  One sensible approach for beamforming design is to set
exponentially with somé < a < 1 as follows: the beamforming vectors so that the interference withirheac
) sector is completely nulled out. This is known as zero-fuogci
(ZF) beamforming. When each mobile user is equipped with
where Rp ;51 is the instantaneous rate for the usérs, k) a single antenna, downlink ZF beamforming is equivalent to
computed from the fixed power spectrum allocation as thannelinversion. In a MIMO setting where mobile users have

Rpsk = aRp sk + (1 — @)Rp sk
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multiple antennas, it is possible to iterate between ggttie receive beamformers to minimize the total transmit power, s
MMSE receive beamformer at the mobiles and ZF transntiie iterations are guaranteed to converge.
beamformer at the BS to reach a simultaneous ZF and MMSEThe above algorithm works with a fixed set of SINRs,
solution. However, ZF is a per-cell (or per-sector) strgtegwhich are given by the fixed power allocation and user
which does not take into account intercell interferencer Oscheduling. It relies on the subsequent user scheduling and
goal here is to develop coordinated beamforming strategigswer allocation steps to improve the SINR targets fortytili
across the BSs so that intercell interference may be métigatmaximization. Since this beamforming step does not change
The proposed strategy is based on a fact knowophisk- the target SINRs, it does not affect the convergence of the
downlink duality. For a multicell multiuser system where theoverall utility maximization program—as long as the uplink
BSs are equipped with multiple antennas but the mobile usel@vnlink duality iterations within the algorithm convemye
are equipped with a single antenna each, under a fixed &eta feasible power allocation. Note that the above duality-
of SINR constraints, the power-minimizing downlink trarism based algorithm optimizes the beamforming directionslfer t
beamformers at the BS are exactly the MMSE receive beaminimization of the total transmit power across the BSs m th
formers of a dual uplink sum-power minimizing network. Thigntire multicell network. Thus, the above algorithm suits t
duality relationship holds not only for single-cell systef@]— overall optimization problem perfectly if the power coastt
[13] but also for multicell systems as shown in [7], [21], [22 is on the total power over the network. In this case, each of
Previous uses of this duality relationship have been rthe iterative updates of the transmit and receive beamfarme
stricted to the minimization of transmit sum power acrogeduces the total transmit power, so the iteration is guaesh
the network. This paper proposes the integration of thie converge.
power minimization step in an overall framework for utility For more practical setups where the power constraint is
maximization. The idea is to use the duality-based poweyn the sum power per BS or on the individual power of
minimization beamforming to find the beamforming direcioneach beam or each antenna element, then ideally, one would
only. The minimized power allocation is then discarded anteed to minimize the maximum per-BS, maximum per-beam,
subsequently updated in a power adaptation step. The addioror maximum per-antenna power in this beamforming step.
for such an approach is that the duality-based power mimimizlo properly incorporate these types of power constraints in
tion step does not optimize network utility. In fact, theliti the beamforming problem, one would need to reflect the
is fixed, since the SINR targets are fixed. But, if one utilizggower constraint in the noise characterization of the dual
the subsequent network-utility-maximizing power addptat network [15], [21]. The resulting algorithm would then need
steps to improve the set of SINR targets, then the beamfgrmio iteratively update the dual noises in an additional outer
vectors produced by the successive power-minimizatigosstdoop. To ensure convergence, a feasibility check is alsderte
would improve the overall network utility as well. i.e., the beamformers are updated only if the individual @ow
The proposed coordinated beamforming (CBF) strategy fopnstraints are not violated after the update.
a multicell multiuser MIMO downlink system is as follows. Finally, we remark that it is possible to implement this
Assuming a fixed downlink power allocation and user schelleamforming step in a distributed fashion [21]. This is be-
ule, for every tonen: cause by the reciprocity property of wireless electromgigne

1) Initialize a set of downlink transmit beamformes,,; Propagation, the uplink and downlink channel matrices are
2) Find and fix the optimal MMSE downlink receive beam&@njugate transposes of each other, (although the impfemen
formersu?, ,.,, SO the mobile users can now effectivelyion of virtual uplink or downlink powers would be needed.)

be regarded as single-antenna users;

3) Compute th(_e current set of SINR'’s for every USer; . Dynamic Power Spectrum Adaptation

4) Form the virtual dual uplink channel by taking the _ ) )
conjugate transpose of all the channel matrices, andThe third comp_onent of the_ overall algorithm is a power
iterate between the following two steps: spectrum adaptation step, fixing the user schedule and the

. . . . eamformers. The objective is again the weighted rate sum as
a) F'n.d the approprlat(_a power in the wrtu:all d“?:')n (6). The optimization variables are the per-beam trahsmi
uplink channel '.[0 satisfy _the_z currgnt SINRS_‘ Th'%DSDs. As the beamforming vectors are fixed, the optimization
can l_)e done via a malrix inversion, or using a essentially on a set of point-to-point interfering linRis
|t¢rat|ve bower updaFe (see e.g. [21])'. . aper takes a simplifying approach of placing a peak power
b) Find the_ MMSE receve beamformgrs in the V'rtuaionstraint on each beam. As the beamformers have unit norms,
dual uplink for the given virtual uplink power. this guarantees that a sum power constraint across therasten
5) Set the downlink transmit beamformers ,, to be the 4t each BS is satisfied. On one hand, per-beam power control
unit-norm virtual dual uplink receive beamformer;  may be overly restrictive, as it does not allow power trade-
6) Find the downlink power to satisfy the current SINR'Spffs among the beams. On the other hand, the per-beam
7) Set the downlink receive beamformes$, ;.. as the power control also does not guarantee per-antenna power
optimal MMSE receive beamformers; constraint, so it could be optimistic. In this work, we cheos
8) Go to Step (4). Iterate until convergence. this particular per-beam formulation primarily becauseads
An identical algorithm can be implemented in the uplink téo simpler numerical algorithms.
find the optimal uplink transmit and receive beamformers. The optimization of transmit power for weighted rate-
Note that the algorithm iteratively updates the transmil arsum maximization is a difficult problem (in fact NP-hard
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[53]) with no known convex formulation. Existing approasheP, ., and set it to zero:
typically rely on convex approximation (e.g. [54], [55])utb

global optimality is difficult to establish. This paper makan wp isk My 1ok |

pbser_vatlon that local optimality often alre_a_dy brmgsgns‘_— PB,lsb|h?sb,lsk|2 + (02 + Z(jtc#(lsb) PB,jth?tc,zskP)
icant improvement. Further, there are efficient and distatd B n N 10
methods for reaching these locally optimal points. - Z tD jteisy T Apasv,  (10)

