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Abstract—The mitigation of intercell interference is an impor-
tance issue for current and next-generation wireless cellular net-
works where frequencies are aggressively reused and hierarchical
cellular structures may heavily overlap. The paper examines
the benefit of coordinating transmission strategies and resource
allocation schemes across multiple base-stations for interfer-
ence mitigation. Two different wireless cellular architectures
are studied: a multicell network where base-stations coordinate
in their transmission strategies, and a mixed macrocell and
femtocell/picocell deployment with coordination among macro
and femto/pico base-stations. For both scenarios, this paper
proposes a heuristic joint proportionally fair scheduling, spatial
multiplexing, and power spectrum adaptation algorithm that
coordinates multiple base-stations with an objective of optimizing
the overall network utility. The proposed scheme optimizesthe
user schedule, transmit and receive beamforming vectors, and
transmit power spectra jointly, while taking into consideration
both the intercell and intracell interference and the fairness
among the users. System-level simulation results show thatcoor-
dination at the transmission strategy and resource allocation level
can already significantly improve the overall network throughput
as compared to a conventional network design with fixed transmit
power and per-cell zero-forcing beamforming.

Index Terms—Beamforming, cellular networks, coordinated
multiple-point (CoMP), femtocell, intercell coordination, network
multiple-input multiple-output (MIMO), picocell, power c ontrol,
scheduling.

I. I NTRODUCTION

I NTERFERENCE is a fundamental limiting factor in wire-
less cellular networks. While intracell interference may

be mitigated by separating subscribers in orthogonal time,
frequency or spatial dimensions, the mitigation of intercell
interference is much more challenging. This is especially
so for wireless networks where frequencies are reused ag-
gressively and where hierarchical cellular structures such as
femtocells heavily overlap with macrocell deployment. This
paper explores the idea of intercell coordination as a means
for interference mitigation.

Coordination can take place at different levels. For example,
in a fully coordinated network multiple-input multiple-output

Manuscript received August 3, 2012; revised January 15, 2013; accepted
April 8, 2013. The associate editor coordinating the reviewof this paper and
approving it for publication was S. Blostein.

This paper has been presented in part at Conference on Information
Sciences and Systems (CISS) 2010 [1], and in part at INFOCOM 2011 [2].

W. Yu is with The Edward S. Rogers Sr. Department of Electrical and
Computer Engineering, University of Toronto, 10 King’s College Road,
Toronto, Ontario, Canada M5S 3G4 (e-mail: weiyu@comm.utoronto.ca).

T. Kwon is with the Electronics and Telecommunications Research Institute
(ETRI), Daejeon, 305-700, South Korea (e-mail: tskwon@etri.re.kr).

C. Shin is with the Samsung Advanced Institute of Technology, Yongin,
446-712, South Korea (e-mail: changyong.shin@gmail.com).

Digital Object Identifier 10.1109/T-WC.2013.121128

(MIMO) system, the multiple antennas across the multiple
base-stations (BSs) can be thought of as forming a large
antenna array, where intercell interference can be actively
exploited. The realization of such a fully coordinated system,
however, also requires high-capacity backhaul communication.
As antennas from across multiple BSs need to jointly transmit
and receive signals for multiple mobile users, data streamsof
multiple users must be shared among the multiple BSs.

This paper explores a different level of coordination where
user transmission strategies and resource allocation schemes,
rather than data signals, are coordinated across the BSs. The
coordination of transmission strategies clearly requiresmuch
less backhaul communication, and is much easier to implement
in a practical deployment. The goal of this paper is to show
that by jointly setting the scheduling, power allocation, and
beamforming strategies of multiple BSs and multiple mobile
users, intercell interference can already be alleviated, and the
overall performance of the network can already be improved
significantly as compared to the current generation of wireless
networks where cells operate independently.

Resource management has been the focus of extensive
studies for cellular networks in the past, but traditional studies
typically focus on per-cell strategies. This is in part due to
the fact that coordination across the multiple cells presents a
significant challenge not only from an implementation point
of view, but also in optimization, as the presence of intercell
interference leads to inherent nonconvexity in the problem
structure. This paper adopts a network utility maximization
framework and makes progress on this front. We show that
network-wide optimization can be performed on each of
the scheduling, beamforming, and power allocation modules
separately and iteratively, and that distributed implementation
is possible with reasonable amount of intercell messaging.
We utilize ideas such as interference pricing for multicell
power spectrum adaptation and uplink-downlink duality for
coordinated beamforming to devise an efficient and distributed
heuristic optimization algorithm that goes toward a network-
wide (albeit at best local) optimum.

One of the main objectives of this paper is to provide
system-level simulation results to quantify the benefit of
multicell resource management. While previous works in this
area typically focus on the performance evaluation of individ-
ual optimization components (e.g. power control, scheduling,
or beamforming), this paper takes a system approach and
analyzes the interaction among them. We show that under
realistic cellular deployment scenarios, the coordination of
transmission and resource allocation strategies across multiple
cells or between the macro- and femtocells can already bring
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significant throughput benefit to users at the cell edge and an
overall utility improvement to the entire network.

A. Related Work

Scheduling, beamforming and power allocation methods
have been the subject of extensive studies in the single-cell
multiuser MIMO environment. For example, proportionally
fair scheduling [3] has been widely used in practice. The use
of joint zero-forcing beamforming and user scheduling has
been considered in [4]–[6]. From a more rigorous perspective,
a concept known as uplink-downlink duality has emerged
as a key solution to the problem of finding the optimal
beamforming vectors to minimize transmit power subject to
signal-to-interference-and-noise-ratio (SINR) constraints [7]–
[16]. The use of this duality-based beamforming, together with
power control and branch-and-bound heuristic scheduling has
been considered in [17].

In the multicell context, the use of scheduling, beamform-
ing and power allocation for intercell interference mitigation
has been considered in standardization efforts such as LTE-
Advanced [18]. However, the design of optimal algorithms
for coordination is quite challenging, and most of the litera-
ture (with a notable exception of [19]) considers scheduling,
beamforming and power allocation separately. For example,
the joint design of beamforming across multiple cells has been
considered in [20]–[24], but these studies typically focuson
the minimization of transmit power for a fixed set of selected
users, instead of the optimization of network utility. The work
[25] proposes beamforming algorithms to maximize SINR
based on uplink-downlink channel reciprocity, but it does
not consider scheduling or power allocation. The joint power
control and coordinated beamforming problem for maximizing
the weighted rate sum has also been addressed in [26], but
without scheduling. Intercell scheduling has been considered
in [27]–[30], intercell power control has been considered in
[31]–[34], joint scheduling and power control is considered
in [35]–[39], but these studies do not include beamforming.
Likewise, in the femtocell context, existing studies on resource
coordination also typically focus on power control only [40],
[41] and not scheduling or beamforming. Finally, the work
[42] proposes a branch-and-bound algorithm to maximize
the total number of users that a multicell system can serve
under SINR constraints while coordinating scheduling and
beamforming. This is yet another different design objective,
in contrast to the network utility maximization approach taken
in this paper.