(jte)#(Isb)

This paper advocates a local ascent approach. The impleth & = fp(l,s,b,n), where
mentation of the algorithm relies on the passing of messages orm
among the multiple BSs. The idea is to coordinate the PSDS; ;. s, = wDth/#
of multiple beams in multiple cells via messages which are D,lsb
functions of proportional fairness variables, transmitDBS Clhity o> (SINRD )2

SINRs, and direct and interfering channel gains for eacimbea = WD jtk! Pg_jtc|h;-‘tc_jtk/ 21+ SINR}S_ﬁC (11)
The messages summarize the effect of interference each beam ' ' '

causes to its neighbors. The use of interference pricing

appeared in previous works, but mostly for single-antennaSINRn - PB,jtclh?tc,jtk/P (12)
systems [38], [39], [43], [44], [47]. The present work ajgsli D.jte ™ (02 4 Do ashy£(te) PDasol Misp e [2)

the idea to multicell multi-antenna beamforming systems.

Another distinguishing feature is that this paper uses atbiew @ndx" = fp(j, 1, ¢, n). The termip ;i 15, quantifies the effect
direction for faster convergence. of transmit power at th&h BS, thesth sector and théth beam

to the data rate of the user served by jtieBS, thetth sector,

Consider first the downlink. The power optimization prob"—ijI thecth beam.- !t has a Pricing inferpretation. -
lem can be decomposed int¥ independent problems, one The KKT condition (10) is essentially a water-filling con-
per each tonev=1,--- , N: dition if the termst, ;. 15 are held fixed. In this case, (10)
gives the following power update equation: (see also [47])
max ZwD-,lSkr%,lsk
l,s,b

Pn _ Wp,isk
s.t. 0 < PB,lsb < Sgam (7) D,lsb,new —

n
Zj;él tD,jtc,zsb + AD,isb

, _F(02 + 2 te) £(1sh) PB,jtc|h?tc,zsk|2) (13)
PP Bl 1ok ) [

where Sper

sk =log [ 1+ - — 0
’ ( L(0? + X Geeyzas) Pbjeel i, sk )

(8) Wherek = fp(l,s,b,n), and the notationx]® denotesx

with k& - fo(l,s,b,n) and |B7, .. |2 — upper bounded above byand lower bounded below by.
199 Yy jte,ls . . . . .
|(Uﬁk)HHﬁ,zskU?tc|2- The uplink problem is’similar. The second term in the right-hand side of (13) is the effectiv

combined downlink noise and interference in th tone of

As mentioned earlier, the problem formulation of this papépe lth BS sth sector andth beam, which can be measured
assumes a per-beam power constraint, but other typesanthe remote terminal locally. Th.us, to compute (13), the
constraints can also be formulated, e.g., per-BS sum pow Ny has to knowsp ;... In this paper, we propose to
constraints or per-antenna power constraints. In thesespa?aSSt??gtc,lsb as messages between neighboring BSs. In this
since the power constraints are lineatifj ,,, dualizing with €ase, Pp ;ne CaN be effectively computed in an iterative

respect to the additional power constraints gives process. Note that the computation#f ., requires not
only the proportional fairness weights, the transmit poared

max > wpskt'p ok — ADasb PP 1sp the SINR, but also the ratios of the direct and the interfgrin
1,s,b channel gains, which have to be estimated in the initidbpat
st. 0< Pp g <Sp* (9) phase.

where\p 1., can be interpreted as a power cost. The remain-For practical impIe_mentatio.n, the update according to (13)
ing of this section treats this slightly more general pranle MY be too aggressive, and it may lead to non-convergence.
Note that the appropriatep ;.,’s can be found using an outerve propose a dampe_d iteration where the next iteration of
loop (such as a subgradient update). The algorithms prserftn,: 1S Set as follows in dB scale:
here provide numerical solutions to (9) for fixeg ;.. ” "

P © ’ 101ogy4(Pp 4[5 + 1]) = ¥1010g16(Pp 1sp.mew)

o , + (1 =)101og(Pp is[x]), (14)
1) KKT Method: The objective in (9) is a well-known ) ) .
nonconvex function for which finding the global optimurvhere the index: denotes the iteration number, afid< v <
is believed to be difficult. This paper proposes an iteratie /N practice,y = 0.5 is found to work well.
approach to achieve a local optimum solution. Our first idea The implementation of the algorithm depends critically on
is to look at its Karush-Kuhn-Tucker (KKT) condition, i.e.the availability of the pricing messagéy ;.. ,,- Observe that
take the derivative of the objective function with respest tsince only the sum of?, ,, ., enters the computation, it is
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possible to approximate the sum ax )£ sb) {th jrc1sp)-  MAtrix are:
To compensate for the fact that maximum is strictly less than

the sum, we propose to adjust the maximum by a constanty2g), 4 15 = _wD=lsk2 <1 + 1n )2+
factor ¢, in which case the update becomes (pg_’lsb) SINRD 15t
n B WD, 1sk F|h75b, itk’ |2 ’
PDylsb.,new e MAX(jte)#(Lsb) {t%,jtc,lsb} + /\fa"fb (jtcé%lsw WD, jtk’ <—PB,jtc|h‘;:l]tC_’jtk/ |2>
CT(0® + X eeyzase) BB joelPic,iskl) ° (15) (SINR ;10)*(2 + SINRD, i) 1)
Wb 11 0 (1 +SINRD ji)?
In practice,c = 2 is found to work well. where k' = fp(j,t,¢,n). Substituting (20)-(21) into (19)

gives the Newton'’s direction.
To summarize, to solve (9), we propose to start with the Note that in order to implement the above Newton’s method

; In a distributed fashion, the BSs need to pass not only the
current power allocationtPp, 1y, -~ - Pp sk}, and update ricing messages” in (20), but also the additional
the power according to (14) and (13) or (15). The proce%)s 9 985D jte,isb '

. : . . rms in (21). The first term of (21) can be calculated without
iterates until convergence or until a maximum number g . .

) ) . any exchange of information among the BSs, thus we propose
iterations is reached.

a further modification of the Hessian that includes the first
term of (21) only. This modification facilitates distribdte
implementation with messages;, ;. ,,, only. Finally, as
2) Newton's Method: We now propose a second methoéh KKT method, we can replace_ ;. s th jiciso BY
for solving (9) which has a faster convergence speed than memax(jtc)#lsb){t’ﬁjtc,lsb}. These modifications lead to the
KKT method. The idea is to perform a distributed Newton'ollowing update equation:
search directly on the objective function of (9)

g(PB,lllv T aPB,LSB) = ZwD,lskT%,lsk = ADusb P b AP 1 =
Isk -1
(16) WDlsk (1 + ! ) —Cc- max {t% ite lsb} — AD.Isb
by incrementing the transmit powépPy; ;.- , Pj 1 gp) in PB st SINRD 150 ) (lst) ~ 7
a Newton'’s direction. The Newton’s direction is WD sk (1 n 1 )2
2 SINR}, ..
APE - AP L sp] = ~(V2) 'V, (17) (P5.10) P

In practice, inverting the Hessian matriX?g is computa- (22)
tionally expensive. To simplify the computation, one pbksi where k = fp(l,s,b,n). Simulation results in [1] com-
approach [56] is to ignore the off-diagonal terms of thpare the performances of the dynamic power spectrum op-
Hessian, and to invert the diagonal terf’82g)is0,055 ONly, timization methods uUSING (ye)£ sty ED,jte,156 VETSUS USINg
l.e. € - MAX(jte)£(1sb) 1D ite1sp ) - AGAIN, ¢ = 2 is found to work
w o (Vahsp e
APp g, = V29 (18) well.
9)isbilsb In summary, each beam in each cell and each sector

However, the above method works only if the objectivReratively updates its power allocation according to
function g is concave, in which casé&v?g).ss.s5 iS Negative,

g
andAPp ., always increases in the direction of the gradient P [k + 1] = [Ph 1o [6] + pAPE 1] 7 - (23)

the AP, above does not necessarly aive an ncromelii€1E AL IS computed either by (19), 20) and (21), or
directioﬁ’égbee e.g. [67]). Thus, we modifjltr?e search dioect By .(22)' An identical algorithm can be imp_lemented for _the
) ' uplink. This power allocation step can be implemented in a
as follows: (Vg)ist distributed fashion with the exchange of interferenceipgc
AP = V29 imial’ (19)  variablest?, ,,.,,, between the BSs.

Although the idea of pricing via message passing has
appeared in numerous papers on spectrum optimization [37],
[43]-[47], [58], the power update algorithms proposed iis th

This heuristics works very well in practice.

Now, the elements of the gradient vector are: paper take a network perspective by including parameteits su
. as the proportional fairness variable. Different variasftshe
(Vo) = WD, isk (1 n 1 ) pro_posed method have about the same performance in terms of
° Py s SINR ;4 weighted sum rate, but the Newton’s method converges faster

" than the KKT method. Both the Newton’s method and the
- Z b jtesp = Ap.isp- - (20) KKT method are faster than the gradient-based update of [38]
(gte)7(lsb) [39], because the second derivate information is incotedra
wherek = fp(l,s,b,n). The diagonal terms of the Hessiareither implicitly or explicitly here.
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‘ BS-Sec(L, 5) place for different components of the overall algorithmeTh
proposed scheduling scheme works on a per-cell basis, so
‘ BS-Sec(1,2) it can choose the set of active users based on only locally-
I (%7 me.asured |.nterceII interference wnhou.t any e_pr|C|t eamj;e_
p— of information among ceIIs: The dlstnbl_Jted |m.plem_entat|o
Newton Method b of the proposed beamforming scheme is possible if channel
reciprocity holds, i.e. in a TDD system. The proposed power
/ spectrum adaptation requires the exchange of the infoomati
Pmconverge\, about interference pricing among cells. Finally, because o
S~ the modularity of the proposed schemes, optimization cempo
[Y nents can be selectively plugged into the overall framework
Scheduling according to target system characteristics such as theawcu
using /o (1, 5,b, ) of channel reciprocity, the capacity and latency of backhau
links among the BSs, the processing power, and performance
Update beamformers requirements, etc.
using duality
IV. PERFORMANCEPROJECTION
J\% A. Multicell Coordination
\/R‘” - °°”Verged The performance of the proposed algorithm is evaluated first
v o on a wireless multicell network with 7 cells, 3 sectors per
cell, and 10 users per sector with maximal frequency reuse
| UpdateRp i, wp i as shown in Fig. 1(a). In a conventional deployment each of