The joint optimization of scheduling, beamforming and
power allocation is a challenging problem mathematically.
The problem of selecting the best set of active users within a
sector is combinatorial in nature. In addition, the optimization
of power and beamformers (with fixed user schedule) is a
well-known nonconvex problem. Thus, components of the
proposed optimization problem are already difficult to solve.
It is therefore not surprising that techniques for reachinga
globally optimal solution of the joint optimization problem
have not emerged in the literature. Instead of aiming for
global optimality, this paper shows via system-level simu-
lation that efficient and component-wise optimal techniques

for the multicell joint optimization problem can already sig-
nificantly improve the performance of practical networks. A
main ingredient of the proposed approach is an incremental
update of user schedule for each fixed beamforming and
power allocation. This gives a graceful way of dealing with
the combinatorial nature of the scheduling problem, while
allowing practical and locally optimal methods to be used for
power control, thereby providing a reasonably good solution
for the overall system.

The proposed system treats the beamforming problem using
the uplink-downlink duality technique, and treats the schedul-
ing problem using a proportionally fair scheduler [3]. In
addition, power spectrum adaptation is performed using a
concept called interference pricing [43]–[47], which allows the
effect of interference among the multiple transmitter-receiver
pairs to be quantified. In particular, this paper uses Newton’s
method for fast convergence in power adaptation. Several
works have considered Newton’s method in power control
for interference mitigation [48]–[50], but they typicallydo
not consider a joint design of beamforming, scheduling, and
power adaptation. Further, this paper also proposes methods
to simplify the inversion of the Hessian matrix to reduce the
complexity of the Newton’s method.

It should be noted that the proposed approach of decoupling
scheduling, beamforming and power optimization can be con-
trasted with the joint optimization approach of [19], which
is based a weighted minimum mean squared error (MMSE)
technique [51]. The decoupled approach of this paper is more
modular and can potentially be easier to implement, while the
weighted MMSE approach of [19] has the advantage that it
can guarantee convergence to a stationary point of the overall
optimization problem.

It is worth emphasizing that the proposed system allows
multiple cells to coordinate in their signaling strategy (e.g.
power, beamforming and scheduling), but does not allow the
sharing of the actual data streams. We show that transmission
strategy and resource allocation coordination already brings
significant improvement to existing cellular systems. Further
improvement is possible by implementing a network MIMO
system with full signal-level coordination, which would rep-
resent the ultimate capacity limit of cellular networks.

B. Organization

The remainder of this paper is organized as follows: Sec-
tion II describes the system models for two different cellular
deployment scenarios and states the coordinated resource allo-
cation problem. Section III presents a joint proportionally fair
scheduling, spatial multiplexing, and power spectrum adap-
tation algorithm that aims to maximize the overall network
utility. Section IV analyzes and discusses the performance
of proposed methods through computer simulation. Finally,
conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

This paper considers two distinct cellular architectures:a
traditional cellular deployment such as the one shown in
Fig. 1(a), and a hierarchical deployment where the deployment
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Fig. 1. Two distinct cellular architectures: (a) A cellularnetwork with 7 cells, 3 sectors per cell, and 10 users per sector; (b) An overlap mixed macrocell
and femto/picocell deployment with 3 macro BSs and 3 femto/picocell BSs each serving 10 users.

of femtocells or picocells can heavily overlap with that of
macrocells, for example, as shown in Fig. 1(b). In both cases,
full frequency reuse is assumed. In the rest of the paper, a
cell may refer to either a macrocell or a femtocell; abase-
station (BS) may refer to either a macro BS or a femto BS.
A cell may consist of one omni-directional sector or multiple
directional sectors depending on the deployment scenario.

This paper considers a multiple-input multiple-output
(MIMO) deployment, where both the BSs and the mobile
users are equipped with multiple antennas and where multiple
users within each cell are separated either in frequency via
orthogonal frequency-division multiple-access (OFDMA),or
in timeslots via scheduling, or via spatial multiplexing via
beamforming. We assume that the network employs an initial
channel estimation and synchronization phase, in which the
MIMO multipath fading channels between every pair of trans-
mitter and receiver are estimated across the frequency tones.
This includes both uplink and downlink direct channels within
each cell as well as the interfering channels between any pair
of transmitter and receiver (which can be either the BS or the
remote terminal) in neighboring cells. For example, downlink
channel estimation may be performed using orthogonal pilot
sequences synchronously transmitted by the BSs. The mobile
users may then estimate all the downlink channels at the
same time by matching to the different sequences. In time-
division duplex systems, the uplink channel may be inferred
from downlink channel (and vice versa.). Further, the channel
state information is assumed to be perfect in this paper. This
is an idealistic assumption, but is adopted here in order to
quantify the benefit of adaptive intercell resource allocation.

This paper aims to tackle the following network-wide
resource allocation question. Given the total amount of time,
frequency and spatial resources in each cell, how should they
be distributed across the users to maximize the total network
utility? This question is important for wireless networks with
maximal frequency reuse and/or for networks with overlapping
hierarchical structures, as intercell (and intersector) interfer-
ence is often the dominant limiting factor in these systems.

In addition, because of spatial multiplexing in which multiple
users are served in the same time/frequency slot simultane-
ously, mobile users can also experience intracell interference.
Thus, the above resource allocation problem is coupled both
across the users within each cell and across the cells. The goal
of this paper is to devise efficient optimization techniquesthat
strike a balance between maximizing each user’s own data rate
and minimizing the effect of its interference on its neighbors—
a task that can be facilitated by multicell coordination.

B. Problem Statement

Consider a wireless cellular MIMO-OFDMA network with
spatial multiplexing within each cell, where multiple BSs
coordinate in their resource allocation strategies, but otherwise
transmit and receive data streams independently, the joint
scheduling, spatial multiplexing, and power spectrum adap-
tation problem can be stated as follows:

1) Beamforming: What are the appropriate transmit and
receive beamforming vectors at the BSs and at the
mobile users?

2) Scheduling: Which user should be served in each fre-
quency and time slot for each beam?

3) Power spectrum allocation: What is the appropriate
power spectrum for each beam?

In general, these three questions must be answeredjointly.
Further, the optimization must be performed repeatedly over
time as channels vary, and a separate optimization procedure
must be performed for each of the uplink and the downlink.

Throughout this paper, we assume that the association of the
users to the BSs are already determined and are fixed (e.g.,
based on pathloss or distances to BSs). The scheduling process
here involves only the optimal assignment of users within each
cell to the physical resource blocks. The optimization of BS
association brings in another set of variables, which are not
considered in this paper.

weiyu
Cross-Out

weiyu
Inserted Text
pico/femtocell

weiyu
Cross-Out

weiyu
Inserted Text
pico/femto



4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION

This papers adopts a network utility maximization frame-
work in which the optimization objective is to maximize

max
∑

lsk

Ulsk(R̄lsk) (1)

where R̄lsk is the long term average rate of thekth user in
the lth cell and thesth sector, andUlsk(·) is a utility function
typically chosen to be concave and increasing. A common
choice of the utility function isUlsk(·) = log(·), which leads
to a proportional fairness resource allocation across the users.
The rest of the paper assumes this log-utility function, butthe
development is equally applicable to other utility choicesas
well. Finally, the transmit signals are subject to some typeof
transmit power-spectral-density (PSD) constraints across the
antennas at either the BSs for the downlink, or the mobile
terminals for the uplink.

III. JOINT SCHEDULING, BEAMFORMING, AND POWER

ALLOCATION

The joint scheduling, beamforming and power allocation
problem is a complex optimization problem for which finding
the global optimal solution is likely to be quite difficult.
The main idea of this paper is that one can exploit the
structure of the optimization problem setup and use an iterative
approach to solve the problem. Our key observation is that
the three questions above can be decoupled and solved in an
iterative fashion. Specifically, the proposed solution involves
the following steps:

• Fixing the beamforming vectors and power allocation,
the assignment of users to each beam can be done in a
greedy fashion via proportionally fair scheduling;

• Fixing the assignment of users and power for each
transmit beam, the beamforming vectors can be updated
in a coordinated fashion across the cells via uplink-
downlink duality;

• Fixing the beamformers and user assignment, the power
updates can be coordinated across the cells via interfer-
ence pricing.

The above three steps can be iterated to reach an (at best
locally) optimal solution of the joint optimization problem.
Although not necessarily globally optimal, such a solution
already allows multiple cells to coordinate in alleviatinginter-
cell interference, thereby improving the overall network utility.
Another advantage of the proposed approach is modularity.
Individual optimization components can be plugged into the
overall framework independently.

A. Mathematical Formulation

Consider an interference-limited multicell environment with
L cells,S sectors per cell,K users per sector, and an OFDMA
multiplexing scheme withN tones over a fixed bandwidth.
The BS is equipped withP antennas, and the remote users
are equipped withQ antennas each. LetHn

ls,mtk denote the
P × Q matrix channel between thelth BS, thesth sector,
and thekth remote user in themth cell, the tth sector for
both uplink and downlink in tonen. The system is assumed
to operate in a time-division duplex (TDD) mode.

The system under consideration uses a spatial multiplexing
scheme. We assume that each BS serves exactlyP users
simultaneously, but each user is assigned at most one data
stream in each given tone. Serving as many users as there
are BS antennas is a reasonable design choice in a mod-
erate interference environment. Also, while in a single-user
MIMO channel, having multiple data streams for a user is
advantageous from a capacity point of view, one data stream
per user is sensible in a multiuser environment where mul-
tiuser diversity ensures that such a restriction is near optimal.
Further, we assume that the BS does not employ nonlinear
interference pre-subtraction (i.e. dirty-paper coding).In this
case, theP users in the downlink are separated by linear
transmit beamforming vectorsvnD,lsb, which denotes thebth
downlink transmit beamformer in thelth cell andsth sector,
and linear receive beamforming vectorsun

D,lsk, which denotes
the downlink receive beamformer applied at thekth mobile
user in thelth cell, thesth sector. The beamforming vectors
have unit norm. Here, the superscriptn denotes subcarrier
index. The notation for the uplink is similar.

A key issue in the OFDMA system is user scheduling. We
use an assignment functionk = fD(l, s, b, n) to assign userk
to the bth beamformer in thelth cell, thesth sector, thenth
tone in the downlink, and likewisefU (l, s, b, n) for the uplink.
Let Pn

U,lsb and Pn
D,lsb be the uplink and downlink transmit

PSDs in thelth cell, thesth sector, thebth beamformer, the
nth tone, at the assigned remote user for uplink and at the BS
for downlink, respectively. The downlink proportionally fair
joint scheduling, beamforming, and transmit power spectrum
adaptation problem is that of choosing the user scheduling
function fD(l, s, b, n), the beamforming vectorsvnD,lsb and
un
D,lsk, and the downlink transmit powerPn

D,lsb to maximize
(1):

max
∑

l,s,k

log
(

R̄D,lsk

)

s.t. RD,lsk =
∑

{(b,n):k=fD(l,s,b,n)}

log

(

1 +
SINRn

D,lsbk

Γ

)

0 ≤ Pn
D,lsb ≤ Smax

D ∀l, s, b, n (2)

where

SINRn
D,lsbk =

Pn
D,lsb|(u

n
D,lsk)

HHn
ls,lskv

n
D,lsb|

2

σ2 +
∑

(j,t,c) 6=(l,s,b) P
n
D,jtc|(u

n
D,lsk)

HHn
jt,lskv

n
D,jtc|

2
. (3)

Here, R̄D,lsk is the time averaged rate andRD,lsk is the
instantaneous downlink rate for thekth user in thelth cell
and the sth sector,Γ is the SNR gap accounting for the
realistic choices of modulation and coding schemes,σ2 is
the background noise. The uplink problem formulation is
similar. Note that the SINR expression includes the intracell
interference due to the power leakage from other transmit
beams within each sector as well as intercell interference
coming from neighboring cells or neighboring sectors.

The above formulation assumes that a peak power constraint
Smax
D is imposed on each beamforming vector separately. This

is a simplified box-type constraint, which is attractive from
the view of developing power control algorithms and already
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illustrates the essential feature of the optimization problem.
Alternatively, the solution method proposed in this paper can
also be applied to problem settings with per BS sum-power
constraints, or peak-power constraints on each of the antenna
elements, as will be discussed later the paper.

The optimization problem (2) is a mixed discrete (user
scheduling) and continuous (beamforming and power allo-
cation) optimization problem. Due to its combinatorial and
nonconvex nature, finding the global optimal solution to (2)
is likely to be difficult. Instead of aiming at the global opti-
mality, this paper proposes an approach based on iteratively
solving the scheduling, beamforming, and power allocation
subproblems. The main contribution of this paper is therefore
a system-level network optimization algorithm suitable for
implementation in practical networks.

B. Proportionally Fair Scheduling with Spatial Multiplexing

A key question in the design of spatial multiplexing systems
is that of selecting the set of active users in each cell/sector
and for each frequency tone. Clearly, it is desirable to schedule
users whose channels are nearly orthogonal. In addition, the
scheduler also needs to balance the user traffic demand and the
individual user channel gains. Solving this problem optimally
would require a combinatorial search, which is clearly not
feasible in practice. This paper proposes an approach of
gracefully switching users in and out of the active set using
proportionally fair scheduling. The idea is that instead of
selecting the best set of users then designing beamformers and
allocating power for them, we iteratively select the best users
according to the proportionally fairness criterion assuming
a fixed power allocation and beamformers, then update the
power allocation and beamformers assuming a fixed user
schedule.