* the BSs operate independently. The aim of this simulation
is to quantify the benefit of coordinating resource allcaati
Fig. 2. The joint proportionally fair scheduling, adaptizeamforming, and I-€- Scheduling, beamforming, and power allocation, acthe
power spectrum adaptation algorithm for downlink. The niplalgorithm is  cells.
similar. The simulation setup assumes that the cells are wrapped
around so that each cell has six neighboring cells. The BS
is equipped with 4 antennas, allowing 4 users to be served
E. Summary of the Algorithm simultaneously in each frequency tone. The remote users are
equipped with 2 antennas. System parameters are outlined in
The scheduling, beamforming, and power spectrum adagple | corresponding to a typical LTE deployment. The users
tation steps are iterated until convergence. The conveyeRye distributed randomly in each cell. The BS-to-BS distanc
is assured for the weighted rate sum maximization problefg,2 gkm. Frequency selective channels with a Rayleigmfadi
because each step is nondecreasing in the weighted ramponent are simulated. For evaluation purposes, we adopt
sum objective. The adaptation of weights then go towaffe jgealistic assumption that the channels are perfentiyv
the maximization of the overall network utility. The entireand fixed for the duration of the optimization. As channel
algorithm is depicted in Fig. 2. estimation may be imperfect and the wireless channels are
It is worth noting that the proposed algorithm is heuristic itime-varying in real deployment, the idealistic assumpgio
nature. For example, the scheduling step is a greedy aigorit adopted here yield optimistic results, and the results are
and it does not tackle the combinatorial optimization peobl most applicable to systems with slow-moving or static users
directly. The beamforming algorithm seeks to minimize thgith long coherence time. A TDD system is assumed where
total transmit power rather than maximizing the networkhannel reciprocity can be used for channel estimatioraastr
utility. The power adaptation step is capable of reachingitters. Both uplink and downlink scenarios are simulated.
a locally optimal solution at best. The overall optimizatio The algorithm is initialized with uniform power allocatiaat
framework is based on iterating among the three steps, m@ximum PSD level of -27dBm/Hz per beamforming vector
a joint optimization (such as the weighted MMSE approadBr both uplink and downlink, so that over a 10MHz bandwidth
[19]) can potentially perform better. Further, although wehe total transmit power at the BS is at 49dBm. The initiakruse
have established convergence, we have not yet establisagdignment and beamformers are set randomly.
convergence to a local optimum. Nevertheless, the proposedable Il shows the achieved sum rates. Fig. 3 shows the
approach represents an effort in devising an efficient aadhieved log utility for a simulation of the 7 cells with
implementable coordinated optimization procedure thasgoeither ZF or CBF and with or without the dynamic power
toward the goal of adaptive network-wide resource allarati (DP) spectrum adaptation. Without dynamic power spectrum
for multicell networks. Thus, the main contribution of thisadaptation, both uplink and downlink transmitters simply
paper is not so much in providing analytic results, but iransmit at the maximum constant power (CP) spectrum level.
providing practical techniques and performance projestior Results in Table Il and Fig. 3 compare a non-cooperative
multicell network optimization. scheme (Constant PSD Zero Forcing, or CP-ZF), a cooperative
To implement the proposed approach in a distributed fadeamforming scheme (Constant PSD Coordinated BF, or CP-
ion, different amount of information exchange needs to takéBF), a cooperative power control scheme (Dynamic PSD
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Cellular Layout Hexagonal, 7 cells 400
3 sectors/cell
BS-to-BS Distance 2.8 km 300}
Frequency Reuse 1 2
Number of users per sector 10 2, 200
Duplex TDD 3 I CP-ZF
Channel Bandwidth 10 MHz 100y =cpcer
BS Max Tx Power 49 dBm o I DP-CBF
BS Max Per-Beam PSD -27 dBm/Hz downlink uplink
MS Max Per-Beam PSD -27 dBm/Hz BS Distance = 2.8km
Antenna Gain 15 dBi . . . ) i
- - Fig. 3. Log utility gain due to dynamic power adaptation (D) constant
SNR Gap (with co.dlng) 6 dB pogwer specgtrum %CgP), and zeroonrcingp(ZF) VS. (F:)oordine(tled)mforming
Background Noise -169 dBm/Hz (CBF). The sum log utility is taken over 7 cells, 3 sectors pelt, and 10
Noise Figure 7 dB users per sector.
BS Tx Antenna No. 4
MS Rx Antenna No. 2
Number of beamformers at BS 4
Multipath Time Delay Profile | ITU-R M.1225 PedA rate users are typically at the cell edge; they are the main
Distance-dependent path Toss 128.1 + 37.6 log;, (d) bottleneck for wireless service providers. For the higlera
FFT Size 64 users in the uplink, however, it is observed that multicell
coordination actually decreases their performance. This i
TABLE | S - A
WIRELESS MULTICELL CHANNEL MODEL PARAMETERS indicative of the fact that the joint optimization approach
delivers a fairer rate distribution. We also note that altjio
this paper adopts the same uplink scheduling policy as in
[ SumRateover7Cels | DL [ UL | downlink (which is not optimal as mentioned in Section Il);B
Constant PSD, Zero Forcing 932 Mbps | 1092 Mbps it does provide reasonable performance gain for users with |

Dynamic PSD, Zero Forcing 1025 Mbps| 1129 Mbps

Bynamic PSD. Coord, BF | 1104 Mbps | 1230 Mbps Fig. 5 illustrates the convergence of the per-sector suasrat

with the joint scheduling, beamforming and power allogatio

Improvement 28% 13% . . CoS L L
[ 1mp | 6| 6] algorithm. Each iteration in Fig. 5 is either a joint useresbhl-
IMPROVEMENT IN SUM RATE ;—OEBIIQ_ECI:ELLS 3 SECTORS PER CELL10 ing and beamforming step, or a power allocation step. Each
USERS PER SECTORCELL DIAMETER IS 2.8KM. beamforming step consists of fixed 3 inner downlink transmit

beamformer and power iterations and 5 outer downlink receiv
Zero Forcing, or DP-ZF), and a joint cooperative poWel%eamformer updates (for a total of 15 iterations). Each powe

control and beamforming scheme (Dynamic PSD Coordinat?z‘l(ljocat'on step involves up to 10 iterations. The proporio

BF, or DP-CBF). The results show that alrness weights are also updated at the same time. Even with

_ ) a fixed number of iterations, the algorithm is found to work
« Dynamic power spectrum adaptation always outperfor

o ~ Il and the convergence speed is reasonably fast. Note that
constant power allocation in terms of both log utility an he uplink rates show a large variance. This is likely duénto t
the average sum rate;