The proposed user scheduling strategy relies on the follow-
ing observation. In the downlink, the interference produced
by each beamformer to users both within its own sector and
in neighboring sectors is a function of the beamformer and
its associated transmit power only, and is independent of the
user assignment for this beam. Thus, at thelth cell, thesth
sector, and thebth beam, if the beamforming vectorvnD,lsb and
the power allocationPn

D,lsb are fixed, user scheduling can be
done independently in each cell on aper-beam basis without
affecting the interference level elsewhere in the network.This
enables a simple search algorithm for finding the user that
maximizes the proportional fairness objective: for fixed beam-
forming vectors and their power allocation in each subcarrier,
the algorithm finds the user who benefits the most from being
scheduled in that beamformer and subcarrier:

fD(l, s, b, n) = argmaxk
r̃nD,lsbk

R̄D,lsk

(4)

where r̃nD,lsbk denotes the instantaneous rate of user(l, s, k)
if it is served by beamformerb on subcarriern. Here, the
long-term average rate for the user(l, s, k), R̄D,lsk, is updated
exponentially with some0 < α < 1 as follows:

R̄D,lsk = αR̄D,lsk + (1 − α)RD,lsk (5)

whereRD,lsk is the instantaneous rate for the user(l, s, k)
computed from the fixed power spectrum allocation as in

(2). The above scheduling policy maximizes log utility as
the derivative of the log utility is1/R̄D,lsk. The scheduling
policy (4) is essentially the solution to a weighted rate sum
maximization problem with weights chosen as1/R̄D,lsk.

The proposed algorithm can be thought of as a MIMO
extension of the joint scheduling and power control algorithm
proposed in [37]–[39] for the OFDMA network, where the
scheduling step is done in each frequency tone. The proposed
algorithm is also similar to the work [52] where scheduling
is done on a per-beam basis for each physical resource block.
The proposed scheduling policy (4) can also be implemented
in each cell/sector in a distributed fashion as intercell inter-
ference can be easily measured locally.

A main novelty of the proposed policy is that scheduling
is done on a per-beam basis, so it naturally takes the intercell
interference and the channel orthogonality of the spatial mul-
tiplex system into account through the computation of SINR
for each beam. The proposed scheduling policy also naturally
accounts for the temporally varying channels and user traffic
demands. As the channels and consequently the associated
achievable rate region vary over time, different users are
scheduled to account for the different user priorities, fairness,
channel gains and orthogonality, and intercell interference.
The proposed scheduling policy depends critically on the fact
that the user assignment at each beam does not affect the
interference elsewhere in the network. But, this is true only for
the downlink, and not for the uplink. However, in this paper,
we propose to use thesame scheduling policy for both uplink
and downlink in a TDD system. This can be justified in part
by uplink-downlink duality, i.e. under the same sum-power
constraint, the uplink and downlink rate regions are the same.
Although practical networks are not necessarily sum-power
constrained, system-level simulation shows that this approach
is reasonable.

C. Beamforming

The next step is to find the optimal beamforming vector
and the optimal power allocation for the fixed active user set.
The proportional fairness objective gives rise to the following
downlink weighted rate sum maximization problem

max
∑

lsk

wD,lskRD,lsk, where wD,lsk =
1

R̄D,lsk

(6)

over the power and beamforming vectors. Note that this
problem can be decomposed along the frequency tones, and it
is known to be a difficult problem because of its underlying
nonconvex structure. Here, we again propose a separated
approach, i.e. iteratively finding a set of good beamforming
vectors for fixed power allocation, then finding a set of good
power allocations for fixed beamformers. This section deals
with the beamforming design for fixed power, where the
beamforming vectors are normalized to unit norm.

One sensible approach for beamforming design is to set
the beamforming vectors so that the interference within each
sector is completely nulled out. This is known as zero-forcing
(ZF) beamforming. When each mobile user is equipped with
a single antenna, downlink ZF beamforming is equivalent to
channel inversion. In a MIMO setting where mobile users have
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multiple antennas, it is possible to iterate between setting the
MMSE receive beamformer at the mobiles and ZF transmit
beamformer at the BS to reach a simultaneous ZF and MMSE
solution. However, ZF is a per-cell (or per-sector) strategy,
which does not take into account intercell interference. Our
goal here is to develop coordinated beamforming strategies
across the BSs so that intercell interference may be mitigated.

The proposed strategy is based on a fact known asuplink-
downlink duality. For a multicell multiuser system where the
BSs are equipped with multiple antennas but the mobile users
are equipped with a single antenna each, under a fixed set
of SINR constraints, the power-minimizing downlink transmit
beamformers at the BS are exactly the MMSE receive beam-
formers of a dual uplink sum-power minimizing network. This
duality relationship holds not only for single-cell systems [9]–
[13] but also for multicell systems as shown in [7], [21], [22].

Previous uses of this duality relationship have been re-
stricted to the minimization of transmit sum power across
the network. This paper proposes the integration of this
power minimization step in an overall framework for utility
maximization. The idea is to use the duality-based power-
minimization beamforming to find the beamforming directions
only. The minimized power allocation is then discarded and
subsequently updated in a power adaptation step. The rationale
for such an approach is that the duality-based power minimiza-
tion step does not optimize network utility. In fact, the utility
is fixed, since the SINR targets are fixed. But, if one utilizes
the subsequent network-utility-maximizing power adaptation
steps to improve the set of SINR targets, then the beamforming
vectors produced by the successive power-minimization steps
would improve the overall network utility as well.

The proposed coordinated beamforming (CBF) strategy for
a multicell multiuser MIMO downlink system is as follows.
Assuming a fixed downlink power allocation and user sched-
ule, for every tonen:

1) Initialize a set of downlink transmit beamformersvnD,lsb;
2) Find and fix the optimal MMSE downlink receive beam-

formersun
D,lsk, so the mobile users can now effectively

be regarded as single-antenna users;
3) Compute the current set of SINR’s for every user;
4) Form the virtual dual uplink channel by taking the

conjugate transpose of all the channel matrices, and
iterate between the following two steps:

a) Find the appropriate power in the virtual dual
uplink channel to satisfy the current SINR’s. This
can be done via a matrix inversion, or using an
iterative power update (see e.g. [21]).

b) Find the MMSE receive beamformers in the virtual
dual uplink for the given virtual uplink power.

5) Set the downlink transmit beamformersvnD,lsb to be the
unit-norm virtual dual uplink receive beamformer;

6) Find the downlink power to satisfy the current SINR’s;
7) Set the downlink receive beamformersun

D,lsk as the
optimal MMSE receive beamformers;

8) Go to Step (4). Iterate until convergence.

An identical algorithm can be implemented in the uplink to
find the optimal uplink transmit and receive beamformers.
Note that the algorithm iteratively updates the transmit and

receive beamformers to minimize the total transmit power, so
the iterations are guaranteed to converge.

The above algorithm works with a fixed set of SINRs,
which are given by the fixed power allocation and user
scheduling. It relies on the subsequent user scheduling and
power allocation steps to improve the SINR targets for utility
maximization. Since this beamforming step does not change
the target SINRs, it does not affect the convergence of the
overall utility maximization program—as long as the uplink-
downlink duality iterations within the algorithm converges
to a feasible power allocation. Note that the above duality-
based algorithm optimizes the beamforming directions for the
minimization of the total transmit power across the BSs in the
entire multicell network. Thus, the above algorithm suits the
overall optimization problem perfectly if the power constraint
is on the total power over the network. In this case, each of
the iterative updates of the transmit and receive beamformers
reduces the total transmit power, so the iteration is guaranteed
to converge.

For more practical setups where the power constraint is
on the sum power per BS or on the individual power of
each beam or each antenna element, then ideally, one would
need to minimize the maximum per-BS, maximum per-beam,
or maximum per-antenna power in this beamforming step.
To properly incorporate these types of power constraints in
the beamforming problem, one would need to reflect the
power constraint in the noise characterization of the dual
network [15], [21]. The resulting algorithm would then need
to iteratively update the dual noises in an additional outer
loop. To ensure convergence, a feasibility check is also needed,
i.e., the beamformers are updated only if the individual power
constraints are not violated after the update.

Finally, we remark that it is possible to implement this
beamforming step in a distributed fashion [21]. This is be-
cause by the reciprocity property of wireless electromagnetic
propagation, the uplink and downlink channel matrices are
conjugate transposes of each other, (although the implementa-
tion of virtual uplink or downlink powers would be needed.)

D. Dynamic Power Spectrum Adaptation

The third component of the overall algorithm is a power
spectrum adaptation step, fixing the user schedule and the
beamformers. The objective is again the weighted rate sum as
in (6). The optimization variables are the per-beam transmit
PSDs. As the beamforming vectors are fixed, the optimization
is essentially on a set of point-to-point interfering links. This
paper takes a simplifying approach of placing a peak power
constraint on each beam. As the beamformers have unit norms,
this guarantees that a sum power constraint across the antennas
at each BS is satisfied. On one hand, per-beam power control
may be overly restrictive, as it does not allow power trade-
offs among the beams. On the other hand, the per-beam
power control also does not guarantee per-antenna power
constraint, so it could be optimistic. In this work, we choose
this particular per-beam formulation primarily because itleads
to simpler numerical algorithms.

The optimization of transmit power for weighted rate-
sum maximization is a difficult problem (in fact NP-hard
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[53]) with no known convex formulation. Existing approaches
typically rely on convex approximation (e.g. [54], [55]), but
global optimality is difficult to establish. This paper makes an
observation that local optimality often already brings in signif-
icant improvement. Further, there are efficient and distributed
methods for reaching these locally optimal points.

This paper advocates a local ascent approach. The imple-
mentation of the algorithm relies on the passing of messages
among the multiple BSs. The idea is to coordinate the PSDs
of multiple beams in multiple cells via messages which are
functions of proportional fairness variables, transmit PSDs,
SINRs, and direct and interfering channel gains for each beam.
The messages summarize the effect of interference each beam
causes to its neighbors. The use of interference pricing has
appeared in previous works, but mostly for single-antenna
systems [38], [39], [43], [44], [47]. The present work applies
the idea to multicell multi-antenna beamforming systems.
Another distinguishing feature is that this paper uses a Newton
direction for faster convergence.

Consider first the downlink. The power optimization prob-
lem can be decomposed intoN independent problems, one
per each tonen = 1, · · · , N :

max
∑

l,s,b

wD,lskr
n
D,lsk

s.t. 0 ≤ Pn
D,lsb ≤ Smax

D (7)

where

rnD,lsk = log

(

1 +
Pn
D,lsb|h

n
lsb,lsk|

2

Γ(σ2 +
∑

(jtc) 6=(lsb) P
n
D,jtc|h

n
jtc,lsk|

2)

)

(8)
with k = fD(l, s, b, n) and |hn

jtc,lsk|
2 =

|(un
lsk)

HHn
jt,lskv

n
jtc|

2. The uplink problem is similar.

As mentioned earlier, the problem formulation of this paper
assumes a per-beam power constraint, but other types of
constraints can also be formulated, e.g., per-BS sum power
constraints or per-antenna power constraints. In these cases,
since the power constraints are linear inPn

D,lsb, dualizing with
respect to the additional power constraints gives

max
∑

l,s,b

wD,lskr
n
D,lsk − λD,lsbP

n
D,lsb

s.t. 0 ≤ Pn
D,lsb ≤ Smax

D (9)

whereλD,lsb can be interpreted as a power cost. The remain-
ing of this section treats this slightly more general problem.
Note that the appropriateλD,lsb’s can be found using an outer
loop (such as a subgradient update). The algorithms presented
here provide numerical solutions to (9) for fixedλD,lsb.

1) KKT Method: The objective in (9) is a well-known
nonconvex function for which finding the global optimum
is believed to be difficult. This paper proposes an iterative
approach to achieve a local optimum solution. Our first idea
is to look at its Karush-Kuhn-Tucker (KKT) condition, i.e.
take the derivative of the objective function with respect to

Pn
D,lsb and set it to zero:

wD,lsk|h
n
lsb,lsk|

2

Pn
D,lsb|h

n
lsb,lsk|

2 + Γ(σ2 +
∑

(jtc) 6=(lsb) P
n
D,jtc|h

n
jtc,lsk|

2)

=
∑

(jtc) 6=(lsb)

tnD,jtc,lsb + λD,lsb, (10)

with k = fD(l, s, b, n), where

tnD,jtc,lsb = wD,jtk′

∂rnD,jtk′

∂Pn
D,lsb

= wD,jtk′

Γ|hn
lsb,jtk′ |2

Pn
D,jtc|h

n
jtc,jtk′ |2

(SINRn
D,jtc)

2

1 + SINRn
D,jtc

(11)

and

SINRn
D,jtc =

Pn
D,jtc|h

n
jtc,jtk′ |2

Γ(σ2 +
∑

(lsb) 6=(jtc) P
n
D,lsb|h

n
lsb,jtk′ |2)

, (12)

andk′ = fD(j, t, c, n). The termtD,jtc,lsb quantifies the effect
of transmit power at thelth BS, thesth sector and thebth beam
to the data rate of the user served by thejth BS, thetth sector,
and thecth beam. It has a pricing interpretation.