) ) fact that the proposed algorithm uses a scheduling algorith
o Coordinated beamforming always outperforms Zer%’ptimized for the downlink in the uplink

forcing both in log utility and the average sum rate;
« Dynamic power adaptation alone achieves a higher utility
than coordinated beamforming alone in the uplink; ~ B. Femto/Pico Cell and Macro Cell Coordination
« Combined dynamic power spectrum adaptation and co-The advantage of adaptive scheduling, beamforming, and
ordinated beamforming produces 10%-30% sum rag@wer spectrum adaptation is most evident in a highly over-
increase for the entire network while maintaining prolapped deployment scenario with strong intercell intenfee.
portional fairness. This section quantifies its benefit in a femtocell or picocell
The benefit of adaptive multicell resource allocation is modeployment.
clearly illustrated in the cumulative distributions of usates Femtocell or picocell is an emerging cellular deployment
as shown in Fig. 4. It can be seen from the plots that the coarchitecture where femto- or pico-stations are deployed to
bined dynamic power spectrum adaptation and coordinategprove the throughput and user experience in geographic
beamforming produces the most significant rate improvemdatations where the macrocell coverage is weak. Femto- and
for users with lower service rates, while producing mingpico-stations can be deployed by the operator or by users
improvement or even decreasing performance for usersdgirethemselves. They use the same radio spectrum as the macro-
served with high rates. For example, in the downlink, #tations, and are connected to the backhaul network via the
produces 100% rate improvement for the 25th percentilesysdnternet backhaul. When a mobile is in the coverage area of
and 50% rate improvement for the 40th percentile users. anfemto- or pico-station, its data are routed through to the
the uplink, it produces 100% rate improvement for the 40flemto- or pico-station via the Internet instead of througa t
percentile users. For both the downlink and the uplink, ihacro BS. Femtocells and picocells can heavily overlap with
is observed that users with low rates benefit the most fraime macrocells, so femto- or pico-stations and the macro BSs
intercell coordination. This is a desirable situation asltw- cause significant interference to each other. In the folowi
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Fig. 4. Cumulative distribution function of user rates witjinamic power spectrum adaptation (DP) vs constant pow@}, (&d coordinated beamforming
(CBF) vs zero-forcing (ZF). Cell diameter is 2.8km
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Fig. 5. Convergence of downlink and uplink per-sector sutesrén each of the 21 sectors with dynamic spectrum allaeatiod coordinated beamforming.

a possible deployment scenario is analyzed to show that thacro mobile users can also cause excess interference to the
dynamic adaptation of scheduling, beamforming, and powimto- or pico-stations, so power adaptation can be berkfici
spectrum can alleviate the effect of the interference alwdval In the following, we assume that all the macro BSs and the
femtocells and picocells to co-exist with macrocells. femto- or pico-stations can be coordinated in setting their

Consider a three-cell macro deployment with three sectdp@Wwer spectrum, slcheduling,. anq beamforming strategies, a
per cell, where three femto- or pico-stations are deployed q\nalyze the benefit of coordination.
addition at distances.8R from the macro BS, wheré = i g shows the log-utility achieved with femto-macro

1.4km is the macro cell radius. Each femto- or pico-statiof, 4 dination based on dynamic power spectrum, beamforming
serves a coverage area of radiusit. Ten users are served, seheduling coordination (labeled as DP-CBF) versus tha
by each of the macro sectors z_;md _femto- or pico-cells. ThRpieyed with constant PSD and zero-forcing beamforming
deployment scenario is shown in Fig. 1(b). We assume thglejeq as C2Z2). For the latter case, power backoff valu@s fr

4 antennas are deployed per macro sector and per femtopgp 1, 5048 are tested for each of uplink and downlink.
pico-station, and 2 antennas are deployed in each remate URE can be seen from the figure, the optimal power backoff

Note that in this particular deployment scenario, a mobilalues are -20dB for the downlink and -5dB for the uplink for
user in the downlink can be served by a macro BS despttés particular topology. But, dynamic power spectrum,rbea
the fact that it is closer to a femto- or pico-station. Thudprming and scheduling coordination significantly outpenfis
femto- or pico-stations can cause considerable interéeréor constant PSD and zero-forcing beamforming. Table Ill shows
these users in the downlink. Downlink power backoff at théhe achieved average user rates of dynamic spectrum and
femto- or pico-stations is therefore essential. In thenipli coordinated beamforming versus the constant power and zero
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Fig. 6. Log utility with dynamic spectrum, beamforming araheduling coordination (DP-CBF) as compared to constait &l zero-forcing beamforming
(CP-ZF) with femto/pico power backoff ranging from 0 to 50dfere, the “CZp)” denotes the CP-ZF scheme with power with the femto/picegrdbackoff

value ofp dB.

forcing with the optimal power backoff values. It can been2] —, “Multicell coordination via joint scheduling, bedarming and

seen that dynamic coordination improves both the macrocell
and femto/pico user rates for both uplink and downlink. The,
rate improvement ranges 30% — 60%. Note that proportionally
fair scheduling is used in both cases. Femtocell users\azhie

power spectrum adaptation,” IhEEE International Conference on
Computer Communications (INFOCOM), Shanghai, China, Apr. 2011.

] E. F. Chaponniere, P. J. Black, J. M. Holtzman, and D. N.T&e,

“Transmitter directed, multiple receiver system usinghpdiversity to
equitably maximize throughput,” U.S. Patent 6,449,49@dfiJuly 1999.

higher average rates because they are on average closer tolfth J- Wang, D. J. Love, and M. D. Zoltowski, “User selectioittwzero-

femto- or pico-stations than macro users are to the macro BSs
in this topology.

forcing beamforming achieves the asymptotically optimamsrate,”
IEEE Trans. Sgnal Processing, vol. 56, no. 8, pp. 3713-3726, Aug.
2008.

Finally, Fig. 7 shows the convergence of per-sector and pelel V- K. N. Lau and Y.-K. Kwok, “Performance analysis of SIMO

femto/picocell sum rates for both uplink and downlink. Agai
a fixed number of iterations are used. Specifically, eacl-ter

space-time scheduling with convex utility function: Zdaoeing linear
processing,”|EEE Trans. Veh. Technal., vol. 53, no. 2, pp. 339-350,
Mar. 2004.

tion consists of either a joint user scheduling and beamifogm [6] J. Mundarath, P. Ramanathan, and B. Van Veen, "A disteithulownlink

step with up to 15 iterations, or a power allocation step with
up to 10 iterations. The upper three curves are femto/picoce

scheduling method for multi-user communication with zénwing
beamforming,”|EEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4508—
4521, Nov. 2008.

sum rates. It is observed that the convergence is reasonalfty B. Song, R. Cruz, and B. Rao, “Network duality for multiws

fast. Note that the downlink rates converge more rapidiy tha
uplink rates. This is because the scheduling algorithm us
here are designed for the downlink, but is neverthelesseppl

to the uplink as well.