The KKT condition (10) is essentially a water-filling con-
dition if the termstnD,jtc,lsb are held fixed. In this case, (10)
gives the following power update equation: (see also [47])

Pn
D,lsb,new =

[

wD,lsk
∑

j 6=l t
n
D,jtc,lsb + λD,lsb

−
Γ(σ2 +

∑

(jtc) 6=(lsb) P
n
D,jtc|h

n
jtc,lsk|

2)

|hn
lsb,lsk|

2

]Smax

D

0

(13)

where k = fD(l, s, b, n), and the notation[x]ba denotesx
upper bounded above byb and lower bounded below bya.
The second term in the right-hand side of (13) is the effective
combined downlink noise and interference in thenth tone of
the lth BS sth sector andbth beam, which can be measured
at the remote terminal locally. Thus, to compute (13), the
BS only has to knowtnD,jtc,lsb. In this paper, we propose to
passtnD,jtc,lsb as messages between neighboring BSs. In this
case,Pn

D,lsb,new can be effectively computed in an iterative
process. Note that the computation oftnD,jtc,lsb requires not
only the proportional fairness weights, the transmit powerand
the SINR, but also the ratios of the direct and the interfering
channel gains, which have to be estimated in the initialization
phase.

For practical implementation, the update according to (13)
may be too aggressive, and it may lead to non-convergence.
We propose a damped iteration where the next iteration of
Pn
D,l is set as follows in dB scale:

10 log10(P
n
D,lsb[κ+ 1]) = γ10 log10(P

n
D,lsb,new)

+ (1 − γ)10 log10(P
n
D,lsb[κ]), (14)

where the indexκ denotes the iteration number, and0 < γ <
1. In practice,γ = 0.5 is found to work well.

The implementation of the algorithm depends critically on
the availability of the pricing messagestnD,jtc,lsb. Observe that
since only the sum oftnD,jtc,lsb enters the computation, it is
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possible to approximate the sum bymax(jtc) 6=(lsb){t
n
D,jtc,lsb}.

To compensate for the fact that maximum is strictly less than
the sum, we propose to adjust the maximum by a constant
factor c, in which case the update becomes

Pn
D,lsb,new =

[

wD,lsk

c ·max(jtc) 6=(lsb){t
n
D,jtc,lsb}+ λD,lsb

−
Γ(σ2 +

∑

(jtc) 6=(lsb) P
n
D,jtc|h

n
jtc,lsk|

2)

|hn
lsb,lsk|

2

]Smax

D

0

. (15)

In practice,c = 2 is found to work well.

To summarize, to solve (9), we propose to start with the
current power allocations{Pn

D,(111), · · ·P
n
D,LSK}, and update

the power according to (14) and (13) or (15). The process
iterates until convergence or until a maximum number of
iterations is reached.

2) Newton’s Method: We now propose a second method
for solving (9) which has a faster convergence speed than the
KKT method. The idea is to perform a distributed Newton’s
search directly on the objective function of (9)

g(Pn
D,111, · · · , P

n
D,LSB) =

∑

lsk

wD,lskr
n
D,lsk − λD,lsbP

n
D,lsb

(16)
by incrementing the transmit power(Pn

D,111, · · · , P
n
D,LSB) in

a Newton’s direction. The Newton’s direction is

[∆Pn
D,111, · · · ,∆Pn

D,LSB] = −(∇2g)−1∇g. (17)

In practice, inverting the Hessian matrix∇2g is computa-
tionally expensive. To simplify the computation, one possible
approach [56] is to ignore the off-diagonal terms of the
Hessian, and to invert the diagonal terms(∇2g)lsb,lsb only,
i.e.

∆Pn
D,lsb = −

(∇g)lsb
(∇2g)lsb,lsb

. (18)

However, the above method works only if the objective
function g is concave, in which case(∇2g)lsb,lsb is negative,
and∆Pn

D,lsb always increases in the direction of the gradient
(∇g)lsb. As the objective function of (9) is not concave,
the ∆Pn

D,lsb above does not necessarily give an increment
direction (see e.g. [57]). Thus, we modify the search direction
as follows:

∆Pn
D,lsb =

(∇g)lsb
|(∇2g)lsb,lsb|

. (19)

This heuristics works very well in practice.

Now, the elements of the gradient vector are:

(∇g)lsb =
wD,lsk

Pn
D,lsb

(

1 +
1

SINRn
D,lsb

)−1

−
∑

(jtc) 6=(lsb)

tnD,jtc,lsb − λD,lsb. (20)

wherek = fD(l, s, b, n). The diagonal terms of the Hessian

matrix are:

(∇2g)lsb,lsb =
−wD,lsk
(

Pn
D,lsb

)2

(

1 +
1

SINRn
D,lsb

)−2

+

∑

(jtc) 6=(lsb)

wD,jtk′

(

Γ|hn
lsb,jtk′ |2

Pn
D,jtc|h

n
jtc,jtk′ |2

)2

·
(SINRn

D,jtc)
3(2 + SINRn

D,jtc)

(1 + SINRn
D,jtc)

2
(21)

where k′ = fD(j, t, c, n). Substituting (20)-(21) into (19)
gives the Newton’s direction.

Note that in order to implement the above Newton’s method
in a distributed fashion, the BSs need to pass not only the
pricing messagestnD,jtc,lsb in (20), but also the additional
terms in (21). The first term of (21) can be calculated without
any exchange of information among the BSs, thus we propose
a further modification of the Hessian that includes the first
term of (21) only. This modification facilitates distributed
implementation with messagestnD,jtc,lsb only. Finally, as
in KKT method, we can replace

∑

(jtc) 6=(lsb) t
n
D,jtc,lsb by

c ·max(jtc) 6=(lsb){t
n
D,jtc,lsb}. These modifications lead to the

following update equation:

∆P
n
D,lsb =

wD,lsk

Pn
D,lsb

(

1 +
1

SINRn
D,lsb

)−1

− c · max
(jtc) 6=(lsb)

{tnD,jtc,lsb} − λD,lsb

wD,lsk
(

Pn
D,lsb

)2

(

1 +
1

SINRn
D,lsb

)−2

(22)

where k = fD(l, s, b, n). Simulation results in [1] com-
pare the performances of the dynamic power spectrum op-
timization methods using

∑

(jtc) 6=(lsb) t
n
D,jtc,lsb versus using

c · max(jtc) 6=(lsb){t
n
D,jtc,lsb}. Again, c = 2 is found to work

well.

In summary, each beam in each cell and each sector
iteratively updates its power allocation according to

Pn
D,lsb[κ+ 1] =

[

Pn
D,lsb[κ] + µ∆Pn

D,lsb

]Smax

D

0
. (23)

where∆Pn
D,l is computed either by (19), (20) and (21), or

by (22). An identical algorithm can be implemented for the
uplink. This power allocation step can be implemented in a
distributed fashion with the exchange of interference pricing
variablestnD,jtc,lsb between the BSs.

Although the idea of pricing via message passing has
appeared in numerous papers on spectrum optimization [37],
[43]–[47], [58], the power update algorithms proposed in this
paper take a network perspective by including parameters such
as the proportional fairness variable. Different variantsof the
proposed method have about the same performance in terms of
weighted sum rate, but the Newton’s method converges faster
than the KKT method. Both the Newton’s method and the
KKT method are faster than the gradient-based update of [38],
[39], because the second derivate information is incorporated
either implicitly or explicitly here.
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Fig. 2. The joint proportionally fair scheduling, adaptivebeamforming, and
power spectrum adaptation algorithm for downlink. The uplink algorithm is
similar.