El

V. CONCLUSIONS
(10]
This paper proposes a coordinated scheduling, beamform-

ing, and power allocation scheme across the multiple BSs E){]
wireless cellular networks. The proposed optimizatioatsgy
decouples the scheduling, beamforming, and power allmtati
steps, and uses ideas such as uplink-downlink duality aiddl
interference pricing based power control to approach an (at
best locally) optimal solution in the overall network ugili |13
maximization framework. System-level simulation showtth
the proposed approach already achieves a significant throu
put and network utility improvement with coordination aﬁ
the resource allocation level, which is attractive for \éss
deployments with heavily overlapped cellular structures.  [15]

REFERENCES [16]
[1] W. Yu, T. Kwon, and C. Shin, “Joint scheduling and dynarpiower
spectrum optimization for wireless multicell networksi’ Conference
on Information Science and Systems (CISS), Princeton, NJ, Mar. 2010. [17]

MIMO beamforming networks and applicationdEEE Trans. Com-
mun., vol. 55, no. 3, pp. 618-630, Mar. 2007.

g] M. Codreanu, A. Tolli, M. Juntti, and M. Latva-aho, “Joidesign of

tx-rx_ beamformers in MIMO downlink channellEEE Trans. Sgnal
Processing, vol. 55, no. 9, pp. 4639-4655, sept. 2007.

M. Schubert and H. Boche, “Solution of the multiuser ddinwk beam-
forming problem with individual SINR constraints|EEE Trans. Veh.
Technal., vol. 53, pp. 18-28, Jan. 2004.

——, “lterative multiuser uplink and downlink beamfoimy under
SINR contraints,”|EEE Trans. Sgnal Processing, vol. 53, pp. 2324—
2334, Jul. 2005.

F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, ‘Asenit beamform-
ing and power control for cellular wireless systemkEEE J. Select.
Areas Commun., vol. 16, no. 8, pp. 1437-1450, Oct. 1998.

F. Rashid-Farrokhi, L. Tassiulas, and K. J. R. Liu, fitaptimal power
control and beamforming in wireless networks using antemmays,”
IEEE Trans. Commun., vol. 46, no. 10, pp. 1313-1324, Oct. 1998.
E. Visotsky and U. Madhow, “Optimal beamforming usin@grtsmit
antenna arrays,” ifProc. IEEE Veh. Technol. Conf., vol. 1, Jul. 1999,
pp. 851-856.

] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precodiig conic

optimization for fixed MIMO receivers,J/EEE Trans. Sgnal Processing,
vol. 54, no. 1, pp. 161-176, Jan. 2006.

W. Yu and T. Lan, “Transmitter optimization for the mitdintenna
downlink with per-antenna power constraintdEEE Trans. Sgnal
Processing, vol. 55, no. 6, pp. 2646—-2660, Jun. 2007.

S. Stanczak, M. Kaliszan, and N. Bambos, “Admission tcgnfor
power-controlled wireless networks under general interfee func-
tions,” in Proc. IEEE Asilomar Conf. on Sgnals, Systems, and Com-
puters, Oct. 2008.

B. Song, Y.-H. Lin, and R. L. Cruz, “Weighted max-minrfé&eamform-



YU et al.: MULTICELL COORDINATION VIA JOINT SCHEDULING, BEAMFORMING AND POWER SPECTRUM ADAPTATION

Fig. 7.

13

Mixed Macro and Femto Cell Deployment Macro Cell Users Femto Cell Users
(Average User Rates) DL | UL DL | UL
Constant PSD with Optimal Backoff, Zero Forcing5.8 Mbps | 4.9 Mbps | 11.4 Mbps| 9.3 Mbps
Dynamic Spectrum, Coordinated Beamforming | 7.6 Mbps | 7.7 Mbps | 18.6 Mbps| 15.0 Mbps
Improvement 31% 51% 63% 61%

TABLE IlI
AVERAGE RATE IMPROVEMENT FOR BOTH MACROCELL AND FEMTOCELL USRS IN A 3-MACROCELL AND 3-FEMTO/PICOCELL SCENARIO USING JOINT
PROPORTINAL FAIR JOINT SCHEDULINGPOWER SPECTRUM ADAPTATION AND BEAMFORMING

250 T T T

= = N
o o o
o o o
T T T

|

|

{

i

Downlink sum rate per sector (Mbps)

o
o
T

20

iterations

(a) Downlink

dynamic spectrum allocation and coordinated beamforming.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

ing, power control, and scheduling for a MISO downlinkZEE Trans.
Wireless Commun., vol. 7, no. 2, pp. 464-469, Feb. 2008.

D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese,N&gata,
and K. Sayana, “Coordinated multipoint transmission arzpéon in
LTE-advanced: Deployment scenarios and operationaleigsis,”| EEE
Commun. Mag., vol. 50, no. 2, pp. 148-155, Feb. 2012.

Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratly weighted
MMSE approach to distributed sum-utility maximization farMIMO
interfering broadcast channelEEE Trans. Sgnal Processing, vol. 59,
no. 9, pp. 4331-4340, Sep. 2011.

R. Stridh, M. Bengtsson, and B. Ottersten, “System watdn of
optimal downlink beamforming with congestion control inreless
communication,”|EEE Trans. Wireless Commun., vol. 5, pp. 743-751,
Apr. 2006.

H. Dahrouj and W. Yu, “Coordinated beamforming for theultiacell
multi-antenna wireless systems$EZEE Trans. Wireless Commun., vol. 9,
no. 5, pp. 1748-1759, May 2010.

J. Yang and D. K. Kim, “Multi-cell uplink-downlink beafarming
throughput duality based on Lagrangian duality with pesebatation
power constraints,1EEE Commun. Lett., vol. 12, no. 4, pp. 277-279,
Apr. 2008.

R. Zakhour, Z. K. M. Ho, and D. Gesbert, “Distributed b&arming
coordination in multicell MIMO channels,” irProc. |[EEE Veh. Tech.
Conf., Barcelona, Spain, Apr. 2009.