E. Summary of the Algorithm

The scheduling, beamforming, and power spectrum adap-
tation steps are iterated until convergence. The convergence
is assured for the weighted rate sum maximization problem,
because each step is nondecreasing in the weighted rate-
sum objective. The adaptation of weights then go toward
the maximization of the overall network utility. The entire
algorithm is depicted in Fig. 2.

It is worth noting that the proposed algorithm is heuristic in
nature. For example, the scheduling step is a greedy algorithm,
and it does not tackle the combinatorial optimization problem
directly. The beamforming algorithm seeks to minimize the
total transmit power rather than maximizing the network
utility. The power adaptation step is capable of reaching
a locally optimal solution at best. The overall optimization
framework is based on iterating among the three steps, so
a joint optimization (such as the weighted MMSE approach
[19]) can potentially perform better. Further, although we
have established convergence, we have not yet established
convergence to a local optimum. Nevertheless, the proposed
approach represents an effort in devising an efficient and
implementable coordinated optimization procedure that goes
toward the goal of adaptive network-wide resource allocation
for multicell networks. Thus, the main contribution of this
paper is not so much in providing analytic results, but in
providing practical techniques and performance projections for
multicell network optimization.

To implement the proposed approach in a distributed fash-
ion, different amount of information exchange needs to take

place for different components of the overall algorithm. The
proposed scheduling scheme works on a per-cell basis, so
it can choose the set of active users based on only locally-
measured intercell interference without any explicit exchange
of information among cells. The distributed implementation
of the proposed beamforming scheme is possible if channel
reciprocity holds, i.e. in a TDD system. The proposed power
spectrum adaptation requires the exchange of the information
about interference pricing among cells. Finally, because of
the modularity of the proposed schemes, optimization compo-
nents can be selectively plugged into the overall framework,
according to target system characteristics such as the accuracy
of channel reciprocity, the capacity and latency of backhaul
links among the BSs, the processing power, and performance
requirements, etc.

IV. PERFORMANCEPROJECTION

A. Multicell Coordination

The performance of the proposed algorithm is evaluated first
on a wireless multicell network with 7 cells, 3 sectors per
cell, and 10 users per sector with maximal frequency reuse
as shown in Fig. 1(a). In a conventional deployment each of
the BSs operate independently. The aim of this simulation
is to quantify the benefit of coordinating resource allocation,
i.e. scheduling, beamforming, and power allocation, across the
cells.

The simulation setup assumes that the cells are wrapped
around so that each cell has six neighboring cells. The BS
is equipped with 4 antennas, allowing 4 users to be served
simultaneously in each frequency tone. The remote users are
equipped with 2 antennas. System parameters are outlined in
Table I corresponding to a typical LTE deployment. The users
are distributed randomly in each cell. The BS-to-BS distance
is 2.8km. Frequency selective channels with a Rayleigh fading
component are simulated. For evaluation purposes, we adopt
the idealistic assumption that the channels are perfectly known
and fixed for the duration of the optimization. As channel
estimation may be imperfect and the wireless channels are
time-varying in real deployment, the idealistic assumptions
adopted here yield optimistic results, and the results are
most applicable to systems with slow-moving or static users
with long coherence time. A TDD system is assumed where
channel reciprocity can be used for channel estimation at trans-
mitters. Both uplink and downlink scenarios are simulated.
The algorithm is initialized with uniform power allocationat
maximum PSD level of -27dBm/Hz per beamforming vector
for both uplink and downlink, so that over a 10MHz bandwidth
the total transmit power at the BS is at 49dBm. The initial user
assignment and beamformers are set randomly.

Table II shows the achieved sum rates. Fig. 3 shows the
achieved log utility for a simulation of the 7 cells with
either ZF or CBF and with or without the dynamic power
(DP) spectrum adaptation. Without dynamic power spectrum
adaptation, both uplink and downlink transmitters simply
transmit at the maximum constant power (CP) spectrum level.
Results in Table II and Fig. 3 compare a non-cooperative
scheme (Constant PSD Zero Forcing, or CP-ZF), a cooperative
beamforming scheme (Constant PSD Coordinated BF, or CP-
CBF), a cooperative power control scheme (Dynamic PSD
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Cellular Layout Hexagonal, 7 cells
3 sectors/cell

BS-to-BS Distance 2.8 km
Frequency Reuse 1

Number of users per sector 10
Duplex TDD

Channel Bandwidth 10 MHz
BS Max Tx Power 49 dBm

BS Max Per-Beam PSD -27 dBm/Hz
MS Max Per-Beam PSD -27 dBm/Hz

Antenna Gain 15 dBi
SNR Gap (with coding) 6 dB

Background Noise -169 dBm/Hz
Noise Figure 7 dB

BS Tx Antenna No. 4
MS Rx Antenna No. 2

Number of beamformers at BS 4
Multipath Time Delay Profile ITU-R M.1225 PedA
Distance-dependent path loss 128.1 + 37.6 log10(d)

FFT Size 64

TABLE I
WIRELESS MULTICELL CHANNEL MODEL PARAMETERS

Sum Rate over 7 Cells DL UL
Constant PSD, Zero Forcing 932 Mbps 1092 Mbps
Constant PSD, Coord. BF 1140 Mbps 1223 Mbps
Dynamic PSD, Zero Forcing 1025 Mbps 1129 Mbps
Dynamic PSD, Coord. BF 1194 Mbps 1230 Mbps
Improvement 28% 13%

TABLE II
IMPROVEMENT IN SUM RATE OVER7 CELLS, 3 SECTORS PER CELL, 10

USERS PER SECTOR. CELL DIAMETER IS 2.8KM .

Zero Forcing, or DP-ZF), and a joint cooperative power
control and beamforming scheme (Dynamic PSD Coordinated
BF, or DP-CBF). The results show that

• Dynamic power spectrum adaptation always outperforms
constant power allocation in terms of both log utility and
the average sum rate;

• Coordinated beamforming always outperforms zero-
forcing both in log utility and the average sum rate;

• Dynamic power adaptation alone achieves a higher utility
than coordinated beamforming alone in the uplink;

• Combined dynamic power spectrum adaptation and co-
ordinated beamforming produces 10%-30% sum rate
increase for the entire network while maintaining pro-
portional fairness.