C. Botella, G. Pinero, A. Gonzalez, and M. de Diego, “@boation in
a multi-cell multi-antenna multi-user w-cdma system: A rinéarming
approach,|EEE Trans. Wireless Commun., vol. 7, pp. 4479-4485, Nov.
2008.

C. Shi, R. A. Berry, and M. L. Honig, “Adaptive beamfomg in
interference networks via bi-directional training,” #roc. Conf. on
Inform. Sciences and Systems (CISS), Princeton, NJ, May 2010.

L. Venturino, N. Prasad, and X. Wang, “Coordinated déinbeamform-
ing in downlink multi-cell wireless networks,TEEE Trans. Wireless
Commun., vol. 9, no. 4, pp. 1451 -1461, Apr. 2010.

W. Choi and J. G. Andrews, “The capacity gain from in&drscheduling
in multi-antenna systemslEEE Trans. Wireless Commun., vol. 7, no. 2,
pp. 714-725, Feb. 2008.

S. G. Kiani and D. Gesbert, “Optimal and distributed esdhling for

Convergence of downlink and uplink per-sector andfeeto/picocell

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Uplink sum rate per sector (Mbps)

100

80

i
10
iterations

15 20

(b) Uplink

sum rates in each of the 9 macrocell sectord 3 femto/picocells with

multicell capacity maximization,1EEE Trans. Wreless Comm., vol. 7,
no. 1, pp. 288-297, Jan. 2008.

R. Bendlin, Y.-F. Huang, M. T. Ivrlac, and J. A. Nossekast distributed
multi-cell scheduling with delayed limited-capacity bhekl links,” in
IEEE Int. Conf. Commun. (ICC), 14-18 2009, pp. 1-5.

T. Ren and R. J. La, “Downlink beamforming algorithmstiwinter-
cell interference in cellular networkslEEE Trans. Wireless Commun.,
vol. 5, pp. 2814-2823, Oct. 2006.

D. Gesbert, S. G. Kiani, A. Gjendemsj, and G. E. len, “pt@dion,
coordination, and distributed resource allocation inrfietence-limited
wireless networks,Proc. of the IEEE, vol. 95, no. 5, pp. 2393-2409,
Dec. 2007.

A. Gjendemsjo, G. Oien, and D. Gesbert, “Binary powentool for
multi-cell capacity maximization,” inEEE Workshop on Sgnal Pro-
cessing Advances in Wireless Communications (SPAWC), 17-20 2007,
pp. 1-5.

S. H. Ali and V. C. M. Leung, “Dynamic frequency allocati in
fractional frequency reused OFDMA network$EEE Trans. Wreless
Commun., vol. 8, no. 8, pp. 4286-4295, Aug. 2009.

M. Rahman and H. Yanikomeroglu, “Enhancing cell-edgef@mance:
a downlink dyanamic interference avoidance scheme witbr-cell
coordination,”|EEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1414—
1425, Apr. 2010.

J. Huang, V. G. Subramanian, R. Agrawal, and R. BerrypWRlink
scheduling and resource allocation for OFDM systems Camference
Info. Science Sys. (CISS), Mar. 2006, pp. 1271-1279.

——, “Joint scheduling and resource allocation in upli@FDM sys-
tems for broadband wireless access networksZE J. Sel. Top. Sgnal
Processing, vol. 27, no. 2, pp. 226-234, Feb. 2009.

L. Venturino, N. Prasad, and X. Wang, “Coordinated sthi&g and
power allocation in downlink multicell OFDMA networkslEEE Trans.
\eh. Technol., vol. 58, no. 6, pp. 2835-2848, Jul. 2009.

A. L. Stolyar and H. Viswanathan, “Self-organizing dynic fractional
frequency reuse for best-effort traffic through distrikltenter-cell
coordination,” inINFOCOM, Apr. 2009.

B. Rengarajan, A. L. Stolyar, and H. Viswanathan, “Sefjanizing
dynamic fractional frequency reuse on the uplink of ofdmsteys,” in
Conf. Information Systems and Sciences (CISS), Mar. 2010.



14 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOPUBLICATION

[40] H.-S. Jo, C. Mun, J. Moon, and J.-G. Yook, “Interferentétigation
using uplink power control for two-tier femtocell networkslEEE
Trans. Wireless Commun., vol. 8, no. 10, pp. 4906-4910, Oct. 2009.

[41] Y. Bai, J. Zhou, L. Liu, L. Chen, and H. Otsuka, “Resouoo®rdination
and interference mitigation between macrocell and fentitbce |IEEE
Symp. Personal, Indoor and Mobile Radio Commun., 2009.

[42] L. Yu, E. Karipidis, and E. G. Larsson, “Coordinated edhling and
beamforming for multicell spectrum sharing networks ugingnch and
bound,” in Proc. European Signal Proc. Conf. (EUSIPCO), Bucharest,
Romania, Aug. 2012.

Wei Yu (S'97-M'02-SM’'08) received the B.A.Sc.
degree in Computer Engineering and Mathematics
from the University of Waterloo, Waterloo, On-
tario, Canada in 1997 and M.S. and Ph.D. degrees
in Electrical Engineering from Stanford University,
Stanford, CA, in 1998 and 2002, respectively. Since
2002, he has been with the Electrical and Com-
puter Engineering Department at the University of
Toronto, Toronto, Ontario, Canada, where he is now
Professor and holds a Canada Research Chair in

[43] J. Huang, R. A. Berry, and M. L. Honig, “Distributed interence Information Theory and Wireless Communications.
compensation for wireless networkdEEE J. Select. Areas Commun.,  His main research interests include information theoryinoipation, wireless
vol. 24, no. 5, May 2006. communications and broadband access networks.

[44] J. Yuan and W. Yu, “Distributed cross-layer optimizati of wireless Prof. Wei Yu currently serves as an Associate Editor for |EERANSAC-
sensor networks: A game theoretic approach,Global Telecommuni-  TIONS ON INFORMATION THEORY. He was an Editor for IEEE RANSAC-
cations Conf. (GLOBECOM), San Francisco, U.S.A., 2006. TIONS ON COMMUNICATIONS (2009-2011), an Editor for IEEERANSAC-

[45] C. Shi, R. A. Berry, and M. L. Honig, “Distributed intenfence TIONS ON WIRELESSCOMMUNICATIONS (2004-2007), and a Guest Editor
pricing for OFDM wireless networks with non-separableitig$,” in  for a number of special issues for the IEE&IRNAL ON SELECTEDAREAS
Conference Info. Science Sys. (CISS), Mar. 2008, pp. 755-760. IN COMMUNICATIONS and the EURASIP JQURNAL ON APPLIED SIGNAL

[46] F. Wang, M. Krunz, and S. Cui, “Price-based spectrum agament in PROCESSING He is member of the Signal Processing for Communications
cognitive radio networks,1EEE J. Sdl. Top. Sgnal Processing, vol. 1, and Networking Technical Committee of the IEEE Signal Pssegy Society.

no. 2, pp. 74-87, Feb. 2008. He received the IEEE Signal Processing Society Best Paperdiim 2008,
[47] W. Yu, “Multiuser water-filling in the presence of craak,” in Inform.  the McCharles Prize for Early Career Research DistinctioR008, the Early
Theory and Appl. Workshop (ITA), San Diego, U.S.A., Jan. 2007. Career Teaching Award from the Faculty of Applied Science Bngineering,

[48] M. Wiczanowski, S. Stanczak, and H. Boche, “Providingadratic University of Toronto in 2007, and the Early Researcher Alxfaom Ontario
convergence of decentralized power control in wirelessvords: The in 2006.
method of min-max functionsEEE Trans. Sgnal Processing, vol. 56,
no. 8, pp. 4053-4068, Aug. 2008.

[49] S. Stanczak, M. Wiczanowski, and H. Bockendamentals of Resource
Allocation in Wireless Networks: Theory and Algorithms, Foundationsin
Sgnal Processing, Communications and Networking.  Springer-Verlag,
2009.

[50] H. Boche and M. Schubert, “A superlinearly and globadignvergent
algorithm for power control and resource allocation witmel inter-
ference functions, TEEE/ACM Trans. Networking, vol. 16, no. 2, pp.
383-395, Apr. 2008.

[51] S. S. Christensen, R. Argawal, E. de Carvalho, and J. NoffiC
“Weighted sum-rate maximization using weighted MMSE forM@-
BC beamforming design,/IEEE Trans. Wireless Commun., vol. 12,
no. 7, pp. 4792-4799, Dec. 2008. munication systems, and nano-scale communication

[52] G. Wunder, M. Kasparick, A. Stolyar, and H. ViswanathdSelf- technologies. In 2011, he was a visiting scholar with
organizing distributed inter-cell beam coordination itidar networks the Department of Electrical Engineering, Stanford Ursitgr Stanford, CA.
with best effort traffic,” inProc. Int. Symp. Modeling and Optimization ~ From 2011 to 2012, he was a Postdoctoral Fellow with the Deyant of
in Mobile, Ad-Hoc and Wireless Networks (W Opt), Avignon, France, Electrical and Computer Engineering, the University oftiBhi Columbia,
May 2010. Vancouver, BC. Since 2013, he has been a Senior Member ohé&sriig

[53] Z.-Q. Luo and S. Zhang, “Dynamic spectrum managemeamg@exity — Staff with the Electronics and Telecommunications Researstitute (ETRI),
and duality,” IEEE J. Sel. Top. Sgnal Processing, vol. 2, no. 1, pp. Daejeon, Korea, where he has been engaged in research on ré@swi
57-73, Feb. 2008. communication systems. His research interests includie r@dource man-

[54] M. Chiang, C. W. Tan, D. P. Palomar, D. O'Neill, and D.idal “Power agement, multiple antenna technologies, performanceysisaland system
control by geometric programming/EEE Trans. Wireless Commun.,  level simulation in wireless communication systems.
vol. 6, no. 7, pp. 2640 —2651, Jul. 2007.

[55] J. Papandriopoulos and J. Evans, “SCALE: A low-comityedistributed
protocol for spectrum balancing in multiuser dsl netwdrkEEE Trans.
Inform. Theory, vol. 55, no. 8, pp. 3711-3724, Aug. 2009.

[56] D. Bertsekas, E. Gafni, and R. Gallager, “Second déviwaalgorithms
for minimum delay distributed routing in networksJEEE Trans.
Comm., vol. 32, no. 8, pp. 911-919, Aug. 1984.

[57] P. E. Gill and W. Murray, “Newton-type methods for unstrained and
linearly constrained optimization,Math. Prog., vol. 7, pp. 311-350,
1974.

[58] P. Tsiaflakis, M. Diehl, and M. Moonen, “Distributed gp@im man-
agement algorithms for multi-user DSL network&ZEE Trans. Signal
Processing, vol. 56, no. 10, pp. 4825-4843, Oct. 2008.

Taesoo Kwon(S'01-M’07) received the B.S., M.S.,
and Ph.D. degrees in electrical engineering and
computer science from the Korea Advanced Insti-
tute of Science and Technology (KAIST), Daejeon,
Korea, in 2001, 2003, and 2007, respectively. From
2007 to 2011, he was was a Senior Engineer with
Samsung Advanced Institute of Technology (SAIT),
Yongin, Korea, where he was involved in research
on LTE-advanced systems, beyond 4G wireless com-

Changyong Shin (S'04-M'07) received the B.S.
and M.S. degrees from Yonsei University, Seoul,
South Korea in 1993 and 1995, respectively, and
the Ph.D. degree from The University of Texas at
Austin, in 2006, all in electrical engineering. From
1995 to 2001, he was a Senior Research Engineer at
LG Electronics Inc., Seoul, South Korea, where he
worked on digital video signal processing and VLSI
circuit design for digital signal processing. He is
now with Samsung Advanced Institute of Technol-
ogy (SAIT), Gyunggi-do, South Korea. His research
interests cover MIMO communications, multicarrier modioka, multiple
access, radio resource management, and signal processtwrimunications
including channel estimation, signal detection, intenfee alignment and
neutralization, space-time processing, synchronizatom PAR reduction.