The benefit of adaptive multicell resource allocation is most
clearly illustrated in the cumulative distributions of user rates
as shown in Fig. 4. It can be seen from the plots that the com-
bined dynamic power spectrum adaptation and coordinated
beamforming produces the most significant rate improvement
for users with lower service rates, while producing minor
improvement or even decreasing performance for users already
served with high rates. For example, in the downlink, it
produces 100% rate improvement for the 25th percentile users,
and 50% rate improvement for the 40th percentile users. In
the uplink, it produces 100% rate improvement for the 40th
percentile users. For both the downlink and the uplink, it
is observed that users with low rates benefit the most from
intercell coordination. This is a desirable situation as the low-

downlink uplink
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Fig. 3. Log utility gain due to dynamic power adaptation (DP)vs. constant
power spectrum (CP), and zero-forcing (ZF) vs. coordinatedbeamforming
(CBF). The sum log utility is taken over 7 cells, 3 sectors percell, and 10
users per sector.

rate users are typically at the cell edge; they are the main
bottleneck for wireless service providers. For the high-rate
users in the uplink, however, it is observed that multicell
coordination actually decreases their performance. This is
indicative of the fact that the joint optimization approach
delivers a fairer rate distribution. We also note that although
this paper adopts the same uplink scheduling policy as in
downlink (which is not optimal as mentioned in Section III-B),
it does provide reasonable performance gain for users with low
and medium rates in the uplink.

Fig. 5 illustrates the convergence of the per-sector sum rates
with the joint scheduling, beamforming and power allocation
algorithm. Each iteration in Fig. 5 is either a joint user schedul-
ing and beamforming step, or a power allocation step. Each
beamforming step consists of fixed 3 inner downlink transmit
beamformer and power iterations and 5 outer downlink receive
beamformer updates (for a total of 15 iterations). Each power
allocation step involves up to 10 iterations. The proportional
fairness weights are also updated at the same time. Even with
a fixed number of iterations, the algorithm is found to work
well and the convergence speed is reasonably fast. Note that
the uplink rates show a large variance. This is likely due to the
fact that the proposed algorithm uses a scheduling algorithm
optimized for the downlink in the uplink.

B. Femto/Pico Cell and Macro Cell Coordination

The advantage of adaptive scheduling, beamforming, and
power spectrum adaptation is most evident in a highly over-
lapped deployment scenario with strong intercell interference.
This section quantifies its benefit in a femtocell or picocell
deployment.

Femtocell or picocell is an emerging cellular deployment
architecture where femto- or pico-stations are deployed to
improve the throughput and user experience in geographic
locations where the macrocell coverage is weak. Femto- and
pico-stations can be deployed by the operator or by users
themselves. They use the same radio spectrum as the macro-
stations, and are connected to the backhaul network via the
Internet backhaul. When a mobile is in the coverage area of
a femto- or pico-station, its data are routed through to the
femto- or pico-station via the Internet instead of through the
macro BS. Femtocells and picocells can heavily overlap with
the macrocells, so femto- or pico-stations and the macro BSs
cause significant interference to each other. In the following,
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Fig. 4. Cumulative distribution function of user rates withdynamic power spectrum adaptation (DP) vs constant power (CP), and coordinated beamforming
(CBF) vs zero-forcing (ZF). Cell diameter is 2.8km
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Fig. 5. Convergence of downlink and uplink per-sector sum rates in each of the 21 sectors with dynamic spectrum allocation and coordinated beamforming.

a possible deployment scenario is analyzed to show that the
dynamic adaptation of scheduling, beamforming, and power
spectrum can alleviate the effect of the interference and allow
femtocells and picocells to co-exist with macrocells.

Consider a three-cell macro deployment with three sectors
per cell, where three femto- or pico-stations are deployed in
addition at distances0.8R from the macro BS, whereR =
1.4km is the macro cell radius. Each femto- or pico-station
serves a coverage area of radius0.2R. Ten users are served
by each of the macro sectors and femto- or pico-cells. The
deployment scenario is shown in Fig. 1(b). We assume that
4 antennas are deployed per macro sector and per femto- or
pico-station, and 2 antennas are deployed in each remote user.

Note that in this particular deployment scenario, a mobile
user in the downlink can be served by a macro BS despite
the fact that it is closer to a femto- or pico-station. Thus,
femto- or pico-stations can cause considerable interference for
these users in the downlink. Downlink power backoff at the
femto- or pico-stations is therefore essential. In the uplink,

macro mobile users can also cause excess interference to the
femto- or pico-stations, so power adaptation can be beneficial.
In the following, we assume that all the macro BSs and the
femto- or pico-stations can be coordinated in setting their
power spectrum, scheduling, and beamforming strategies, and
analyze the benefit of coordination.

Fig. 6 shows the log-utility achieved with femto-macro
coordination based on dynamic power spectrum, beamforming
and scheduling coordination (labeled as DP-CBF) versus that
achieved with constant PSD and zero-forcing beamforming
(labeled as CZ). For the latter case, power backoff values from
0dB to -50dB are tested for each of uplink and downlink.
As can be seen from the figure, the optimal power backoff
values are -20dB for the downlink and -5dB for the uplink for
this particular topology. But, dynamic power spectrum, beam-
forming and scheduling coordination significantly outperforms
constant PSD and zero-forcing beamforming. Table III shows
the achieved average user rates of dynamic spectrum and
coordinated beamforming versus the constant power and zero-
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Fig. 6. Log utility with dynamic spectrum, beamforming and scheduling coordination (DP-CBF) as compared to constant PSD and zero-forcing beamforming
(CP-ZF) with femto/pico power backoff ranging from 0 to 50dB. Here, the “CZ(p)” denotes the CP-ZF scheme with power with the femto/pico power backoff
value ofp dB.

forcing with the optimal power backoff values. It can been
seen that dynamic coordination improves both the macrocell
and femto/pico user rates for both uplink and downlink. The
rate improvement ranges 30% – 60%. Note that proportionally
fair scheduling is used in both cases. Femtocell users achieve
higher average rates because they are on average closer to the
femto- or pico-stations than macro users are to the macro BSs
in this topology.

Finally, Fig. 7 shows the convergence of per-sector and per-
femto/picocell sum rates for both uplink and downlink. Again,
a fixed number of iterations are used. Specifically, each itera-
tion consists of either a joint user scheduling and beamforming
step with up to 15 iterations, or a power allocation step with
up to 10 iterations. The upper three curves are femto/picocell
sum rates. It is observed that the convergence is reasonably
fast. Note that the downlink rates converge more rapidly than
uplink rates. This is because the scheduling algorithm used
here are designed for the downlink, but is nevertheless applied
to the uplink as well.

V. CONCLUSIONS

This paper proposes a coordinated scheduling, beamform-
ing, and power allocation scheme across the multiple BSs for
wireless cellular networks. The proposed optimization strategy
decouples the scheduling, beamforming, and power allocation
steps, and uses ideas such as uplink-downlink duality and
interference pricing based power control to approach an (at
best locally) optimal solution in the overall network utility
maximization framework. System-level simulation shows that
the proposed approach already achieves a significant through-
put and network utility improvement with coordination at
the resource allocation level, which is attractive for wireless
deployments with heavily overlapped cellular structures.
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